Review
BibTex RIS Cite

HIGH PERFORMANCE FIBERS: A REVIEW ON CURRENT STATE OF ART AND FUTURE CHALLENGES

Year 2019, Volume: 27 Issue: 2, 130 - 155, 15.08.2019
https://doi.org/10.31796/ogummf.537704

Abstract

Improving properties of polymeric and non-polymeric fibers, for example mechanical, dimensional stability, thermal degradation, and etc. with understanding a recent theoretical investigation on the solid mechanism of single crystal growth leads to obtain fiber-based products with unusual characteristics. Similarly, high performance fibers are important engineering products and widely used due to their outstanding mechanical property along with dimensional stability. They have found extensive use as fiber reinforcement and can be utilized in many applications such as cords, ropes, performance fabrics, electronic packaging, sports equipment and fiber optics (Hearle, 2001; Kerr, Chawla and Chawla, 2005). It is well known that the highest tenacity and elastic moduli reported for such fibers are still much lower than their theoretical values. An extensive open gap between theoretical values and practical results encourage scientists to work
and improve the mechanical properties. On the other hand, due to their nonconventional chemistry and instrumentation, many researches have been concentrated on reducing its production costs. Additionally, there is no single fiber chemistry that can withstand all sort of end-use conditions. The objective of this review paper is to provide a critical andconstructive analysis on current state of art high performance fiber production and modification techniques. Current problems and novel solutions were emphasized separately.

References

  • Afshari, M., Sikkema, D.J., Lee, K., Bogle, M., (2008). High performance fibers based on rigid and flexible polymers. Polymer Reviews, 48(2), 230-274.
  • Anderegg, F., (1939). Strength of Glass Fires. Industrial & Engineering Chemistry, 31(3), 290-298.
  • Arshad, S.N., Naraghi, M., Chasiotis, I., (2011). Strong carbon nanofibers from electrospun polyacrylonitrile, Carbon 49(5), 1710-1719.
  • Asobe, M., (1997). Nonlinear optical properties of chalcogenide glass fibers and their application to all-optical switching, Optical Fiber Technology, 3(2), 142-148.
  • Avci, H., Kotek, R., Toliver, B., (2015). Controlling of threadline dynamics via a novel method to develop ultra‐high performance polypropylene filaments, Polymer Engineering & Science, 55(2), 327-339.
  • Avci, H., Kotek, R., Yoon, H., (2013). Developing an unusual formation of a precursor for crystallization of high performance PET fibers using a low molecular weight polymer. In Abstracts of Papers of The American Chemical Society.
  • Avci, H., Kotek, R., Yoon, J., (2013). Developing an ecologically friendly isothermal bath to obtain a new class high-tenacity and high-modulus polypropylene fibers. Journal of materials science 48 (22), 7791-7804.
  • Bernhard Jahn, E.W., (2014). Composites Market Report (2019). http://www.carbon-composites.eu/sites/carbon-composites.eu/files/anhaenge/13/09/17/ccev-avk-marktbericht_2013-final-englisch-bj.pdf.
  • Boron Fiber 2014. (2019). http://www.specmaterials.com/boronfiber.htm.
  • Bourbigot, S., Flambard, X., Duquesne, S., (2001). Thermal degradation of poly (p‐phenylenebenzobisoxazole) and poly (p‐phenylenediamine terephthalamide) fibres. Polymer international, 50,(1) 157-164.
  • Brow, R.K., Lower, N.P., Kurkjian, C.R., Li, H., (2009). The effects of melt history on the failure characteristics of pristine glass fibres. Physics and Chemistry of Glasses, Society of Glass Technology
  • Burningham, N., Rumpel, W., (1967). Properties of boron fibers and composites. Polymer Engineering & Science, 7(2), 124-127.
  • Cansfield, D., Capaccio, G., Ward, I., (1976). The preparation of ultra‐high modulus polypropylene films and fibres, polymer Engineering & Science, 16 (11), 721-724.
  • Cebe, P., Grubb, D., (1985). Gel-drawn fibres of poly (vinyl alcohol). Journal of materials science, 20(12), 4465-4478.
  • Chae, H.G., Kumar, S., (2006). Rigid‐rod polymeric fibers. Journal of Applied Polymer Science, 100(1), 791-802.
  • Chand, S., (2000). Review carbon fibers for composites. Journal of materials science, 35(6), 1303-1313.
  • Chawla, K.K., (2005). Fibrous Materials. . Cambridge University Press.
  • Chen, Z., Cheng, X.Y., Chen, Z.F., Zhang, J., Yang, Y., Wang, J., (2013). Ultrafine glass fibers produced by centrifugal-spinneret-blow process, In Advanced Materials Research, 628, 27-32.
  • Coates, P., Ward, I., (1979). Drawing of polymers through a conical die, Polymer, 20(12), 1553-1560.
  • Cross, C.B., Ecker, D.R., Stein, O.L., (1964). Artificial graphite process, Google Patents.
  • Cuculo, J.A., Tucker, P.A., Chen, G.-Y., Lundberg, F., (1993). Melt spinning of ultra-oriented crystalline filaments. Google Patents.
  • Cuculo, J.A., Tucker, P.A., Lundberg, F., Chen, J.-Y., Wu, G., Chen, G.-Y., (1998). Ultra-oriented crystalline filaments and method of making same. Google Patents.
  • Cunniff, P.M., Auerbach, M.A., Vetter, E., Sikkema, D.J., (2002). High performance “M5” fiber for ballistics/structural composites. 23. Army Science Conference, 1-8.
  • Dyneema. (2019). http://www.dyneema.com/emea/.
  • De Candia, F., Romano, G., Baranov, A., Prut, E., (1992). Dynamic‐mechanical behavior of highly drawn isotactic polypropylene. Journal of applied polymer science, 46(10), 1799-1806.
  • Fiber glass: a carcinogen that’s everywhere. (2019) http://www.ejnet.org/rachel/rehw444.htm.
  • Fette, R.B., Sovinski, M.F., (2004). Vectran fiber time dependant behavior and additional static loading properties. National Aeronautics And Space Administration Greenbelt Md Goddard Space
  • Frank, E., Hermanutz, F., Buchmeiser, M.R., (2012). Carbon fibers: precursors, manufacturing, and properties, Macromolecular materials and engineering, 297(6), 493-501.
  • Gaule, G., Breslin, J., Pastore, J., Shuttleworth, R., (1960). Optical and Electrical Properties of Boron and Potential Application, ft in JA Kohn, NF Nye, and GK Gaule (eds.): Boron-Synthesis, Structure, and Properties, Plenum Press, New York.
  • Grujicic, M., Bell, W., Arakere, G., He, T., Xie, X., Cheeseman, B., (2010). Development of a meso-scale material model for ballistic fabric and its use in flexible-armor protection systems. Journal of materials engineering and performance, 19(1), 22-39.
  • Gupta, A., (2005). Improving UV resistance of high strength fibers. http://www.lib.ncsu.edu/resolver/1840.16/1092
  • Hearle, J.W., (2001). High-performance fibres. Elsevier.
  • High-Performance Structural Fibers for Advanced Polymer Matrix Composites. (2019). http://www.nap.edu/catalog.php?record_id=11268.
  • High Strength Glass Fibers. (2019). http://www.agy.com/wp-content/uploads/2014/03/High_Strength_Glass_Fibers-Technical.pdf.
  • Holmes, G.A., Rice, K., Snyder, C.R., (2006). Ballistic fibers: a review of the thermal, ultraviolet and hydrolytic stability of the benzoxazole ring structure, Journal of Materials Science, 41(13), 4105-4116.
  • Honeywell Advanced Fibers and Composites. (2019). http://www.honeywell-advancedfibersandcomposites.com/.
  • Hunt, M.A., Saito, T., Brown, R.H., Kumbhar, A.S., Naskar, A.K., (2012). Patterned functional carbon fibers from polyethylene. Advanced Materials, 24(18), 2386-2389.
  • Infante, P.F., Schuman, L.D., Dement, J., Huff, J., (1994). Fibrous glass and cancer. American journal of industrial medicine, 26(4), 559-584.
  • Ivanov, M., Gavrilov, N., Belyh, T., Ligacheva, E., Galijeva, L., Ligachev, A., Sohoreva, V., (2007). Irradiation effects in carbon fibers after N+-ion irradiation. Surface and Coatings Technology, 201(19-20), 8326-8328.
  • Johansson, S., Schweitz, J.Å., Westberg, H., Boman, M., (1992). Microfabrication of three‐dimensional boron structures by laser chemical processing. Journal of applied physics, 72(12), 5956-5963.
  • Kavesh, S., Prevorsek, D.C., (1983). High tenacity, high modulus polyethylene and polypropylene fibers and intermediates therefore. Google Patents.
  • Kerr, M., Chawla, N., Chawla, K., (2005). The cyclic fatigue of high-performance fibers. JOM, 57(2), 67-71.
  • Kim, C., Yang, K.S., Kojima, M., Yoshida, K., Kim, Y.J., Kim, Y.A., Endo, M., (2006). Fabrication of electrospinning‐derived carbon nanofiber webs for the anode material of lithium‐ion secondary batteries. Advanced Functional Materials, 16(18), 2393-2397.
  • Kim, H.W., Kim, H.E., Knowles, J.C., (2006). Production and potential of bioactive glass nanofibers as a next‐generation biomaterial. Advanced Functional Materials, 16(12), 1529-1535.
  • Kotek, R., (2008). Recent advances in polymer fibers. Polymer Reviews, 48(2), 221-229.
  • Kumar, S., Anderson, D., Crasto, A., (1993). Carbon fibre compressive strength and its dependence on structure and morphology. Journal of Materials Science, 28(2), 423-439.
  • Kunugi, T., Ito, T., Hashimoto, M., Ooishi, M., (1983). Preparation of high‐modulus and high‐strength isotactic polypropylene fiber by zone‐annealing method. Journal of Applied Polymer Science, 28(1), 179-189.
  • Laughner, M., Harrison, I., (1988). Hot nip drawing: A rapid method of producing high modulus polypropylene films. Journal of applied polymer science, 36(4), 899-905.
  • Market Study: Polyethylene - HDPE (2nd ed.). (2019). http://www.ceresana.com/en/market-studies/plastics/polyethylene-hdpe/.
  • Li, Y., Lin, Z., Xu, G., Yao, Y., Zhang, S., Toprakci, O., Alcoutlabi, M., Zhang, X., (2012). Electrochemical Performance of Carbon Nanofibers Containing an Enhanced Dispersion of Silicon Nanoparticles for Lithium-Ion Batteries by Employing Surfactants. ECS Electrochemistry Letters, 1(2), A31-A33.
  • Liu, Y., Chae, H.G., Kumar, S., (2011). Gel-spun carbon nanotubes/polyacrylonitrile composite fibers. Part I: Effect of carbon nanotubes on stabilization. Carbon, 49(13), 4466-4476.
  • Liu, Y., Chae, H.G., Kumar, S., (2011). Gel-spun carbon nanotubes/polyacrylonitrile composite fibers. Part III: Effect of stabilization conditions on carbon fiber properties. Carbon, 49(13), 4487-4496.
  • Liu, Y., Kumar, S., (2012). Recent progress in fabrication, structure, and properties of carbon fibers. Polymer Reviews 52(3), 234-258.
  • Mazraeh-Shahi, Z.T., Mojtahedi, M., (2010). Effect of blending two fiber-grade polypropylenes with different molecular weight distributions on the physical and structural properties of melt-spun filament yarns. The Journal of The Textile Institute, 101(6), 547-555.
  • Morris, E.A., Weisenberger, M.C., (2014). Solution spinning of PAN-based polymers for carbon fiber precursors. Polymer Precursor-Derived Carbon, 1173, 189-213.
  • Mukhopadhyay, S., Deopura, B., Alagirusamy, R., (2004). Production and Properties of High-Modulus—High-Tenacity Polypropylene Filaments. Journal of industrial textiles, 33(4), 245-268.
  • Najafi, M., Avci, H., Kotek, R., (2015). High‐performance filaments by melt spinning low viscosity nylon 6 using horizontal isothermal bath process. Polymer Engineering & Science, 55(11), 2457-2464.
  • Ohta, T., (1983). Review on processing ultra high tenacity fibers from flexible polymer. Polymer Engineering & Science, 23(13), 697-703.
  • Otto, W.H., (1955). Relationship of tensile strength of glass fibers to diameter. Journal of the American Ceramic Society 38(3), 122-125.
  • Peters, S.T., (2013). Handbook of composites. Springer Science & Business Media.
  • Porter, R.S., Wang, L.-H., (1995). Uniaxial extension and order development in flexible chain polymers. Journal of Macromolecular Science, Part C: Polymer Reviews, 35(1), 63-115.
  • Reneker, D., Mazur, J., (1983). Dispirations, disclinations, dislocations, and chain twist in polyethylene crystals. Polymer 24(11), 1387-1400.
  • Said, M., Dingwall, B., Gupta, A., Seyam, A., Mock, G., Theyson, T., (2006). Investigation of ultra violet (UV) resistance for high strength fibers. Advances in space research, 37(11), 2052-2058.
  • Sakka, S., Kamiya, K., (1982). The sol-gel transition in the hydrolysis of metal alkoxides in relation to the formation of glass fibers and films. Journal of Non-Crystalline Solids 48(1), 31-46.
  • Samuels, R.J., (1968). Quantitative characterization of deformation in drawn polypropylene films. Journal of Polymer Science Part A‐2: Polymer Physics, 6(6), 1101-1139.
  • Schalamon, W., Bacon, R., (1973). Process for producing carbon fibers having a high young's modulus of elasticity. Google Patents.
  • Severini, F., Formaro, L., Pegoraro, M., Posca, L., (2002). Chemical modification of carbon fiber surfaces. Carbon 40(5), 735-741.
  • Shaw, M., (1975). Flow of polymer melts through a well‐lubricated, conical die. Journal of Applied Polymer Science, 19(10), 2811-2816.
  • Sheehan, W., Cole, T., (1964). Production of super‐tenacity polypropylene filaments. Journal of Applied Polymer Science, 8(5), 2359-2388.
  • Smith, P., Lemstra, P.J., (1979). Ultrahigh‐strength polyethylene filaments by solution spinning/drawing, 2. Influence of solvent on the drawability. Die Makromolekulare Chemie: Macromolecular Chemistry and Physics, 180(12), 2983-2986.
  • Substituent Effects. (2019). http://www.mhhe.com/physsci/chemistry/carey/student/olc/graphics/carey04oc/ref/ch12substituenteffects.html.
  • Taylor Jr, W., Clark, E., (1978). Superdrawn filaments of polypropylene. Polymer Engineering & Science, 18(6), 518-526.
  • Ugbolue, S.C.O., (2009). Polyolefin Fibres: Industrial and Medical Applications. Elsevier.
  • Ultraviolet radiation and health. (2019). http://www.who.int/uv/uv_and_health/en/.
  • Vectran Fiber. UV Resistance. (2019). <http://www.vectranfiber.com/BrochureProductInformation/UVResistance.aspx>.
  • Wang, L., Yu, Y., Chen, P.-C., Chen, C.-H., (2008). Electrospun carbon–cobalt composite nanofiber as an anode material for lithium ion batteries. Scripta Materialia, 58(5), 405-408.
  • Watts, W.H., (1968). Process of producing carbonized articles. Google Patents.
  • Wen, H.-C., Yang, K., Ou, K.-L., Wu, W.-F., Chou, C.-P., Luo, R.-C., Chang, Y.-M., (2006). Effects of ammonia plasma treatment on the surface characteristics of carbon fibers. Surface and Coatings Technology, 200(10), 3166-3169.
  • Xu, T., Farris, R.J., (2007). Comparative studies of ultra high molecular weight polyethylene fiber reinforced composites. Polymer Engineering & Science, 47(10), 1544-1553.
  • Xu, Z., Wu, X., Sun, Y., Jiao, Y., Li, J., Chen, L., Lu, L., (2008). Surface modification of carbon fiber by redox‐induced graft polymerization of acrylic acid. Journal of applied polymer science 108(3), 1887-1892.
  • y Léon, C.A.L., (2010). Carbon fibers having improved strength and modulus and an associated method and apparatus for preparing same. Google Patents.
  • Yamada, K., Kamezawa, M., Takayanagi, M., (1981). Relationship between orientation of amorphous chains and modulus in highly oriented polypropylene. Journal of Applied Polymer Science, 26(1), 49-60.
  • Yoon, J.H., Avci, H., Najafi, M., Nasri, L., Hudson, S.M., Kotek, R., (2017). Development of high‐tenacity, high‐modulus poly (ethylene terephthalate) filaments via a next generation wet‐melt‐spinning process. Polymer Engineering & Science, 57(2), 224-230.
  • Yue, Y., Von der Ohe, R., Jensen, S.L., (2004). Fictive temperature, cooling rate, and viscosity of glasses. The Journal of chemical physics, 120(17), 8053-8059.
  • Yue, Z., Jiang, W., Wang, L., Gardner, S., Pittman Jr, C., (1999). Surface characterization of electrochemically oxidized carbon fibers. Carbon, 37(11), 1785-1796.

YÜKSEK PERFORMANSLI LİFLER: GÜNCEL VE GELECEK DURUMU ÜZERİNE BİR İNCELEME

Year 2019, Volume: 27 Issue: 2, 130 - 155, 15.08.2019
https://doi.org/10.31796/ogummf.537704

Abstract

Polimerik ve polimerik olmayan liflerin özelliklerinin iyileştirilmesi, örneğin mekanik, boyutsal stabilite, ısıl bozunma gibi diğer özellikler ile birlikte lif oluşumu sırasında tek kristal büyümenin katı mekanizması üzerindeki son teorik araştırmaların anlaşılması, lif karakteristiklerinin alışılmadık üstün özelliklere sahip olmasını sağlar. Benzer şekilde, yüksek performanslı lifler önemli mühendislik ürünleridir ve boyutsal stabilite ile birlikte üstün mekanik özelliklerinden dolayı yaygın olarak kullanılırlar. Fiber takviyesi olarak geniş kullanım alanı bulmuşlardır örneğin kordonlar, halatlar, performans kumaşları, elektronik ambalajlar, spor malzemeleri ve fiber optikler gibi birçok uygulamada kullanılabilirler (Hearle, 2001; Kerr, Chawla ve Chawla, 2005). Yapılan araştırmalarda performans liflerinden elde edilen en yüksek mukavemet ve elastik modüllerin teorik değerlerinden çok daha düşük olduğu iyi bilinmektedir. Teorik değerler ve pratik sonuçlar arasındaki açık fark, bilim insanlarını mekanik özelliklerini iyileştirmek için araştırmalara teşvik etmektedir. Diğer taraftan, konvansiyonel olmayan yöntem ve kimyasalların bulunmasıyla yüksek performans lif üretiminde maliyetlerin düşürülmesi için birçok araştırma yapılmaktadır. Ek olarak, her türlü son kullanım koşuluna dayanabilecek tek bir lif kimyası bulunmamaktadır. Bu çalışmada, son teknolojiye sahip yüksek performanslı elyaf üretimi ve modifikasyon teknikleri hakkında bir inceleme yapılmıştır. Güncel sorunlar ve yeni çözümler ayrı ayrı ele alınıp vurgulanmıştır.

References

  • Afshari, M., Sikkema, D.J., Lee, K., Bogle, M., (2008). High performance fibers based on rigid and flexible polymers. Polymer Reviews, 48(2), 230-274.
  • Anderegg, F., (1939). Strength of Glass Fires. Industrial & Engineering Chemistry, 31(3), 290-298.
  • Arshad, S.N., Naraghi, M., Chasiotis, I., (2011). Strong carbon nanofibers from electrospun polyacrylonitrile, Carbon 49(5), 1710-1719.
  • Asobe, M., (1997). Nonlinear optical properties of chalcogenide glass fibers and their application to all-optical switching, Optical Fiber Technology, 3(2), 142-148.
  • Avci, H., Kotek, R., Toliver, B., (2015). Controlling of threadline dynamics via a novel method to develop ultra‐high performance polypropylene filaments, Polymer Engineering & Science, 55(2), 327-339.
  • Avci, H., Kotek, R., Yoon, H., (2013). Developing an unusual formation of a precursor for crystallization of high performance PET fibers using a low molecular weight polymer. In Abstracts of Papers of The American Chemical Society.
  • Avci, H., Kotek, R., Yoon, J., (2013). Developing an ecologically friendly isothermal bath to obtain a new class high-tenacity and high-modulus polypropylene fibers. Journal of materials science 48 (22), 7791-7804.
  • Bernhard Jahn, E.W., (2014). Composites Market Report (2019). http://www.carbon-composites.eu/sites/carbon-composites.eu/files/anhaenge/13/09/17/ccev-avk-marktbericht_2013-final-englisch-bj.pdf.
  • Boron Fiber 2014. (2019). http://www.specmaterials.com/boronfiber.htm.
  • Bourbigot, S., Flambard, X., Duquesne, S., (2001). Thermal degradation of poly (p‐phenylenebenzobisoxazole) and poly (p‐phenylenediamine terephthalamide) fibres. Polymer international, 50,(1) 157-164.
  • Brow, R.K., Lower, N.P., Kurkjian, C.R., Li, H., (2009). The effects of melt history on the failure characteristics of pristine glass fibres. Physics and Chemistry of Glasses, Society of Glass Technology
  • Burningham, N., Rumpel, W., (1967). Properties of boron fibers and composites. Polymer Engineering & Science, 7(2), 124-127.
  • Cansfield, D., Capaccio, G., Ward, I., (1976). The preparation of ultra‐high modulus polypropylene films and fibres, polymer Engineering & Science, 16 (11), 721-724.
  • Cebe, P., Grubb, D., (1985). Gel-drawn fibres of poly (vinyl alcohol). Journal of materials science, 20(12), 4465-4478.
  • Chae, H.G., Kumar, S., (2006). Rigid‐rod polymeric fibers. Journal of Applied Polymer Science, 100(1), 791-802.
  • Chand, S., (2000). Review carbon fibers for composites. Journal of materials science, 35(6), 1303-1313.
  • Chawla, K.K., (2005). Fibrous Materials. . Cambridge University Press.
  • Chen, Z., Cheng, X.Y., Chen, Z.F., Zhang, J., Yang, Y., Wang, J., (2013). Ultrafine glass fibers produced by centrifugal-spinneret-blow process, In Advanced Materials Research, 628, 27-32.
  • Coates, P., Ward, I., (1979). Drawing of polymers through a conical die, Polymer, 20(12), 1553-1560.
  • Cross, C.B., Ecker, D.R., Stein, O.L., (1964). Artificial graphite process, Google Patents.
  • Cuculo, J.A., Tucker, P.A., Chen, G.-Y., Lundberg, F., (1993). Melt spinning of ultra-oriented crystalline filaments. Google Patents.
  • Cuculo, J.A., Tucker, P.A., Lundberg, F., Chen, J.-Y., Wu, G., Chen, G.-Y., (1998). Ultra-oriented crystalline filaments and method of making same. Google Patents.
  • Cunniff, P.M., Auerbach, M.A., Vetter, E., Sikkema, D.J., (2002). High performance “M5” fiber for ballistics/structural composites. 23. Army Science Conference, 1-8.
  • Dyneema. (2019). http://www.dyneema.com/emea/.
  • De Candia, F., Romano, G., Baranov, A., Prut, E., (1992). Dynamic‐mechanical behavior of highly drawn isotactic polypropylene. Journal of applied polymer science, 46(10), 1799-1806.
  • Fiber glass: a carcinogen that’s everywhere. (2019) http://www.ejnet.org/rachel/rehw444.htm.
  • Fette, R.B., Sovinski, M.F., (2004). Vectran fiber time dependant behavior and additional static loading properties. National Aeronautics And Space Administration Greenbelt Md Goddard Space
  • Frank, E., Hermanutz, F., Buchmeiser, M.R., (2012). Carbon fibers: precursors, manufacturing, and properties, Macromolecular materials and engineering, 297(6), 493-501.
  • Gaule, G., Breslin, J., Pastore, J., Shuttleworth, R., (1960). Optical and Electrical Properties of Boron and Potential Application, ft in JA Kohn, NF Nye, and GK Gaule (eds.): Boron-Synthesis, Structure, and Properties, Plenum Press, New York.
  • Grujicic, M., Bell, W., Arakere, G., He, T., Xie, X., Cheeseman, B., (2010). Development of a meso-scale material model for ballistic fabric and its use in flexible-armor protection systems. Journal of materials engineering and performance, 19(1), 22-39.
  • Gupta, A., (2005). Improving UV resistance of high strength fibers. http://www.lib.ncsu.edu/resolver/1840.16/1092
  • Hearle, J.W., (2001). High-performance fibres. Elsevier.
  • High-Performance Structural Fibers for Advanced Polymer Matrix Composites. (2019). http://www.nap.edu/catalog.php?record_id=11268.
  • High Strength Glass Fibers. (2019). http://www.agy.com/wp-content/uploads/2014/03/High_Strength_Glass_Fibers-Technical.pdf.
  • Holmes, G.A., Rice, K., Snyder, C.R., (2006). Ballistic fibers: a review of the thermal, ultraviolet and hydrolytic stability of the benzoxazole ring structure, Journal of Materials Science, 41(13), 4105-4116.
  • Honeywell Advanced Fibers and Composites. (2019). http://www.honeywell-advancedfibersandcomposites.com/.
  • Hunt, M.A., Saito, T., Brown, R.H., Kumbhar, A.S., Naskar, A.K., (2012). Patterned functional carbon fibers from polyethylene. Advanced Materials, 24(18), 2386-2389.
  • Infante, P.F., Schuman, L.D., Dement, J., Huff, J., (1994). Fibrous glass and cancer. American journal of industrial medicine, 26(4), 559-584.
  • Ivanov, M., Gavrilov, N., Belyh, T., Ligacheva, E., Galijeva, L., Ligachev, A., Sohoreva, V., (2007). Irradiation effects in carbon fibers after N+-ion irradiation. Surface and Coatings Technology, 201(19-20), 8326-8328.
  • Johansson, S., Schweitz, J.Å., Westberg, H., Boman, M., (1992). Microfabrication of three‐dimensional boron structures by laser chemical processing. Journal of applied physics, 72(12), 5956-5963.
  • Kavesh, S., Prevorsek, D.C., (1983). High tenacity, high modulus polyethylene and polypropylene fibers and intermediates therefore. Google Patents.
  • Kerr, M., Chawla, N., Chawla, K., (2005). The cyclic fatigue of high-performance fibers. JOM, 57(2), 67-71.
  • Kim, C., Yang, K.S., Kojima, M., Yoshida, K., Kim, Y.J., Kim, Y.A., Endo, M., (2006). Fabrication of electrospinning‐derived carbon nanofiber webs for the anode material of lithium‐ion secondary batteries. Advanced Functional Materials, 16(18), 2393-2397.
  • Kim, H.W., Kim, H.E., Knowles, J.C., (2006). Production and potential of bioactive glass nanofibers as a next‐generation biomaterial. Advanced Functional Materials, 16(12), 1529-1535.
  • Kotek, R., (2008). Recent advances in polymer fibers. Polymer Reviews, 48(2), 221-229.
  • Kumar, S., Anderson, D., Crasto, A., (1993). Carbon fibre compressive strength and its dependence on structure and morphology. Journal of Materials Science, 28(2), 423-439.
  • Kunugi, T., Ito, T., Hashimoto, M., Ooishi, M., (1983). Preparation of high‐modulus and high‐strength isotactic polypropylene fiber by zone‐annealing method. Journal of Applied Polymer Science, 28(1), 179-189.
  • Laughner, M., Harrison, I., (1988). Hot nip drawing: A rapid method of producing high modulus polypropylene films. Journal of applied polymer science, 36(4), 899-905.
  • Market Study: Polyethylene - HDPE (2nd ed.). (2019). http://www.ceresana.com/en/market-studies/plastics/polyethylene-hdpe/.
  • Li, Y., Lin, Z., Xu, G., Yao, Y., Zhang, S., Toprakci, O., Alcoutlabi, M., Zhang, X., (2012). Electrochemical Performance of Carbon Nanofibers Containing an Enhanced Dispersion of Silicon Nanoparticles for Lithium-Ion Batteries by Employing Surfactants. ECS Electrochemistry Letters, 1(2), A31-A33.
  • Liu, Y., Chae, H.G., Kumar, S., (2011). Gel-spun carbon nanotubes/polyacrylonitrile composite fibers. Part I: Effect of carbon nanotubes on stabilization. Carbon, 49(13), 4466-4476.
  • Liu, Y., Chae, H.G., Kumar, S., (2011). Gel-spun carbon nanotubes/polyacrylonitrile composite fibers. Part III: Effect of stabilization conditions on carbon fiber properties. Carbon, 49(13), 4487-4496.
  • Liu, Y., Kumar, S., (2012). Recent progress in fabrication, structure, and properties of carbon fibers. Polymer Reviews 52(3), 234-258.
  • Mazraeh-Shahi, Z.T., Mojtahedi, M., (2010). Effect of blending two fiber-grade polypropylenes with different molecular weight distributions on the physical and structural properties of melt-spun filament yarns. The Journal of The Textile Institute, 101(6), 547-555.
  • Morris, E.A., Weisenberger, M.C., (2014). Solution spinning of PAN-based polymers for carbon fiber precursors. Polymer Precursor-Derived Carbon, 1173, 189-213.
  • Mukhopadhyay, S., Deopura, B., Alagirusamy, R., (2004). Production and Properties of High-Modulus—High-Tenacity Polypropylene Filaments. Journal of industrial textiles, 33(4), 245-268.
  • Najafi, M., Avci, H., Kotek, R., (2015). High‐performance filaments by melt spinning low viscosity nylon 6 using horizontal isothermal bath process. Polymer Engineering & Science, 55(11), 2457-2464.
  • Ohta, T., (1983). Review on processing ultra high tenacity fibers from flexible polymer. Polymer Engineering & Science, 23(13), 697-703.
  • Otto, W.H., (1955). Relationship of tensile strength of glass fibers to diameter. Journal of the American Ceramic Society 38(3), 122-125.
  • Peters, S.T., (2013). Handbook of composites. Springer Science & Business Media.
  • Porter, R.S., Wang, L.-H., (1995). Uniaxial extension and order development in flexible chain polymers. Journal of Macromolecular Science, Part C: Polymer Reviews, 35(1), 63-115.
  • Reneker, D., Mazur, J., (1983). Dispirations, disclinations, dislocations, and chain twist in polyethylene crystals. Polymer 24(11), 1387-1400.
  • Said, M., Dingwall, B., Gupta, A., Seyam, A., Mock, G., Theyson, T., (2006). Investigation of ultra violet (UV) resistance for high strength fibers. Advances in space research, 37(11), 2052-2058.
  • Sakka, S., Kamiya, K., (1982). The sol-gel transition in the hydrolysis of metal alkoxides in relation to the formation of glass fibers and films. Journal of Non-Crystalline Solids 48(1), 31-46.
  • Samuels, R.J., (1968). Quantitative characterization of deformation in drawn polypropylene films. Journal of Polymer Science Part A‐2: Polymer Physics, 6(6), 1101-1139.
  • Schalamon, W., Bacon, R., (1973). Process for producing carbon fibers having a high young's modulus of elasticity. Google Patents.
  • Severini, F., Formaro, L., Pegoraro, M., Posca, L., (2002). Chemical modification of carbon fiber surfaces. Carbon 40(5), 735-741.
  • Shaw, M., (1975). Flow of polymer melts through a well‐lubricated, conical die. Journal of Applied Polymer Science, 19(10), 2811-2816.
  • Sheehan, W., Cole, T., (1964). Production of super‐tenacity polypropylene filaments. Journal of Applied Polymer Science, 8(5), 2359-2388.
  • Smith, P., Lemstra, P.J., (1979). Ultrahigh‐strength polyethylene filaments by solution spinning/drawing, 2. Influence of solvent on the drawability. Die Makromolekulare Chemie: Macromolecular Chemistry and Physics, 180(12), 2983-2986.
  • Substituent Effects. (2019). http://www.mhhe.com/physsci/chemistry/carey/student/olc/graphics/carey04oc/ref/ch12substituenteffects.html.
  • Taylor Jr, W., Clark, E., (1978). Superdrawn filaments of polypropylene. Polymer Engineering & Science, 18(6), 518-526.
  • Ugbolue, S.C.O., (2009). Polyolefin Fibres: Industrial and Medical Applications. Elsevier.
  • Ultraviolet radiation and health. (2019). http://www.who.int/uv/uv_and_health/en/.
  • Vectran Fiber. UV Resistance. (2019). <http://www.vectranfiber.com/BrochureProductInformation/UVResistance.aspx>.
  • Wang, L., Yu, Y., Chen, P.-C., Chen, C.-H., (2008). Electrospun carbon–cobalt composite nanofiber as an anode material for lithium ion batteries. Scripta Materialia, 58(5), 405-408.
  • Watts, W.H., (1968). Process of producing carbonized articles. Google Patents.
  • Wen, H.-C., Yang, K., Ou, K.-L., Wu, W.-F., Chou, C.-P., Luo, R.-C., Chang, Y.-M., (2006). Effects of ammonia plasma treatment on the surface characteristics of carbon fibers. Surface and Coatings Technology, 200(10), 3166-3169.
  • Xu, T., Farris, R.J., (2007). Comparative studies of ultra high molecular weight polyethylene fiber reinforced composites. Polymer Engineering & Science, 47(10), 1544-1553.
  • Xu, Z., Wu, X., Sun, Y., Jiao, Y., Li, J., Chen, L., Lu, L., (2008). Surface modification of carbon fiber by redox‐induced graft polymerization of acrylic acid. Journal of applied polymer science 108(3), 1887-1892.
  • y Léon, C.A.L., (2010). Carbon fibers having improved strength and modulus and an associated method and apparatus for preparing same. Google Patents.
  • Yamada, K., Kamezawa, M., Takayanagi, M., (1981). Relationship between orientation of amorphous chains and modulus in highly oriented polypropylene. Journal of Applied Polymer Science, 26(1), 49-60.
  • Yoon, J.H., Avci, H., Najafi, M., Nasri, L., Hudson, S.M., Kotek, R., (2017). Development of high‐tenacity, high‐modulus poly (ethylene terephthalate) filaments via a next generation wet‐melt‐spinning process. Polymer Engineering & Science, 57(2), 224-230.
  • Yue, Y., Von der Ohe, R., Jensen, S.L., (2004). Fictive temperature, cooling rate, and viscosity of glasses. The Journal of chemical physics, 120(17), 8053-8059.
  • Yue, Z., Jiang, W., Wang, L., Gardner, S., Pittman Jr, C., (1999). Surface characterization of electrochemically oxidized carbon fibers. Carbon, 37(11), 1785-1796.
There are 85 citations in total.

Details

Primary Language English
Subjects Material Production Technologies
Journal Section Review Articles
Authors

Huseyin Avci 0000-0002-2475-1963

Ahmed Hassanin This is me 0000-0003-4253-7829

Tamer Hamouda This is me 0000-0003-3184-6212

Ali Kılıç This is me 0000-0001-5915-8732

Publication Date August 15, 2019
Acceptance Date July 9, 2019
Published in Issue Year 2019 Volume: 27 Issue: 2

Cite

APA Avci, H., Hassanin, A., Hamouda, T., Kılıç, A. (2019). HIGH PERFORMANCE FIBERS: A REVIEW ON CURRENT STATE OF ART AND FUTURE CHALLENGES. Eskişehir Osmangazi Üniversitesi Mühendislik Ve Mimarlık Fakültesi Dergisi, 27(2), 130-155. https://doi.org/10.31796/ogummf.537704
AMA Avci H, Hassanin A, Hamouda T, Kılıç A. HIGH PERFORMANCE FIBERS: A REVIEW ON CURRENT STATE OF ART AND FUTURE CHALLENGES. ESOGÜ Müh Mim Fak Derg. August 2019;27(2):130-155. doi:10.31796/ogummf.537704
Chicago Avci, Huseyin, Ahmed Hassanin, Tamer Hamouda, and Ali Kılıç. “HIGH PERFORMANCE FIBERS: A REVIEW ON CURRENT STATE OF ART AND FUTURE CHALLENGES”. Eskişehir Osmangazi Üniversitesi Mühendislik Ve Mimarlık Fakültesi Dergisi 27, no. 2 (August 2019): 130-55. https://doi.org/10.31796/ogummf.537704.
EndNote Avci H, Hassanin A, Hamouda T, Kılıç A (August 1, 2019) HIGH PERFORMANCE FIBERS: A REVIEW ON CURRENT STATE OF ART AND FUTURE CHALLENGES. Eskişehir Osmangazi Üniversitesi Mühendislik ve Mimarlık Fakültesi Dergisi 27 2 130–155.
IEEE H. Avci, A. Hassanin, T. Hamouda, and A. Kılıç, “HIGH PERFORMANCE FIBERS: A REVIEW ON CURRENT STATE OF ART AND FUTURE CHALLENGES”, ESOGÜ Müh Mim Fak Derg, vol. 27, no. 2, pp. 130–155, 2019, doi: 10.31796/ogummf.537704.
ISNAD Avci, Huseyin et al. “HIGH PERFORMANCE FIBERS: A REVIEW ON CURRENT STATE OF ART AND FUTURE CHALLENGES”. Eskişehir Osmangazi Üniversitesi Mühendislik ve Mimarlık Fakültesi Dergisi 27/2 (August 2019), 130-155. https://doi.org/10.31796/ogummf.537704.
JAMA Avci H, Hassanin A, Hamouda T, Kılıç A. HIGH PERFORMANCE FIBERS: A REVIEW ON CURRENT STATE OF ART AND FUTURE CHALLENGES. ESOGÜ Müh Mim Fak Derg. 2019;27:130–155.
MLA Avci, Huseyin et al. “HIGH PERFORMANCE FIBERS: A REVIEW ON CURRENT STATE OF ART AND FUTURE CHALLENGES”. Eskişehir Osmangazi Üniversitesi Mühendislik Ve Mimarlık Fakültesi Dergisi, vol. 27, no. 2, 2019, pp. 130-55, doi:10.31796/ogummf.537704.
Vancouver Avci H, Hassanin A, Hamouda T, Kılıç A. HIGH PERFORMANCE FIBERS: A REVIEW ON CURRENT STATE OF ART AND FUTURE CHALLENGES. ESOGÜ Müh Mim Fak Derg. 2019;27(2):130-55.

Cited By











20873  13565  13566 15461  13568    14913