Review
BibTex RIS Cite

ULTRA İNCE ÖĞÜTMEDE ENERJİ - TEKNOLOJİ GELİŞİMİNİN İNCELENMESİ

Year 2023, Volume: 31 Issue: 4, 1060 - 1076, 22.12.2023
https://doi.org/10.31796/ogummf.1386158

Abstract

Ultra ince öğütme, malzemeleri genellikle mikron veya mikron altı aralığında son derece küçük tane boyutlarına indirme işlemini ifade eder. Madencilik, ilaç, seramik, kimya gibi belirli özelliklere sahip ince tane üretiminin gerekli olduğu çeşitli endüstrilerde yaygın olarak kullanılmaktadır.
Enerji, ultra ince öğütme işlemlerinde önemli bir rol oynar. Malzemelerin bu kadar küçük boyutlara indirgenmesi ciddi miktarda enerji girdisi gerektirmektedir. Ultra ince öğütmede enerji tüketimi, daha yüksek yüzey alanı ve artan tane-tane etkileşimleri nedeniyle geleneksel öğütme yöntemleriyle karşılaştırıldığında genellikle daha yüksektir.
Madencilik sektöründe yüksek tenörlü cevher yataklarının tükenmesiyle birlikte, çok küçük tane boyutlarına sahip, çok düşük tenörlü cevher yataklarının işletilmesi bir zorunluluk haline gelmiştir. Bu cevherlerin zenginleştirilmesinde ihtiyaç duyulan enerjinin büyük bir kısmı öğütme işlemine harcanmaktadır. Mikronize öğütmede konvansiyonel değirmenler (çubuk ve bilyalı değirmenler gibi) verimlerini kaybederek ekonomik olmaktan çıkarlar. Bilindiği üzere konvansiyonel değirmenlerde harcanan enerjinin büyük bir kısmı doğrudan boyut küçültmede kullanılmakta, önemli bir kısmı ise herhangi bir faydalı iş yapılmadan (boyut küçültme) ısı ve ses olarak kaybolmaktadır. Ayrıca 75 µm’nun altındaki öğütmelerde konvansiyonel değirmenlerin verimi büyük oranda düşer (enerji tüketimi aşırı artar) ve öğütme ekonomik olmaz.
Bu çalışmada cevher zenginleştirme tesisleri için alternatif ince ve ultra ince öğütme değirmenleri tanıtılarak, çalışma prensipleri hakkında bilgi verilmiştir. Diğer çalışmalardan farklı olarak tane ve öğütme enerjisi hesaplamalarına ilişkin bilgiler verilmektedir. Ultra ince öğütme teorileri için yeni geliştirilen hesaplamaları gerçekleştirecek bir teori veya modelin bulunmamasının nedenleri açıklanmaya çalışılmaktadır.

