Research Article
BibTex RIS Cite

COMPARATIVE ANALYSIS OF FLOTATION EFFICIENCIES BETWEEN MICROFLOTATION CELL AND BATCH FLOTATION CELL TESTS

Year 2024, Volume: 32 Issue: 2, 1400 - 1406, 12.08.2024
https://doi.org/10.31796/ogummf.1475051

Abstract

One of the most important methods in the beneficiation of sulfide ores is flotation. Flotation experiments on a laboratory scale are mainly carried out through batch flotation and microflotation tests. In this study, comparative flotation experiments of pyrite minerals were conducted under the same conditions using the two methods mentioned above. A series of experiments were carried out with different pH values and collector dosages selected as flotation parameters. The highest flotation recovery was obtained at a pH of 7.5 with the use of PAX. Furthermore, within the conditions studied, a correlation of 94% was found between the two flotation techniques when using PAX, while it was 98% in the use of PEX. In this study. It was shown that the microflotation method can be used to estimate the efficiency values that can be obtained with batch flotation experiments.

References

  • Ahmadi, R., Khodadadi, D.A., Abdollahy, M. & Fan, M. (2014). Nanomicrobubble flotation of fine and ultrafine chalcopyrite particles. Int. J. Mining Sci. Technol., 24(4):559–566. Doi: https://doi.org/10.1016/j.ijmst.2014.05.021
  • Dai, Z., Fornasiero, D. & Ralston, J. (1999). Particle-bubble attachment in mineral flotation. J. Colloid Interface Sci., 217(1):70–76. Doi: https://doi.org/10.1006/jcis.1999.6319
  • Derjaguin, B.V. & Dukhin, S.S. (1993). Theory of flotation of small and medium-size particles. Progress Surface Sci., 43(1–4):241–266. Doi: https:// doi. org/ 10. 1016/ 0079- 6816(93) 90034-S
  • del Villar, R., Finch, J.A., Gomez, C.O. & Espinoza-Gomez, R. (1992). Minerals Eng., 5(2), 169.
  • Dobby, G.S. & Finch, J.A., (1990). Column Flotation, Ch. 7. Pergamon Press
  • Dobby, G.S. & Finch, J.A. (1991). Column flotation: A selected review, part II. Minerals Eng., 4(7-11), 911. Doi:https://doi.org/10.1016/0892-875(91)90073-5
  • Fuerstenau, M.C., Kuhn, M.C. & Elgillani, D.A. (1968). The role of dixanthogen in xanthate flotation of pyrite. AIME Transactions, June, 148-156.
  • Fuerstenau, M.C., Misra, M. & Palmer, B.R. (1990). Xanthate adsorption on selected sulfides in the virtual absence and presence of oxygen. Part I. International Journal of Mineral Processing, 29, 89-98. Doi: https://doi.org/10.1016/0301-7516(90)90007-L
  • Gorain, B.K., Franzidis, J.P. & Manlapig, E.V. (2000). Flotation cell design: application of fundamental principles. Julius Kruttschnitt Mineral Research Centre, Indooroopilly Queensland, Australia, 1502-1506.
  • Jiang, K., Han, Y., Liu, J., Wang, Y., Ge, W. & Zhang, D. (2023). Experimental and theoretical study of the effect of pH level on the surface properties and floatability of pyrite. Applied Surface Science, 615, 156350.Doi: https://doi.org/10.1016/j.apsusc.2023.156350
  • Johansson, G. & Pugh, R.J. (1992). The influence of particle size and hydrophobicity on the stability of mineralized froths. Int. J. Miner. Process., 34, 1–21. Doi:https://doi.org/10.1016/0301-7516(92)90012-L
  • Lin, S., Wang, C., Liu, R., Sun, W. & Jing, G. (2022). Surface characterization of molybdenite, bismuthinite, and pyrite to identify the influence of pH on the mineral floatability. Appl. Surf. Sci. 577. Doi:, https://doi.org/10.1016/j. apsusc.2021.151756
  • Loewenberg, M. & Davis , R. H. (1994). Flotation rates of fine, spherical particles and droplets. Chem. Eng. Sci., 49: 3923–3941. Doi: https://doi.org/10.1016/0009-2509(94)00200-2
  • Luttrell, G.H., Mankosa, M.J. & Yoon, R-H. (1993). Design and scale-up criteria for column flotation. Proc. 18th Int. Minerals Processing Conference, Sydney, 785-791.
  • Savassi, O.N. (2005). A compartment model for the mass transfer inside a conventional flotation cell. Int. J. Mineral Process., 77 (2), 65-79. Doi: https://doi.org/10.1016/j.minpro.2005.02.003
  • Schwarz, S. & Grano, S. (2005). Effect of particle hydrophobicity on particle and water transport across a flotation froth. Colloids Surf. A., 256, 157–164.Doi:https://doi.org/10.1016/j.colsurfa.2005.01.010
  • Trahar, W.J. (1981). A rational interpretation of the role of particle size in flotation. Int. J. Mineral Process., 8(4):289–327. Doi: https:// doi.org/10.1016/0301-7516(81)90019-3
  • Wiese, J. & Harris, P. (2012). The effect of frother type and dosage on flotation performance in the presence of high depressant concentrations. Minerals Eng., 36–38,204-210.Doi: https://doi.org/10.1016/j.mineng.2012.03.028
  • Xu, D., Ametov, I. & Grano, S.R. (2011). Detachment of coarse particles from oscillating bubbles – the effect of particle contact angle, shape and medium viscosity. Int. J. Miner. Process. 101 (1–4), 50–57. Doi: https://doi.org/10.1016/j.minpro.2011.07.003
  • Wark, E.E. & Wark, I.W. (1932). The Physical Chemistry of Flotation III. The relationship between contact angle and the constitution of the collector. J. Phys. Chem., 37 (1) (1932), 805-811.
  • Takoungsakdakun, T. & Pongstabodee, S. (2007). Separation of mixed post-consumer PETPOMPVC plastic waste using selective flotation, Sep. Purif. Technol. 54 248–252. Doi: https://doi.org/10.1016/j.seppur.2006.09.011.
  • Wang, C.Q., Wang, H., Fu, J.-G. & Liu, Y. N. (2015). Flotation separation of waste plastics for recycling. A review, Waste Manage., 41, 28–38. Doi:https://doi.org/10.1016/j.wasman.2015.03.027
  • Negari, M. S., Ostad Movahed, S. &Ahmadpour, A. (2018). Separation of polyvinylchloride (PVC), polystyrene (PS) and polyethylene terephthalate (PET) granules using various chemical agents by flotation technique, Sep. Purif. Technol. 194 368–376. Doi: https://doi.org/10.1016/j.seppur.2017.11.062
  • Zhang, F., Zhang, C., Zhang, H., Chen, P., Wang, R. Chen, D., Chen, J., Tian, M. and Sun, W. (2023). Selective Adsorption Mechanism of Ferric Ions on the Surfaces of Chalcopyrite and Pyrite in Flotation, The Minerals, Metals & Materials Society, 4435-4445. Doi: https://doi.org/10.1007/s11837-023-06067-z
  • Zhang, L., Peng, W, Wang, W., Cao, Y., Qi, M. & Huang, Y. (2024). A green method for selective separation of molybdenite and pyrite via electrochemical oxidation pretreatment-flotation and its mechanism. Colloids and Surfaces A: Physicochemical and Engineering Aspects, Vol. 687, 133508. Doi: https://doi.org/10.1016/j.colsurfa.2024.133508

MİKROFLOTASYON VE FLOTASYON HÜCRESİ İLE YAPILAN TESTLERİN FLOTASYON VERİMLİLİKLERİNİN KARŞILAŞTIRMALI ANALİZİ

Year 2024, Volume: 32 Issue: 2, 1400 - 1406, 12.08.2024
https://doi.org/10.31796/ogummf.1475051

