Research Article
BibTex RIS Cite

Kenar Bulma İçin Topolojik Gradyan İşleçleri

Year 2007, Volume: 20 Issue: 2, 135 - 158, 31.12.2007

Abstract

Görüntü işlemede kenar bulma, görüntülerde piksel değerlerinin değiştiği yerlerin bulunmasıdır. İlk yöntemler, doğrusal süzgeç ve yönlü türeve dayalı basit işleçlerdi. Türevin yaklaşık olarak hesaplanmasına dayanan bu yöntemlerin en önemli sorunlarından biri, küçük işleç genişlikleri nedeniyle, gürültüye karşı hassas olmalarıdır. Yakındaki nesnelerin kenarlarının da o yerdeki türeve etki etmesini engellemek için küçük genişlikle işleçlerin kullanımı yaygındır. Bu çalışmada, daha geniş işleç boyutlarının kullanılmasını sağlayan, gradyan işleçlerinden önce uygulanabilecek bulanık topolojiye dayalı bir yöntem önerilmektedir. Bu yöntem, adım kenarlarla birlikte yavaş değişim gösteren yokuş kenarlarda türevin etki alanını sınırlandırarak daha ince kenar çizgilerinin oluşmasını sağlamaktadır. Önerilen yöntemin uygulandığı sentetik ve doğal görüntüler üzerinde yapılan inceleme sonucu, gradyan işlecinin tepkisinin kenar dışına taşmasının engellendiği ve düz alanlarda gürültünün daha iyi bastırıldığı anlaşılmıştır