References

  • Amelunxena,P., Berriosb, P. and Rodriguezb, E. (2014). The SAG grindability index test. Minerals Engineering, 55 / 42–51.
  • Batterham, R. (2011). Trend in comminution driven by energy, Advanced Powder Technology, 22, 138–140.
  • Beke B. (1981). The Process Of Fine Grinding, Developments in Mineral Science and Engineering, Martinus Nijhoff, Dr W. Junk Publishers, 15O pp.
  • Bilen C. (2021). A New Chemical Method to Predict Grindability Index (HGI) for Limestones, BSEU Journal of Science, 9(1), 124-137.
  • Bond, F.C. (1961). Crushing and grinding calculations. Br. Chem. Eng. Part I, 6 (6), 378–385, Part II, 6 (8), 543–548.
  • Coutinho, L.F., and Embiruçu, M. 2007. On the control problem in fluid energy milling and air classification processes: approaches for experimentation and modeling of particulate systems in an industrial scale plant, https://api.semanticscholar.org / Corpus ID : 18333667)
  • Deniz, V. (1996). Bond Öğütülebilirliği ve İş İndeksi ile Statik ve Dinamik Parametreler Arasındaki İlişkiler, Doktora Tezi, OsmangaziÜniversitesi, Fen Bilimleri Enstitüsü, Eskişehir.
  • Deniz, V., Balta, G. ve Yamık, A. (1996). The İnterrelationships Between Bond Grindability of Coals and İmpact strength İndex (ISI), Point Load İndex (Is) and Friability İndex (FD). Proceedings of the VI. İnternational Mineral Processing Sym, Kuşadası, Türkiye.
  • Deniz, V., and Ozdag, H. (2003). A new approach to Bond grindability and work index. Minerals Engineering, 16, pp.211-217.
  • Ellerbrock, H. G. (1975). tJber die Mahlbarkeit8prufung von Zementklinker. Fourth European Symp. Comminution. Preprint 197-211.
  • https://electricalworkbook.com/fluid-energy-mill/
  • https://www.hiimac.com/
  • https://www.root-asia.com/root-technology/
  • https://ballmillssupplier.com/product-center/ vibration -ball-mill/
  • Haese, U., Scheffler, P., Fasbender H. (1975). Mahlbarkeitsprüfung und Rohrmühlenauslegung bei Zementrohstoffen (Grindability testing and tube mill design for cement raw materials). Cement-Kalk-Gips, 8, 316-324.
  • Hukki, R.T. (1961). Proposal for a Solomonic settlement between the theories of von Rittinger, Kick and Bond. Transactions of SME–AIME, 220:403–408.
  • Jeswiet, J. and Szekeres, A. (2016). Energy consumption in mining comminution, Procedia CIRP, 48, pp. 140–145.
  • Kannewurf, A. S. (1957). Research pushes Grindability Guesses into the Background. Rock Products May 66 ff. Ref: Zement-Kalk-Gips, 435.
  • Kapur, P.C. Analysis of the Bond grindability test. Trans. Inst. Min. Metall. 1970, 79, 103–107.
  • Karra, V.K. (1981). Simulation of Bond grindability tests. CIM Bull. 74, 195–199.
  • Ersayın S., Kırşan H.İ. (1995). A Comparison of Methods For Rapid Determination Of Bond Work Index, 14th Mining Congress Of Turkey, 157-164.
  • Köse M. ve Koç M. (1990). A Simplified Method of Determining the Bond Work Index, Proceeding of the III. International Mineral Processing Symposium, Turkey, 44-54
  • Lamartino P., Mercuri S., Murdocco A., Crivelli D., Malorgio S., Joost B. (2018). Modular spiral jet mill: an innovative tool for targeted micronization of pharmaceutical products, Material Science, https://api.semanticscholar.org/CorpusID:55653328
  • Lehmann, H. and Haese, U. (1955). Der Mahlbarkeitsprufer, ein Gerat zur Untersuchung der Mahleigenschaften harter Stoffe. Tonindustriezeitung 79 / 91-94.
  • Magdalinovic, N., Trumic, M., Trumic, G., Magdalinovic, S. (2012). Determination of the Bond work index on samples of non-standard size. Int. J. Miner. Process. 114–117, 48–50.
  • Magdalinovic, N. (1989). Calculation of Energy Required for Grinding in a Ball Mill. International Journal of Mineral Processing, 25, 41-46.
  • Menéndez-Aguado, J.M., Dzioba, R.B., Coello-Velázquez, A.L. (2005). Determination of work index in a common laboratory mill. Miner. Metall. Process. 22 (3), 173–176.
  • Menéndez-Aguado, J.M., Coello-Velázquez, A.L., Dzioba, B.R., Diaz, M.A.R. (2006). Process models for simulation of Bond tests. Trans. IMM, Sec. C 115 (2), 85–90.
  • Mhadhbi, M. (2021). Simulation of a Laboratory Scale Ball Mill via Discrete Element Method Modelling, Advances in Materials Physics and Chemistry, Vol.11 No.10
  • Morrell, S. (2004). An alternative energy–size relationship to that proposed by Bond for the design and optimization of grinding circuits. Int. J. Miner. Process., 74, 133–141.
  • Mosher, J.B., Tague, C.B. (2001). Conduct and precision of Bond grindability testing. Miner. Eng., 14 (10), 1187–1197.
  • Orr, C. 1966. Particulate Technology. New York, NY: Macmillan.
  • Remenyi, K. (1966). Investigation on Grindability of Limestone and Rock-Salt Mixture in Hardgrove Mill. Acta Techn. Ac. Sci. Hung., 56, 75-90
  • Rhymer D., Ingram A., Sadler K., Windows Yule C.R.K. (2022). A discrete element method investigation within vertical stirred milling: Changing the grinding media restitution and sliding friction coefficients, Powder Technology, 410,117825.
  • Rumpf, H., Müller W. (1962). An investigation into the mixing of powders in centrifugal mixers. Transactions of the Institution of Chemical Engineers, 40, pp. 272-280
  • Rumpf, H. (1977). Problems of scientific development in particle technology, looked upon from a practical point of view. Powder Technology 18, 3–17.
  • Smith, R. W. and Lee, K. H. (1968). A comparison of Data from Bond Type Simulated Closed-Circuit and Batch Type Grindability Tests. Trans. SME-AIME, 241, 99-101.
  • Sönmez, B. ve Demirel, H. (1992). Benzetişim Kullanılarak Bond Öğütülebilirlik Testinin Basitleştirilmesi. 4. Uluslararası Cevher Hazırlama Sempozyumu, Cilt 1, 55-56, Antalya.
  • Tavares, L.M., R.M, D.C., Guerrero, J.C., 2012. Simulating the Bond Rod Mill Grindability Test. Miner. Eng., 26, 99–101.
  • Wasmuth, H. D. (1969). Bestimmung der Mahlbarkeit und des spezifischen Energiebedarfs bei der Mahlung von Erzen und Gesteinen mittels Bond-Test. Aufbereitungs-Technik 284-289
  • Yashima, S., Morohashi, S., Awano, O., Kanda, Y. (1970) Kagaku Kogaku, 34, 210–218.
  • Yashima, S., Fujita, T., J. Soc. Powder Technol. Jpn., 28, 257– 266, 1991; Ushiki, K., Powder Technology Handbook, 2nd Ed., Macel Dekkar, New York, 1977.
  • Zeisel, H. G. (1953). Entwicklung eines Verfahrens zur Bestimmung der Mahlbarkeit. Schriftenreihe der Zementindustrie, VDZ, Dusseldorf, 14.

INVESTIGATION OF ENERGY - TECHNOLOGY DEVELOPMENT IN ULTRA FINE GRINDING

Year 2023, Volume: 31 Issue: 4, 1060 - 1076, 22.12.2023
https://doi.org/10.31796/ogummf.1386158

Abstract

Ultra-fine grinding refers to the process of reducing materials to extremely small particle sizes, typically in the micron or submicron range. It is commonly used in various industries such as mining, pharmaceuticals, ceramics, and chemicals, where the production of fine particles with specific properties is required.
Energy plays a significant role in ultra-fine grinding processes. The reduction of materials to such small sizes requires a considerable amount of energy input. The energy consumption in ultra-fine grinding is typically higher compared to conventional grinding methods due to the higher surface area and increased particle-particle interactions.
In the mining sector, with the depletion of high-grade ore deposits, it has become a necessity to operate very low-grade ore deposits with very small particle liberation sizes. In the enrichment of these ores, most of the energy required is spent on grinding. In micronized grinding, conventional mills (such as rod and ball mills) lose their efficiency and become uneconomical.
most of the energy spent in conventional mills is used directly in size reduction, and a significant portion is lost as heat and sound without doing any useful work (size reduction). In addition, for grinding below 75 µm , the efficiency of conventional mills is greatly reduced (energy consumption increases excessively), and grinding becomes uneconomical.
In this study, alternative fine and ultrafine grinding mills for ore dressing plants are introduced, and information about their working principles is presented. Unlike other studies, information on particle and grinding energy calculations is given. The reasons for the lack of a theory or model to perform newly developed calculations for ultrafine grinding theories are tried to be explained.