Abstract

Sülfürlü cevherlerin zenginleştirilmesinde kullanılan en önemli yöntemlerden birisi flotasyondur. Laboratuvar ölçeğinde flotasyon deneyleri yoğun olarak kesikli flotasyon ve mikroflotasyon testleri aracılığı ile gerçekleştirilmektedir. Bu çalışmada, bahsedilen iki yöntem kullanılarak, pirit mineralinin aynı şartlar altında karşılaştırılmalı flotasyon deneyleri gerçekleştirilmiştir. Flotasyon parametreleri olarak farklı pH ve toplayıcı dozajları seçilerek bir dizi deney yapılmıştır. En yüksek flotasyon verimleri pH 7,5 da PAX kullanımında elde edilmiştir. Ayrıca çalışılan koşullar aralığında, iki flotasyon tekniği arasında PAX kullanımında %94, PEX kullanımda ise %98 korelasyon olduğu tespit edilmiştir. Bu çalışmada kesikli flotasyon testleri ile elde edilebilecek verim değerlerinin tahmini için mikroflotasyon yönteminin kullanabileceği gösterilmiştir

References

  • Ahmadi, R., Khodadadi, D.A., Abdollahy, M. & Fan, M. (2014). Nanomicrobubble flotation of fine and ultrafine chalcopyrite particles. Int. J. Mining Sci. Technol., 24(4):559–566. Doi: https://doi.org/10.1016/j.ijmst.2014.05.021
  • Dai, Z., Fornasiero, D. & Ralston, J. (1999). Particle-bubble attachment in mineral flotation. J. Colloid Interface Sci., 217(1):70–76. Doi: https://doi.org/10.1006/jcis.1999.6319
  • Derjaguin, B.V. & Dukhin, S.S. (1993). Theory of flotation of small and medium-size particles. Progress Surface Sci., 43(1–4):241–266. Doi: https:// doi. org/ 10. 1016/ 0079- 6816(93) 90034-S
  • del Villar, R., Finch, J.A., Gomez, C.O. & Espinoza-Gomez, R. (1992). Minerals Eng., 5(2), 169.
  • Dobby, G.S. & Finch, J.A., (1990). Column Flotation, Ch. 7. Pergamon Press
  • Dobby, G.S. & Finch, J.A. (1991). Column flotation: A selected review, part II. Minerals Eng., 4(7-11), 911. Doi:https://doi.org/10.1016/0892-875(91)90073-5
  • Fuerstenau, M.C., Kuhn, M.C. & Elgillani, D.A. (1968). The role of dixanthogen in xanthate flotation of pyrite. AIME Transactions, June, 148-156.
  • Fuerstenau, M.C., Misra, M. & Palmer, B.R. (1990). Xanthate adsorption on selected sulfides in the virtual absence and presence of oxygen. Part I. International Journal of Mineral Processing, 29, 89-98. Doi: https://doi.org/10.1016/0301-7516(90)90007-L
  • Gorain, B.K., Franzidis, J.P. & Manlapig, E.V. (2000). Flotation cell design: application of fundamental principles. Julius Kruttschnitt Mineral Research Centre, Indooroopilly Queensland, Australia, 1502-1506.
  • Jiang, K., Han, Y., Liu, J., Wang, Y., Ge, W. & Zhang, D. (2023). Experimental and theoretical study of the effect of pH level on the surface properties and floatability of pyrite. Applied Surface Science, 615, 156350.Doi: https://doi.org/10.1016/j.apsusc.2023.156350
  • Johansson, G. & Pugh, R.J. (1992). The influence of particle size and hydrophobicity on the stability of mineralized froths. Int. J. Miner. Process., 34, 1–21. Doi:https://doi.org/10.1016/0301-7516(92)90012-L
  • Lin, S., Wang, C., Liu, R., Sun, W. & Jing, G. (2022). Surface characterization of molybdenite, bismuthinite, and pyrite to identify the influence of pH on the mineral floatability. Appl. Surf. Sci. 577. Doi:, https://doi.org/10.1016/j. apsusc.2021.151756
  • Loewenberg, M. & Davis , R. H. (1994). Flotation rates of fine, spherical particles and droplets. Chem. Eng. Sci., 49: 3923–3941. Doi: https://doi.org/10.1016/0009-2509(94)00200-2
  • Luttrell, G.H., Mankosa, M.J. & Yoon, R-H. (1993). Design and scale-up criteria for column flotation. Proc. 18th Int. Minerals Processing Conference, Sydney, 785-791.
  • Savassi, O.N. (2005). A compartment model for the mass transfer inside a conventional flotation cell. Int. J. Mineral Process., 77 (2), 65-79. Doi: https://doi.org/10.1016/j.minpro.2005.02.003
  • Schwarz, S. & Grano, S. (2005). Effect of particle hydrophobicity on particle and water transport across a flotation froth. Colloids Surf. A., 256, 157–164.Doi:https://doi.org/10.1016/j.colsurfa.2005.01.010
  • Trahar, W.J. (1981). A rational interpretation of the role of particle size in flotation. Int. J. Mineral Process., 8(4):289–327. Doi: https:// doi.org/10.1016/0301-7516(81)90019-3
  • Wiese, J. & Harris, P. (2012). The effect of frother type and dosage on flotation performance in the presence of high depressant concentrations. Minerals Eng., 36–38,204-210.Doi: https://doi.org/10.1016/j.mineng.2012.03.028
  • Xu, D., Ametov, I. & Grano, S.R. (2011). Detachment of coarse particles from oscillating bubbles – the effect of particle contact angle, shape and medium viscosity. Int. J. Miner. Process. 101 (1–4), 50–57. Doi: https://doi.org/10.1016/j.minpro.2011.07.003
  • Wark, E.E. & Wark, I.W. (1932). The Physical Chemistry of Flotation III. The relationship between contact angle and the constitution of the collector. J. Phys. Chem., 37 (1) (1932), 805-811.
  • Takoungsakdakun, T. & Pongstabodee, S. (2007). Separation of mixed post-consumer PETPOMPVC plastic waste using selective flotation, Sep. Purif. Technol. 54 248–252. Doi: https://doi.org/10.1016/j.seppur.2006.09.011.
  • Wang, C.Q., Wang, H., Fu, J.-G. & Liu, Y. N. (2015). Flotation separation of waste plastics for recycling. A review, Waste Manage., 41, 28–38. Doi:https://doi.org/10.1016/j.wasman.2015.03.027
  • Negari, M. S., Ostad Movahed, S. &Ahmadpour, A. (2018). Separation of polyvinylchloride (PVC), polystyrene (PS) and polyethylene terephthalate (PET) granules using various chemical agents by flotation technique, Sep. Purif. Technol. 194 368–376. Doi: https://doi.org/10.1016/j.seppur.2017.11.062
  • Zhang, F., Zhang, C., Zhang, H., Chen, P., Wang, R. Chen, D., Chen, J., Tian, M. and Sun, W. (2023). Selective Adsorption Mechanism of Ferric Ions on the Surfaces of Chalcopyrite and Pyrite in Flotation, The Minerals, Metals & Materials Society, 4435-4445. Doi: https://doi.org/10.1007/s11837-023-06067-z
  • Zhang, L., Peng, W, Wang, W., Cao, Y., Qi, M. & Huang, Y. (2024). A green method for selective separation of molybdenite and pyrite via electrochemical oxidation pretreatment-flotation and its mechanism. Colloids and Surfaces A: Physicochemical and Engineering Aspects, Vol. 687, 133508. Doi: https://doi.org/10.1016/j.colsurfa.2024.133508
There are 25 citations in total.