References

  • [1] D. Marr ve E. Hildreth. “Theory of Edge Detection,” Proc. R. Soc. Lond. A, Math. Phys. Sci., Vol. B s. 207, 1980.
  • [2] M. Garcia-Silvente, J. A. Garcia, J. Fdez-Valdivia ve A. Garrido, “A New Edge Detector Integrating Scale-Spectrum Information”, Image and Vision Computing Vol. 15, No. 12, ss. 913-923, 1997.
  • [3] J. F. Canny, “A Computational Approach to Edge Detection”, IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol 8, No. 6, ss. 679-698, 1986.
  • [4] P. Perona ve J. Malik, “Scale-Space and Edge Detection Using Anisotropic Diffusion,” IEEE Trans. On PAMI, Vol. l2, No. 6, ss. 629-639, 1990.
  • [5] Y. Lu ve R. C. Jain, “Reasoning About Edges in Scale Space”, IEEE Transactions On Pattern An. and Mach. Intel.. Vol. 14. No. 4, ss.337 – 356, 1992.
  • [6] S. Mallat ve S. Zhong, “Characterization of Signals from Multiscale Edges”, IEEE Transactions on PAMI, Vol. 14, No. 7, ss. 710 – 732, 1992.
  • [7] J. F. Canny, “Finding Edges and Lines in Images”, Technical Report, MIT AI Lab., 1983.
  • [8] B. Tremblais ve B. Augereau, “A Fast Multi-scale Edge Detection Algorithm”, Pattern Recognition Letters, Vol. 25, ss. 603–618, 2004.
  • [9] S. Konishi, A.L. Yuille, J. M. Coughlan ve S. C. Zhu, “Statistical Edge Detection: Learning and Evaluating Edge Cues”, IEEE Transactions On Pattern Analysis And Machine Intelligence, Vol. 25, No. 1, ss. 57-74, 2003.
  • [10] D. Demigny, “On Optimal Linear Filtering for Edge Detection,” IEEE Transactions On Image Processing, Vol. 11, No. 7, s. 728, 2002.
  • [11] M. Basu, “Gaussian-Based Edge-Detection Methods: A Survey”, IEEE Transactions On Systems, Man, And Cybernetics, Part C: Applications And Reviews, Vol. 32, No. 3, ss. 252-260, 2002.
  • [12] E. D. Michell, B. Caprile, P. Ottonello ve V. Torre, “Localization and Noise in Edge Detection”, IEEE Transactions On Pattern Analysis And Machine Intelligence. Vol 11. No 10, ss. 1106-1117, 1989.
  • [13] J. J. Clark, “Authenticating Edges Produced by Zero-Crossing Algorithm”, IEEE Trans. On Pattern Anal. and Mach. Intel., Vol. 11 . No. 1. ss. 43 – 57, 1989.
  • [14] L. Ding ve A. Goshtasby, “On Canny Edge Detector”, Pattern Recognition, Vol. 34, No. 3, ss. 721-725, 2001.
  • [15] M. M. Fleck, “Some Defects in Finite-Difference Edge Finders” IEEE Transactions on Pattern An. and Machine Intelligence. Vol. 14, No. 3, s. 337, 1992.
  • [16] F. Heijden, “Edge and Line Feature Extraction Based on Covariance Models”, IEEE Transactions on Pat. Ana. Mach. Intel., Vol.17, No. 1, ss.16-33, 1995.
  • [17] A. Rosenfeld, “Fuzzy Digital Topology,” Information and Control, Vol. 40, No. 1, ss. 76–87, 1979.
  • 18] K. Suzuki, I. Horiba ve N. Sugie, “Neural Edge Enhancer for Supervised Edge Enhancement from Noisy Images”, IEEE Transactions On Pattern Analysis And Machine Intelligence, Vol. 25, No. 12, ss. 1582-1596, 2003.
  • [19] U. Braga-Neto ve J. Goutsias, “Grayscale Level Connectivity: Theory and Applications”, IEEE Trans. On Image Proc., Vol. 13, No. 12, ss. 1567 – 1580, 2004.
  • [20] H. G. Senel, R. A. Peters ve B. Dawant, “Topological Median Filters”, IEEE Transactions On Image Processing, Vol. 11, No. 2, ss. 89 – 104, 2002.
  • [21] E. Aybar, “Topolojik Kenar İşleçleri”, Doktora Tezi, Anadolu Üniversitesi, 2004.
  • [22] M. S. Prieto ve A. R. Allen, “A Similarity Metric for Edge Images”, IEEE Trans. On Pattern An. And Machine Intelligence, Vol. 25, No. 10, ss. 1265 – 1273, 2003.
  • [23] R. R. Rolda, J. F. Gomez, C. Atae-Allah, J. Martines-Aroza, ve P. L. LuqueEscamilla, “A Measure of Quality for Evaluating Methods of Segmentation and Edge Detection,” Pattern Recognition 34, ss. 969–980, 2001.
  • [24] M. C. Shin, D. B. Goldgof ve K. W. Bowyer, “Comparison of Edge Detector Performance through Use in an Object Recognition Task”, Computer Vision and Image Understanding, Vol. 84, ss. 160–178, 2001.
  • [25] M. Heath, S. Sarkar, T. Sanocki ve K. Bowyery, “Comparison of Edge Detectors: A Methodology and Initial Study,” Computer Vision And Image Understanding Vol. 69, No. 1, ss. 38-54, 1998.

Topologıcal Gradıent Operators For Edge Detectıon

Year 2007, Volume: 20 Issue: 2, 135 - 158, 31.12.2007

Abstract

Edge detection in image processing is the task of locating pixel value variations in images. First methods were directional derivative based linear filters. One of the most important problems of these methods that are based on computation of approximate derivative were their sensitivity to noise due to small kernel sizes. Small kernels are widely used to avoid the effect of nearby objects. In this work, we propose a fuzzy topology based method that allows the use of larger gradient kernels. This method produces thin gradient lines by limiting the support +area of gradient kernels for slowly varying ramplike edges. By applying the proposed method on synthetic and natural images, it is observed that it decreases the output area around the edge and suppresses noise on constant image areas.