References

  • Amelunxena,P., Berriosb, P. and Rodriguezb, E. (2014). The SAG grindability index test. Minerals Engineering, 55 / 42–51.
  • Batterham, R. (2011). Trend in comminution driven by energy, Advanced Powder Technology, 22, 138–140.
  • Beke B. (1981). The Process Of Fine Grinding, Developments in Mineral Science and Engineering, Martinus Nijhoff, Dr W. Junk Publishers, 15O pp.
  • Bilen C. (2021). A New Chemical Method to Predict Grindability Index (HGI) for Limestones, BSEU Journal of Science, 9(1), 124-137.
  • Bond, F.C. (1961). Crushing and grinding calculations. Br. Chem. Eng. Part I, 6 (6), 378–385, Part II, 6 (8), 543–548.
  • Coutinho, L.F., and Embiruçu, M. 2007. On the control problem in fluid energy milling and air classification processes: approaches for experimentation and modeling of particulate systems in an industrial scale plant, https://api.semanticscholar.org / Corpus ID : 18333667)
  • Deniz, V. (1996). Bond Öğütülebilirliği ve İş İndeksi ile Statik ve Dinamik Parametreler Arasındaki İlişkiler, Doktora Tezi, OsmangaziÜniversitesi, Fen Bilimleri Enstitüsü, Eskişehir.
  • Deniz, V., Balta, G. ve Yamık, A. (1996). The İnterrelationships Between Bond Grindability of Coals and İmpact strength İndex (ISI), Point Load İndex (Is) and Friability İndex (FD). Proceedings of the VI. İnternational Mineral Processing Sym, Kuşadası, Türkiye.
  • Deniz, V., and Ozdag, H. (2003). A new approach to Bond grindability and work index. Minerals Engineering, 16, pp.211-217.
  • Ellerbrock, H. G. (1975). tJber die Mahlbarkeit8prufung von Zementklinker. Fourth European Symp. Comminution. Preprint 197-211.
  • https://electricalworkbook.com/fluid-energy-mill/
  • https://www.hiimac.com/
  • https://www.root-asia.com/root-technology/
  • https://ballmillssupplier.com/product-center/ vibration -ball-mill/
  • Haese, U., Scheffler, P., Fasbender H. (1975). Mahlbarkeitsprüfung und Rohrmühlenauslegung bei Zementrohstoffen (Grindability testing and tube mill design for cement raw materials). Cement-Kalk-Gips, 8, 316-324.
  • Hukki, R.T. (1961). Proposal for a Solomonic settlement between the theories of von Rittinger, Kick and Bond. Transactions of SME–AIME, 220:403–408.
  • Jeswiet, J. and Szekeres, A. (2016). Energy consumption in mining comminution, Procedia CIRP, 48, pp. 140–145.
  • Kannewurf, A. S. (1957). Research pushes Grindability Guesses into the Background. Rock Products May 66 ff. Ref: Zement-Kalk-Gips, 435.
  • Kapur, P.C. Analysis of the Bond grindability test. Trans. Inst. Min. Metall. 1970, 79, 103–107.
  • Karra, V.K. (1981). Simulation of Bond grindability tests. CIM Bull. 74, 195–199.
  • Ersayın S., Kırşan H.İ. (1995). A Comparison of Methods For Rapid Determination Of Bond Work Index, 14th Mining Congress Of Turkey, 157-164.
  • Köse M. ve Koç M. (1990). A Simplified Method of Determining the Bond Work Index, Proceeding of the III. International Mineral Processing Symposium, Turkey, 44-54
  • Lamartino P., Mercuri S., Murdocco A., Crivelli D., Malorgio S., Joost B. (2018). Modular spiral jet mill: an innovative tool for targeted micronization of pharmaceutical products, Material Science, https://api.semanticscholar.org/CorpusID:55653328
  • Lehmann, H. and Haese, U. (1955). Der Mahlbarkeitsprufer, ein Gerat zur Untersuchung der Mahleigenschaften harter Stoffe. Tonindustriezeitung 79 / 91-94.
  • Magdalinovic, N., Trumic, M., Trumic, G., Magdalinovic, S. (2012). Determination of the Bond work index on samples of non-standard size. Int. J. Miner. Process. 114–117, 48–50.
  • Magdalinovic, N. (1989). Calculation of Energy Required for Grinding in a Ball Mill. International Journal of Mineral Processing, 25, 41-46.
  • Menéndez-Aguado, J.M., Dzioba, R.B., Coello-Velázquez, A.L. (2005). Determination of work index in a common laboratory mill. Miner. Metall. Process. 22 (3), 173–176.
  • Menéndez-Aguado, J.M., Coello-Velázquez, A.L., Dzioba, B.R., Diaz, M.A.R. (2006). Process models for simulation of Bond tests. Trans. IMM, Sec. C 115 (2), 85–90.
  • Mhadhbi, M. (2021). Simulation of a Laboratory Scale Ball Mill via Discrete Element Method Modelling, Advances in Materials Physics and Chemistry, Vol.11 No.10
  • Morrell, S. (2004). An alternative energy–size relationship to that proposed by Bond for the design and optimization of grinding circuits. Int. J. Miner. Process., 74, 133–141.
  • Mosher, J.B., Tague, C.B. (2001). Conduct and precision of Bond grindability testing. Miner. Eng., 14 (10), 1187–1197.
  • Orr, C. 1966. Particulate Technology. New York, NY: Macmillan.
  • Remenyi, K. (1966). Investigation on Grindability of Limestone and Rock-Salt Mixture in Hardgrove Mill. Acta Techn. Ac. Sci. Hung., 56, 75-90
  • Rhymer D., Ingram A., Sadler K., Windows Yule C.R.K. (2022). A discrete element method investigation within vertical stirred milling: Changing the grinding media restitution and sliding friction coefficients, Powder Technology, 410,117825.
  • Rumpf, H., Müller W. (1962). An investigation into the mixing of powders in centrifugal mixers. Transactions of the Institution of Chemical Engineers, 40, pp. 272-280
  • Rumpf, H. (1977). Problems of scientific development in particle technology, looked upon from a practical point of view. Powder Technology 18, 3–17.
  • Smith, R. W. and Lee, K. H. (1968). A comparison of Data from Bond Type Simulated Closed-Circuit and Batch Type Grindability Tests. Trans. SME-AIME, 241, 99-101.
  • Sönmez, B. ve Demirel, H. (1992). Benzetişim Kullanılarak Bond Öğütülebilirlik Testinin Basitleştirilmesi. 4. Uluslararası Cevher Hazırlama Sempozyumu, Cilt 1, 55-56, Antalya.
  • Tavares, L.M., R.M, D.C., Guerrero, J.C., 2012. Simulating the Bond Rod Mill Grindability Test. Miner. Eng., 26, 99–101.
  • Wasmuth, H. D. (1969). Bestimmung der Mahlbarkeit und des spezifischen Energiebedarfs bei der Mahlung von Erzen und Gesteinen mittels Bond-Test. Aufbereitungs-Technik 284-289
  • Yashima, S., Morohashi, S., Awano, O., Kanda, Y. (1970) Kagaku Kogaku, 34, 210–218.
  • Yashima, S., Fujita, T., J. Soc. Powder Technol. Jpn., 28, 257– 266, 1991; Ushiki, K., Powder Technology Handbook, 2nd Ed., Macel Dekkar, New York, 1977.
  • Zeisel, H. G. (1953). Entwicklung eines Verfahrens zur Bestimmung der Mahlbarkeit. Schriftenreihe der Zementindustrie, VDZ, Dusseldorf, 14.
There are 43 citations in total.