Details

Primary Language English
Subjects Chemical-Biological Recovery Techniques and Ore Dressing
Journal Section Research Articles
Authors

Işıl Tokcan 0000-0003-3501-1335

Hasan Serkan Gökçen 0000-0001-5093-6796

Early Pub Date August 6, 2024
Publication Date August 12, 2024
Submission Date April 29, 2024
Acceptance Date July 31, 2024
Published in Issue Year 2024 Volume: 32 Issue: 2

Cite

APA Tokcan, I., & Gökçen, H. S. (2024). COMPARATIVE ANALYSIS OF FLOTATION EFFICIENCIES BETWEEN MICROFLOTATION CELL AND BATCH FLOTATION CELL TESTS. Eskişehir Osmangazi Üniversitesi Mühendislik Ve Mimarlık Fakültesi Dergisi, 32(2), 1400-1406. https://doi.org/10.31796/ogummf.1475051
AMA Tokcan I, Gökçen HS. COMPARATIVE ANALYSIS OF FLOTATION EFFICIENCIES BETWEEN MICROFLOTATION CELL AND BATCH FLOTATION CELL TESTS. ESOGÜ Müh Mim Fak Derg. August 2024;32(2):1400-1406. doi:10.31796/ogummf.1475051
Chicago Tokcan, Işıl, and Hasan Serkan Gökçen. “COMPARATIVE ANALYSIS OF FLOTATION EFFICIENCIES BETWEEN MICROFLOTATION CELL AND BATCH FLOTATION CELL TESTS”. Eskişehir Osmangazi Üniversitesi Mühendislik Ve Mimarlık Fakültesi Dergisi 32, no. 2 (August 2024): 1400-1406. https://doi.org/10.31796/ogummf.1475051.
EndNote Tokcan I, Gökçen HS (August 1, 2024) COMPARATIVE ANALYSIS OF FLOTATION EFFICIENCIES BETWEEN MICROFLOTATION CELL AND BATCH FLOTATION CELL TESTS. Eskişehir Osmangazi Üniversitesi Mühendislik ve Mimarlık Fakültesi Dergisi 32 2 1400–1406.
IEEE I. Tokcan and H. S. Gökçen, “COMPARATIVE ANALYSIS OF FLOTATION EFFICIENCIES BETWEEN MICROFLOTATION CELL AND BATCH FLOTATION CELL TESTS”, ESOGÜ Müh Mim Fak Derg, vol. 32, no. 2, pp. 1400–1406, 2024, doi: 10.31796/ogummf.1475051.
ISNAD Tokcan, Işıl - Gökçen, Hasan Serkan. “COMPARATIVE ANALYSIS OF FLOTATION EFFICIENCIES BETWEEN MICROFLOTATION CELL AND BATCH FLOTATION CELL TESTS”. Eskişehir Osmangazi Üniversitesi Mühendislik ve Mimarlık Fakültesi Dergisi 32/2 (August 2024), 1400-1406. https://doi.org/10.31796/ogummf.1475051.
JAMA Tokcan I, Gökçen HS. COMPARATIVE ANALYSIS OF FLOTATION EFFICIENCIES BETWEEN MICROFLOTATION CELL AND BATCH FLOTATION CELL TESTS. ESOGÜ Müh Mim Fak Derg. 2024;32:1400–1406.
MLA Tokcan, Işıl and Hasan Serkan Gökçen. “COMPARATIVE ANALYSIS OF FLOTATION EFFICIENCIES BETWEEN MICROFLOTATION CELL AND BATCH FLOTATION CELL TESTS”. Eskişehir Osmangazi Üniversitesi Mühendislik Ve Mimarlık Fakültesi Dergisi, vol. 32, no. 2, 2024, pp. 1400-6, doi:10.31796/ogummf.1475051.
Vancouver Tokcan I, Gökçen HS. COMPARATIVE ANALYSIS OF FLOTATION EFFICIENCIES BETWEEN MICROFLOTATION CELL AND BATCH FLOTATION CELL TESTS. ESOGÜ Müh Mim Fak Derg. 2024;32(2):1400-6.

20873  13565  13566 15461  13568    14913