Research Article
BibTex RIS Cite

PİSAGOR BULANIK SAYILARA DAYALI CRITIC-MARCOS YÖNTEMİ İLE OTONOM FORKLİFT SEÇİMİ

Year 2024, Volume: 32 Issue: 3, 1485 - 1499
https://doi.org/10.31796/ogummf.1496123

Abstract

Üretim ve depolama işletmelerinde forkliftler işletmenin verimliliğini arttırmak amacıyla yaygın olarak kullanılmaktadır. Özellikle son yıllarda teknolojide yaşanan gelişmeler ve Endüstri 4.0 uygulamaları ile otonom forkliftler modern işletmelerde klasik forkliftlerin yerini almaktadır. Çevre dostu ve 24 saat çalışabilen bu araçlar ile işletme bünyesinde verim artırılırken aynı zamanda insan hatasından kaynaklı kazalar da önlenebilmektedir. Bu çalışma, modern işletmelere otonom forklift belirleme sürecinde destek olmak üzere geliştirilmiştir. Bu araçların seçiminde hangi kriterlerin dikkate alınması gerektiği literatür taraması sonucunda belirlenmiştir. Bu süreçte yaşanabilecek belirsizlik ve sübjektifliğin etkilerini en aza indirebilmek amacıyla Pisagor bulanık sayılardan yararlanarak problem çözülmüştür. CRITIC (Criteria Importance Through Intercriteria Correlation) yöntemi ile kriterlere ait ağırlıklar belirlendikten sonra MARCOS (Measurement of Alternatives and Ranking according to COmpromise Solution) yöntemi kullanılarak alternatifler değerlendirilmiştir. Sonuç olarak, belirlenen sekiz farklı kriter içerisinden şarj süresi, dönme yarıçapı ve maksimum kaldıracağı yük miktarı en önemli kriter olarak belirlenmiştir. Farklı değerlendirme kriterleri için en iyi alternatif olarak Kuzey Amerika’da üretilen A7 alternatifi belirlenmiştir.

References

  • Abdellatif, M., Shoeir, M., Talaat, O., Gabalah, M., Elbably, M., & Saleh, S. (2018). Design of an autonomous forklift using kinect, MATEC Web Conference, 1-5, Malezya. doi: https://doi.org/10.1051/matecconf/201815304005
  • Abuzied, H., Nazih, N., & Sahbel, A. (2024). Design and simulation of eco-friendly smartphone controlled forklift. Heliyon, 10, e30682. doi: https://doi.org/10.1016/j.heliyon.2024.e30682
  • Ahmed, I., Jeon, G., & Piccialli, F. (2022). From artificial intelligence to explainable artificial intelligence in industry 4.0: A survey on what, how, and where. IEEE Transactions on Industrial Informatics, 18(8), 5031-5042. doi: https://doi.org/ 10.1109/TII.2022.3146552
  • Amio, F. F., Ahmed, N., Jeong, S., Jung, I., & Nam, K. (2024). Optimizing precision material handling: Elevating performance and safety through enhanced motion control in industrial forklifts. Electronics, 13(9), 1732. doi: https://doi.org/10.3390/electronics13091732
  • Atalık, G. & Senturk, S. (2019). A new ranking method for triangular intuitionistic fuzzy number based on gergonne point. Nicel Bilimler Dergisi, 1(1), 59-73. doi: https://orcid.org/0000-0002-9503-7388
  • Ayçin, E. ve Arsu, T. (2022). Sosyal gelişme endeksine göre ülkelerin değerlendirilmesi: MEREC ve MARCOS yöntemleri ile bir uygulama. İzmir Yönetim Dergisi, 2(2), 75-88. doi: https://doi.org/10.56203/iyd.1084310
  • Bhat, A., Kai, N., Suzuki, T., Shiroshima, T., & Yoshida, H. (2023). An advanced autonomous forklift based on a networked control system. IFAC Papers Online, 56(2), 11444-11449. doi: https://doi.org/10.1016/j.ifacol.2023.10.432
  • Birkocak, D. T., Acar, E., Bakadur, A. Ç., Ütebay, B., & Özdağoğlu, A. (2023). An application of the MARCOS method within the framework of sustainability to determine the optimum recycled fibre-containing fabric. Fibers and Polymers, 24(7), 2595-2608. doi: https://doi.org/ 10.1007/s12221-023-00197-6
  • Chen, Y., Zhong, J., Mumtaz, J., Zhou, S., & Zhu, L. (2023). An improved spider monkey optimization algorithm for multi-objective planning and scheduling problems of PCB assembly line. Expert Systems with Applications, 120600. doi: https://doi.org/10.1016/j.eswa.2023.120600
  • Choi, M., Ahn, S., & Seo, J. O. (2020). VR-Based investigation of forklift operator situation awareness for preventing collision accidents. Accident Analysis and Prevention, 136, 105404. doi: https://doi.org/10.1016/j.aap.2019.105404
  • Demirci, A. ve Manavgat, G. (2021). Veri zarflama analizi, TOPSIS ve VIKOR teknikleriyle forklift aracı seçimi: Karma model önerisi. Hacettepe Üniversitesi Sosyal Bilimler Dergisi, 3(1). https://dergipark.org.tr/tr/download/article-file/1223229
  • Dey, B. K., Bhuniya, S., & Sarkar, B. (2021). Involvement of controllable lead time and variable demand for a smart manufacturing system under a supply chain management. Expert Systems with Applications, 184, 115464. doi: https://doi.org/10.1016/j.eswa.2021.115464
  • Diakoulaki, D., Mavrotas, G., & Papayannakis, L. (1995). Determining objective weights in multiple criteria problems: The critic method. Computers & Operations Research, 22(7), 763-770. doi: https://doi.org/10.1016/0305-0548(94)00059-H
  • Ersoy, N. (2022). Kriter ağırlıklandırma yöntemlerinin ÇKKV sonuçları üzerindeki etkisine yönelik gerçek bir hayat uygulaması. MANAS Sosyal Araştırmalar Dergisi, 11(4), 1449-1463. doi: https://doi.org/10.33206/mjss.1026666
  • Ertemel, A. V., Menekse, A., & Camgoz Akdag, H. (2023). Smartphone addiction assessment using Pythagorean fuzzy CRITIC-TOPSIS. Sustainability, 15(5), 3955. doi: https://doi.org/10.3390/su15053955
  • Fazlollahtabar, H., Smailbašić, A., & Stević, Ž. (2019). FUCOM method in group decision-making: Selection of forklift in a warehouse. Decision Making: Applications in Management and Engineering, 2(1), 49-65. doi: https://doi.org/10.31181/dmame1901065f
  • Görçün, Ö. F., Ulutaş, A., Topal, A., & Ecer, F. (2024). Telescopic forklift on through a novel interval-valued Fermatean fuzzy PIPRECIA-WISP approach. Expert Systems with Applications, 255, 124674. doi: https://doi.org/10.1016/j.eswa.2024.124674
  • Gurrala, K. R., Helmy, M., & Ndiaye, M. (2022). Edible packaging selection employing hybrid CRITIC and TOPSIS method, 2022 International Conference On Decision Aid Sciences And Applications (DASA), 822-826, Tayland. doi: https://doi.org/10.1109/DASA54658.2022.976501
  • Keleş, N. (2023). A multi-criteria decision-making framework based on the MEREC method for the comprehensive solution of forklift selecetion problem. Eskişehir Osmangazi Üniversitesi İİBF Dergisi, 18(2), 573-590. doi: https://doi.org/10.17153/oguiibf.1270016
  • Liaw, C. F., Hsu, W. C. J., & Lo, H. W. (2020). A hybrid MCDM model to evaluate and classify outsourcing providers in manufacturing. Symmetry, 12(12), 1962. doi: https://doi.org/10.3390/sym12121962
  • Liu, Z. (2023). Selecting renewable desalination using uncertain data: an MCDM framework combining mixed objective weighting and interval MARCOS. Water Supply, 23(4), 1571-1586. doi: https://doi.org/ 10.2166/ws.2023.049
  • Lopez, J., Zalama, E., & Gomez-Garcia-Bermejo, J. (2022). A simulation and control framework for AGV based transport systems. Simulation Modelling Practice and Theory, 116, 102430. doi: https://doi.org/10.1016/j.simpat.2021.102430
  • Market Research Future. (2024). Erişim adresi: https//www.marketresearchfuture.com/reports/autonomous-forklift-market 21410/?utm_term=&utm_campaign=&utm_source=adwords&utm_medium=ppc&hsa_acc=2893753364&hsa_cam=20993525697&hsa_grp=159373415435&hsa_ad=690148612733&hsa_src=g&hsa_tgt=dsa-2295322977996&hsa_kw=&hsa_mt=&hsa_net=adwords&hsa_ver=3&gad_source=1
  • Mishra, A. R., Rani, P., Pamucar, D., & Saha, A. (2023). An integrated Pythagorean fuzzy fairly operator-based MARCOS method for solving the sustainable circular supplier selection problem. Annals of Operations Research, 1-42. doi: https://doi.org/10.1007/s10479-023-05453-9
  • Mitra, A. (2022). Cotton fibre selection based on quality value using measurement of alternatives and ranking according to compromise solution (MARCOS) method. Research Journal of Textile and Apparel, 28(2), 299-316. doi: https://doi.org/10.1108/RJTA-03-2022-0030
  • Mohammadpour, M., Kelouwani, S., Gaudreau, M. A., Zeghmi, L., Amamou, A., Bahmanabadi, H. … Graba, M. (2024). Energy-efficient motion planning of an autonomous forklift using deep neural networks and kinetic model. Expert Systems with Applications, 237, 121623. doi: https://doi.org/10.1016/j.eswa.2023.121623
  • Pamučar, D. & Ćirović, G. (2015). The selection of transport and handling resources in logistics centers using multi-attributive. Expert Systems with Applications, 42(6), 3016-3028. doi: https://doi.org/10.1016/j.eswa.2014.11.057
  • Sarıçalı, G. ve Kundakcı, N. (2017). Forklift alternatiflerinin KEMIRA-M yöntemi ile değerlendirilmesi. Optimum Ekonomi ve Yönetim Bilimleri Dergisi, 4(1), 35-53. doi: https://doi.org/10.17541/optimum.285053
  • Saxena, P., Kumar, V., & Ram, M. (2022). A novel CRITIC-TOPSIS approach for optimal selection of software reliability growth model (SRGM). Quality and Reliability Engineering International, 38(5), 2501-2520. doi: https://doi.org/10.1002/qre.3087
  • Shete, R. G., Kakade, S. K., & Dhanvijay, M. (2021). A blind-spot assistance for forklift using ultrasonic sensor, 2021 IEEE International Conference on Technology, Research, and Innovation for Betterment of Society (TRIBES), 1-4, Hindistan. doi: https://doi.org/10.1109/TRIBES52498.2021.9751672
  • Stević, Ž., Pamučar, D., Puška, A., & Chatterjee, P. (2020). Sustainable supplier selection in healthcare industries using a new MCDM method: Measurement of alternatives and ranking according to COmpromise solution (MARCOS). Computers & Industrial Engineering, 140, 106231. doi: https://doi.org/10.1016/j.cie.2019.106231
  • Toktaş Palut, P. ve Okçuoğlu, F. (2019). Depo tasarımı ve yerleşimi: Bir gerçek hayat uygulaması. Beykent Üniversitesi Fen ve Mühendislik Bilimleri Dergisi, 12(2), 14-22. doi: https://doi.org/10.20854/bujse.577992
  • Trung, D. D. (2022). Development of data normalization methods for multi-criteria decision making: applying for MARCOS method. Manufacturing Review, 9, 22. doi: https://doi.org/10.1051/mfreview/2022019
  • Tuş, A. & Aytaç Adalı, E. (2019). The new combination with CRITIC and WASPAS methods for the time and attendance software selection problem. Opsearch, 56, 528–538. doi: https://doi.org/10.1007/s12597-019-00371-6
  • Ulutaş, A., Karabasevic, D., Popovic, G., Stanujkic, D., Nguyen, P. T., & Karaköy, Ç. (2020). Development of a novel integrated CCSD-ITARA-MARCOS decision-making approach for stackers selection in a logistics system. Mathematics, 8(10), 1672. doi: https://doi.org/10.3390/math8101672
  • Ulutaş, A., Topal, A., Karabasevic, D., & Balo, F. (2023). Selection of a forklift for a cargo company with fuzzy BWM and fuzzy MCRAT methods. Axioms, 12(5), 467. https://doi.org/10.3390/axioms12050467
  • Vorasawad, K., Park, M., & Kim, C. (2023). Efficient navigation and motion control for autonomous forklifts in smart warehouses: LSPB trajectory planning and MPC implementation. Machines, 11(12), 1050. doi: https://doi.org/10.3390/machines11121050
  • Wang, Y., Wang, W., Wang, Z., Deveci, M., Roy, S. K., & Kadry, S. (2024). Selection of sustainable food suppliers using the Pythagorean fuzzy CRITIC-MARCOS method, Information Sciences, 664, 120326. doi: https://doi.org/10.1016/j.ins.2024.120326
  • Yager, R. R. (2014). Pythagorean membership grades in multicriteria decision-making. IEEE Transactions on Fuzzy Systems, 22, 958-965. doi: https://doi.org/10.1109/TFUZZ.2013.2278989
  • Zadeh L. A. (1965). Fuzzy Sets. Information and Control, 8(3), 338-353. doi: https://doi.org/10.2307/2272014
  • Zafar, S., Alamgir, Z., & Rehman, M. H. (2021). An effective blockchain evaluation system based on entropy-CRITIC weight method and MCDM techniques. Peer-to-Peer Networking and Applications, 14(5), 3110-3123. doi: https://doi.org/10.1007/s12083-021-01173-8
  • Zhang, D. & Wang, G. (2023). