Research Article
BibTex RIS Cite

Temel Bileşen Analizi Yönteminin Ve Bazı Klasik Ve Robust Uyarlamalarının Yüz Tanıma Uygulamaları

Year 2009, Volume: 22 Issue: 1, 49 - 63, 30.06.2009

Abstract

Bu çalışmada, temel bileşen analizi yöntemindeki klasik ortalama merkezileştirme yerine


çeşitli klasik ve robust tahmin ediciler kullanılarak Yale, ORL ve AR yüz veritabanları üzerinde yüz


tanıma uygulamaları yapılmıştır. Normal dağılım varsayımının sağlanmadığı durumlarda veya veri


kümesinde aykırı değer bulunması durumunda klasik yöntemlerden daha iyi sonuçlar verdiği bilinen


bazı robust yöntemler, bu üç veritabanı üzerinde yapılan yüz tanıma deneylerinde klasik yöntemlerle


karşılaştırılmıştır. Yüz tanıma uygulamalarında görüntü örneği boyutları örnek sayısına göre çok


büyüktür. Bu yüzden, veri kümesinin normal dağılım koşulunu sağlayıp sağlamadığı


bilinememektedir. Deneysel sonuçlar, temel bileşen analizi yöntemi tabanlı yüz tanıma


uygulamalarında robust yöntemlerin klasik yöntemlerden genellikle daha başarılı doğru tanıma


oranları verdiğini göstermiştir.

References

  • [1] W. Zhao, R. Chellappa, P. J Phillips and A. Rosenfeld, “Face Recognition: A Literature Survey”, ACM Computing. Surveys, Vol.35, No.4, pp.399–458, 2003.
  • [2] R. Chellappa, C. L. Wilson and S. Sirohey, “Human and Machine Recognition of Faces: A Survey”, Proceedings of IEEE, Vol.83, No.5, pp.705–741, 1995.
  • [3] A. K. Jain, A. Ross and S. Prabhakar, “An Introduction to Biometric Recognition”, IEEE Trans. Circ. and Sys. for Video Tech. Vol.14, No.1, pp.4–20, 2004.
  • [4] A. A. Salah, “İnsan ve Bilgisayarda Yüz Tanıma”, Bilgi İşleyen Makine Olarak Beyin Sempozyumu-3, Boğaziçi Üniversitesi, İstanbul, 2005.
  • [5] E.Sütçüler, “Gerçek Zamanlı Video Görüntülerinden Yüz Bulma ve Tanıma Sistemi”, Yüksek Lisans tezi, Yıldız Teknik Üniversitesi Fen Bilimleri Enstitüsü, 90 s, 2006.
  • [6] H. Durucasu, “Asal Bileşen Analizi ve Bir Uygulama Denemesi”, Yüksek Lisans Tezi, Anadolu Üniversitesi Fen Bilimleri Enstitüsü, 89 s,1991.
  • [7] A. Ö.Yaycılı, “Temel Bileşenler Analizi için Robust Algoritmalar”, Yüksek Lisans Tezi, Gazi Üniversitesi Fen Bilimleri Enstitüsü, 56 s, 2006.
  • [8] M. A. Turk and A. P.Pentland, “Eigenfaces for recognition”, Journal of Cogn. Neuroscience, Vol.3, pp.71–86, 1991.
  • [9] I. Stanimirova, M. Daszykowski and B. Walczak, “Dealing with Values and Outliers in Principal Component Analysis”, Talanta, Vol. 72, No. 1, pp. 172–178, 2007.
  • [10] M. Daszykowski, K.Kaczmarek, Y. V. Heyden and B. Walczak, “Robust Statistics in Data Analysis- A Review Basic Concepts”, Chemometrics and Intelligent Laboratory Systems, Vol. 85, No. 2, pp. 203–219, 2007.
  • [11] M. Daszykowski, S.Serneels, K.Kaczmarek, P. V. Espen, C. Croux and B. Walczak, “TOMCAT: A MATLAB Toolbox for Multivariate Calibration Techniques”, Chemometrics and Intelligent Laboratory Systems, Vol. 85, No. 2, pp. 269–277, 2007
  • [12] Z. Filiz, “Güvenilirlik Çözümlemesi, Temel Bileşenler ve Faktör Çözümlemesi”, Anadolu Üniversitesi Bilim ve Teknoloji Dergisi, Cilt.4, No.2, s. 211–222, 2003.
  • [13] M. Çilli, “İnsan Hareketlerinin Modellenmesi ve Benzeşiminde Temel Bileşenler Analizi Yönteminin Kullanılması”, Doktora Tezi, Hacettepe Üniversitesi Sağlık Bilimleri Enstitüsü, 240 s, 2007.
  • [14] E. S. Konak, “Bilgisayar Destekli Yüz Tanıma Sistemi Tasarımı”, Yüksek Lisans Tezi, İstanbul Üniversitesi Fen Bilimleri Enstitüsü, 58 s, 2006.
  • [15] R. Alpar, “Uygulamalı Çok Değişkenli İstatiksel Yöntemlere Giriş 1”, Nobel Yayın Dağıtım/Teknik Dizisi, 410 s, 2003.
  • [16] http://cobweb.ecn.purdue.edu/~aleix/aleix_face_DB.html
  • [17] http://cvc.yale.edu/projects/yalefaces/yalefaces.html
  • [18] http://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html
  • [19] S. Watanabe, P. F.Lambert, C. A. Kulikowski, J. L. Buxton and R.Walker, Evaluation and Selection of Variables in Pattern Recognition”, Computing and Information Sciences II, pp. 91–122, 1967.
  • [20] H. Cevikalp, H. S. Yavuz, M. A. Cay and A. Barkana, “ Two-dimensional Subspace Classifiers for Face Recognition”, Neurocomputing, Vol.72, pp.1111–1120, 2009.
  • [21] A.M. Martinez, R. Benavente, “The AR face database”, CVC Technical Report #24,1998.
  • [22] H. Scheffe, “The Analysis of Variances”, John Wiley&Sons, New York, 1959

Face Recognition Applications Of Principle Component Analysis Method And Some Of Its Classical And Robust Variants

Year 2009, Volume: 22 Issue: 1, 49 - 63, 30.06.2009

Abstract

In this study, face recognition applications on the YALE, ORL and AR face databases


have been performed by using some classical and robust estimators instead of classical mean


subtraction in the principal component analysis method. In the cases where the Normal distribution


assumption is not valid or the data set includes outliers, some robust estimators which are known to


have better results were compared with the classical estimators by making face recognition


experiments using these three databases. In face recognition applications, the dimension of the


image samples is very high as against the number of the samples. That’s why it’s not known whether


the data set satisfies the Normal distribution condition. Experimental results demonstrated that


robust methods usually gave beter correct recognition rates than the classical methods in principal


component analysis method based face recognition applications.


References

  • [1] W. Zhao, R. Chellappa, P. J Phillips and A. Rosenfeld, “Face Recognition: A Literature Survey”, ACM Computing. Surveys, Vol.35, No.4, pp.399–458, 2003.
  • [2] R. Chellappa, C. L. Wilson and S. Sirohey, “Human and Machine Recognition of Faces: A Survey”, Proceedings of IEEE, Vol.83, No.5, pp.705–741, 1995.
  • [3] A. K. Jain, A. Ross and S. Prabhakar, “An Introduction to Biometric Recognition”, IEEE Trans. Circ. and Sys. for Video Tech. Vol.14, No.1, pp.4–20, 2004.
  • [4] A. A. Salah, “İnsan ve Bilgisayarda Yüz Tanıma”, Bilgi İşleyen Makine Olarak Beyin Sempozyumu-3, Boğaziçi Üniversitesi, İstanbul, 2005.
  • [5] E.Sütçüler, “Gerçek Zamanlı Video Görüntülerinden Yüz Bulma ve Tanıma Sistemi”, Yüksek Lisans tezi, Yıldız Teknik Üniversitesi Fen Bilimleri Enstitüsü, 90 s, 2006.
  • [6] H. Durucasu, “Asal Bileşen Analizi ve Bir Uygulama Denemesi”, Yüksek Lisans Tezi, Anadolu Üniversitesi Fen Bilimleri Enstitüsü, 89 s,1991.
  • [7] A. Ö.Yaycılı, “Temel Bileşenler Analizi için Robust Algoritmalar”, Yüksek Lisans Tezi, Gazi Üniversitesi Fen Bilimleri Enstitüsü, 56 s, 2006.
  • [8] M. A. Turk and A. P.Pentland, “Eigenfaces for recognition”, Journal of Cogn. Neuroscience, Vol.3, pp.71–86, 1991.
  • [9] I. Stanimirova, M. Daszykowski and B. Walczak, “Dealing with Values and Outliers in Principal Component Analysis”, Talanta, Vol. 72, No. 1, pp. 172–178, 2007.
  • [10] M. Daszykowski, K.Kaczmarek, Y. V. Heyden and B. Walczak, “Robust Statistics in Data Analysis- A Review Basic Concepts”, Chemometrics and Intelligent Laboratory Systems, Vol. 85, No. 2, pp. 203–219, 2007.
  • [11] M. Daszykowski, S.Serneels, K.Kaczmarek, P. V. Espen, C. Croux and B. Walczak, “TOMCAT: A MATLAB Toolbox for Multivariate Calibration Techniques”, Chemometrics and Intelligent Laboratory Systems, Vol. 85, No. 2, pp. 269–277, 2007
  • [12] Z. Filiz, “Güvenilirlik Çözümlemesi, Temel Bileşenler ve Faktör Çözümlemesi”, Anadolu Üniversitesi Bilim ve Teknoloji Dergisi, Cilt.4, No.2, s. 211–222, 2003.
  • [13] M. Çilli, “İnsan Hareketlerinin Modellenmesi ve Benzeşiminde Temel Bileşenler Analizi Yönteminin Kullanılması”, Doktora Tezi, Hacettepe Üniversitesi Sağlık Bilimleri Enstitüsü, 240 s, 2007.
  • [14] E. S. Konak, “Bilgisayar Destekli Yüz Tanıma Sistemi Tasarımı”, Yüksek Lisans Tezi, İstanbul Üniversitesi Fen Bilimleri Enstitüsü, 58 s, 2006.
  • [15] R. Alpar, “Uygulamalı Çok Değişkenli İstatiksel Yöntemlere Giriş 1”, Nobel Yayın Dağıtım/Teknik Dizisi, 410 s, 2003.
  • [16] http://cobweb.ecn.purdue.edu/~aleix/aleix_face_DB.html
  • [17] http://cvc.yale.edu/projects/yalefaces/yalefaces.html
  • [18] http://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html
  • [19] S. Watanabe, P. F.Lambert, C. A. Kulikowski, J. L. Buxton and R.Walker, Evaluation and Selection of Variables in Pattern Recognition”, Computing and Information Sciences II, pp. 91–122, 1967.
  • [20] H. Cevikalp, H. S. Yavuz, M. A. Cay and A. Barkana, “ Two-dimensional Subspace Classifiers for Face Recognition”, Neurocomputing, Vol.72, pp.1111–1120, 2009.
  • [21] A.M. Martinez, R. Benavente, “The AR face database”, CVC Technical Report #24,1998.
  • [22] H. Scheffe, “The Analysis of Variances”, John Wiley&Sons, New York, 1959
There are 22 citations in total.