References

  • [1] D. Marr ve E. Hildreth. “Theory of Edge Detection,” Proc. R. Soc. Lond. A, Math. Phys. Sci., Vol. B s. 207, 1980.
  • [2] M. Garcia-Silvente, J. A. Garcia, J. Fdez-Valdivia ve A. Garrido, “A New Edge Detector Integrating Scale-Spectrum Information”, Image and Vision Computing Vol. 15, No. 12, ss. 913-923, 1997.
  • [3] J. F. Canny, “A Computational Approach to Edge Detection”, IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol 8, No. 6, ss. 679-698, 1986.
  • [4] P. Perona ve J. Malik, “Scale-Space and Edge Detection Using Anisotropic Diffusion,” IEEE Trans. On PAMI, Vol. l2, No. 6, ss. 629-639, 1990.
  • [5] Y. Lu ve R. C. Jain, “Reasoning About Edges in Scale Space”, IEEE Transactions On Pattern An. and Mach. Intel.. Vol. 14. No. 4, ss.337 – 356, 1992.
  • [6] S. Mallat ve S. Zhong, “Characterization of Signals from Multiscale Edges”, IEEE Transactions on PAMI, Vol. 14, No. 7, ss. 710 – 732, 1992.
  • [7] J. F. Canny, “Finding Edges and Lines in Images”, Technical Report, MIT AI Lab., 1983.
  • [8] B. Tremblais ve B. Augereau, “A Fast Multi-scale Edge Detection Algorithm”, Pattern Recognition Letters, Vol. 25, ss. 603–618, 2004.
  • [9] S. Konishi, A.L. Yuille, J. M. Coughlan ve S. C. Zhu, “Statistical Edge Detection: Learning and Evaluating Edge Cues”, IEEE Transactions On Pattern Analysis And Machine Intelligence, Vol. 25, No. 1, ss. 57-74, 2003.
  • [10] D. Demigny, “On Optimal Linear Filtering for Edge Detection,” IEEE Transactions On Image Processing, Vol. 11, No. 7, s. 728, 2002.
  • [11] M. Basu, “Gaussian-Based Edge-Detection Methods: A Survey”, IEEE Transactions On Systems, Man, And Cybernetics, Part C: Applications And Reviews, Vol. 32, No. 3, ss. 252-260, 2002.
  • [12] E. D. Michell, B. Caprile, P. Ottonello ve V. Torre, “Localization and Noise in Edge Detection”, IEEE Transactions On Pattern Analysis And Machine Intelligence. Vol 11. No 10, ss. 1106-1117, 1989.
  • [13] J. J. Clark, “Authenticating Edges Produced by Zero-Crossing Algorithm”, IEEE Trans. On Pattern Anal. and Mach. Intel., Vol. 11 . No. 1. ss. 43 – 57, 1989.
  • [14] L. Ding ve A. Goshtasby, “On Canny Edge Detector”, Pattern Recognition, Vol. 34, No. 3, ss. 721-725, 2001.
  • [15] M. M. Fleck, “Some Defects in Finite-Difference Edge Finders” IEEE Transactions on Pattern An. and Machine Intelligence. Vol. 14, No. 3, s. 337, 1992.
  • [16] F. Heijden, “Edge and Line Feature Extraction Based on Covariance Models”, IEEE Transactions on Pat. Ana. Mach. Intel., Vol.17, No. 1, ss.16-33, 1995.
  • [17] A. Rosenfeld, “Fuzzy Digital Topology,” Information and Control, Vol. 40, No. 1, ss. 76–87, 1979.
  • 18] K. Suzuki, I. Horiba ve N. Sugie, “Neural Edge Enhancer for Supervised Edge Enhancement from Noisy Images”, IEEE Transactions On Pattern Analysis And Machine Intelligence, Vol. 25, No. 12, ss. 1582-1596, 2003.
  • [19] U. Braga-Neto ve J. Goutsias, “Grayscale Level Connectivity: Theory and Applications”, IEEE Trans. On Image Proc., Vol. 13, No. 12, ss. 1567 – 1580, 2004.
  • [20] H. G. Senel, R. A. Peters ve B. Dawant, “Topological Median Filters”, IEEE Transactions On Image Processing, Vol. 11, No. 2, ss. 89 – 104, 2002.
  • [21] E. Aybar, “Topolojik Kenar İşleçleri”, Doktora Tezi, Anadolu Üniversitesi, 2004.
  • [22] M. S. Prieto ve A. R. Allen, “A Similarity Metric for Edge Images”, IEEE Trans. On Pattern An. And Machine Intelligence, Vol. 25, No. 10, ss. 1265 – 1273, 2003.
  • [23] R. R. Rolda, J. F. Gomez, C. Atae-Allah, J. Martines-Aroza, ve P. L. LuqueEscamilla, “A Measure of Quality for Evaluating Methods of Segmentation and Edge Detection,” Pattern Recognition 34, ss. 969–980, 2001.
  • [24] M. C. Shin, D. B. Goldgof ve K. W. Bowyer, “Comparison of Edge Detector Performance through Use in an Object Recognition Task”, Computer Vision and Image Understanding, Vol. 84, ss. 160–178, 2001.
  • [25] M. Heath, S. Sarkar, T. Sanocki ve K. Bowyery, “Comparison of Edge Detectors: A Methodology and Initial Study,” Computer Vision And Image Understanding Vol. 69, No. 1, ss. 38-54, 1998.
There are 25 citations in total.

Details

Subjects Electrical Engineering
Journal Section Research Articles
Authors

Hakan Güray Şenel

Publication Date December 31, 2007
Acceptance Date September 27, 2007
Published in Issue Year 2007 Volume: 20 Issue: 2

Cite

APA Şenel, H. G. (2007). Kenar Bulma İçin Topolojik Gradyan İşleçleri. Eskişehir Osmangazi Üniversitesi Mühendislik Ve Mimarlık Fakültesi Dergisi, 20(2), 135-158.
AMA Şenel HG. Kenar Bulma İçin Topolojik Gradyan İşleçleri. ESOGÜ Müh Mim Fak Derg. December 2007;20(2):135-158.
Chicago Şenel, Hakan Güray. “Kenar Bulma İçin Topolojik Gradyan İşleçleri”. Eskişehir Osmangazi Üniversitesi Mühendislik Ve Mimarlık Fakültesi Dergisi 20, no. 2 (December 2007): 135-58.
EndNote Şenel HG (December 1, 2007) Kenar Bulma İçin Topolojik Gradyan İşleçleri. Eskişehir Osmangazi Üniversitesi Mühendislik ve Mimarlık Fakültesi Dergisi 20 2 135–158.
IEEE H. G. Şenel, “Kenar Bulma İçin Topolojik Gradyan İşleçleri”, ESOGÜ Müh Mim Fak Derg, vol. 20, no. 2, pp. 135–158, 2007.
ISNAD Şenel, Hakan Güray. “Kenar Bulma İçin Topolojik Gradyan İşleçleri”. Eskişehir Osmangazi Üniversitesi Mühendislik ve Mimarlık Fakültesi Dergisi 20/2 (December 2007), 135-158.
JAMA Şenel HG. Kenar Bulma İçin Topolojik Gradyan İşleçleri. ESOGÜ Müh Mim Fak Derg. 2007;20:135–158.
MLA Şenel, Hakan Güray. “Kenar Bulma İçin Topolojik Gradyan İşleçleri”. Eskişehir Osmangazi Üniversitesi Mühendislik Ve Mimarlık Fakültesi Dergisi, vol. 20, no. 2, 2007, pp. 135-58.
Vancouver Şenel HG. Kenar Bulma İçin Topolojik Gradyan İşleçleri. ESOGÜ Müh Mim Fak Derg. 2007;20(2):135-58.

20873  13565  13566 15461  13568    14913