Details

Primary Language English
Subjects Chemical-Biological Recovery Techniques and Ore Dressing
Journal Section Review Articles
Authors

Yakup Umucu 0000-0002-6317-4070

Vedat Deniz 0000-0003-4098-959X

Yaşar Hakan Gürsoy 0000-0001-8987-7818

Early Pub Date December 22, 2023
Publication Date December 22, 2023
Submission Date November 4, 2023
Acceptance Date December 7, 2023
Published in Issue Year 2023 Volume: 31 Issue: 4

Cite

APA Umucu, Y., Deniz, V., & Gürsoy, Y. H. (2023). INVESTIGATION OF ENERGY - TECHNOLOGY DEVELOPMENT IN ULTRA FINE GRINDING. Eskişehir Osmangazi Üniversitesi Mühendislik Ve Mimarlık Fakültesi Dergisi, 31(4), 1060-1076. https://doi.org/10.31796/ogummf.1386158
AMA Umucu Y, Deniz V, Gürsoy YH. INVESTIGATION OF ENERGY - TECHNOLOGY DEVELOPMENT IN ULTRA FINE GRINDING. ESOGÜ Müh Mim Fak Derg. December 2023;31(4):1060-1076. doi:10.31796/ogummf.1386158
Chicago Umucu, Yakup, Vedat Deniz, and Yaşar Hakan Gürsoy. “INVESTIGATION OF ENERGY - TECHNOLOGY DEVELOPMENT IN ULTRA FINE GRINDING”. Eskişehir Osmangazi Üniversitesi Mühendislik Ve Mimarlık Fakültesi Dergisi 31, no. 4 (December 2023): 1060-76. https://doi.org/10.31796/ogummf.1386158.
EndNote Umucu Y, Deniz V, Gürsoy YH (December 1, 2023) INVESTIGATION OF ENERGY - TECHNOLOGY DEVELOPMENT IN ULTRA FINE GRINDING. Eskişehir Osmangazi Üniversitesi Mühendislik ve Mimarlık Fakültesi Dergisi 31 4 1060–1076.
IEEE Y. Umucu, V. Deniz, and Y. H. Gürsoy, “INVESTIGATION OF ENERGY - TECHNOLOGY DEVELOPMENT IN ULTRA FINE GRINDING”, ESOGÜ Müh Mim Fak Derg, vol. 31, no. 4, pp. 1060–1076, 2023, doi: 10.31796/ogummf.1386158.
ISNAD Umucu, Yakup et al. “INVESTIGATION OF ENERGY - TECHNOLOGY DEVELOPMENT IN ULTRA FINE GRINDING”. Eskişehir Osmangazi Üniversitesi Mühendislik ve Mimarlık Fakültesi Dergisi 31/4 (December 2023), 1060-1076. https://doi.org/10.31796/ogummf.1386158.
JAMA Umucu Y, Deniz V, Gürsoy YH. INVESTIGATION OF ENERGY - TECHNOLOGY DEVELOPMENT IN ULTRA FINE GRINDING. ESOGÜ Müh Mim Fak Derg. 2023;31:1060–1076.
MLA Umucu, Yakup et al. “INVESTIGATION OF ENERGY - TECHNOLOGY DEVELOPMENT IN ULTRA FINE GRINDING”. Eskişehir Osmangazi Üniversitesi Mühendislik Ve Mimarlık Fakültesi Dergisi, vol. 31, no. 4, 2023, pp. 1060-76, doi:10.31796/ogummf.1386158.
Vancouver Umucu Y, Deniz V, Gürsoy YH. INVESTIGATION OF ENERGY - TECHNOLOGY DEVELOPMENT IN ULTRA FINE GRINDING. ESOGÜ Müh Mim Fak Derg. 2023;31(4):1060-76.

20873  13565  13566 15461  13568    14913