Details

Subjects Electrical Engineering
Journal Section Research Articles
Authors

İşıl Yazar This is me

Hasan Serhan Yavuz

Mehmet Atıf Çay This is me

Publication Date June 30, 2009
Acceptance Date January 22, 2009
Published in Issue Year 2009 Volume: 22 Issue: 1

Cite

APA Yazar, İ., Yavuz, H. S., & Çay, M. A. (2009). Temel Bileşen Analizi Yönteminin Ve Bazı Klasik Ve Robust Uyarlamalarının Yüz Tanıma Uygulamaları. Eskişehir Osmangazi Üniversitesi Mühendislik Ve Mimarlık Fakültesi Dergisi, 22(1), 49-63.
AMA Yazar İ, Yavuz HS, Çay MA. Temel Bileşen Analizi Yönteminin Ve Bazı Klasik Ve Robust Uyarlamalarının Yüz Tanıma Uygulamaları. ESOGÜ Müh Mim Fak Derg. June 2009;22(1):49-63.
Chicago Yazar, İşıl, Hasan Serhan Yavuz, and Mehmet Atıf Çay. “Temel Bileşen Analizi Yönteminin Ve Bazı Klasik Ve Robust Uyarlamalarının Yüz Tanıma Uygulamaları”. Eskişehir Osmangazi Üniversitesi Mühendislik Ve Mimarlık Fakültesi Dergisi 22, no. 1 (June 2009): 49-63.
EndNote Yazar İ, Yavuz HS, Çay MA (June 1, 2009) Temel Bileşen Analizi Yönteminin Ve Bazı Klasik Ve Robust Uyarlamalarının Yüz Tanıma Uygulamaları. Eskişehir Osmangazi Üniversitesi Mühendislik ve Mimarlık Fakültesi Dergisi 22 1 49–63.
IEEE İ. Yazar, H. S. Yavuz, and M. A. Çay, “Temel Bileşen Analizi Yönteminin Ve Bazı Klasik Ve Robust Uyarlamalarının Yüz Tanıma Uygulamaları”, ESOGÜ Müh Mim Fak Derg, vol. 22, no. 1, pp. 49–63, 2009.
ISNAD Yazar, İşıl et al. “Temel Bileşen Analizi Yönteminin Ve Bazı Klasik Ve Robust Uyarlamalarının Yüz Tanıma Uygulamaları”. Eskişehir Osmangazi Üniversitesi Mühendislik ve Mimarlık Fakültesi Dergisi 22/1 (June 2009), 49-63.
JAMA Yazar İ, Yavuz HS, Çay MA. Temel Bileşen Analizi Yönteminin Ve Bazı Klasik Ve Robust Uyarlamalarının Yüz Tanıma Uygulamaları. ESOGÜ Müh Mim Fak Derg. 2009;22:49–63.
MLA Yazar, İşıl et al. “Temel Bileşen Analizi Yönteminin Ve Bazı Klasik Ve Robust Uyarlamalarının Yüz Tanıma Uygulamaları”. Eskişehir Osmangazi Üniversitesi Mühendislik Ve Mimarlık Fakültesi Dergisi, vol. 22, no. 1, 2009, pp. 49-63.
Vancouver Yazar İ, Yavuz HS, Çay MA. Temel Bileşen Analizi Yönteminin Ve Bazı Klasik Ve Robust Uyarlamalarının Yüz Tanıma Uygulamaları. ESOGÜ Müh Mim Fak Derg. 2009;22(1):49-63.

20873  13565  13566 15461  13568    14913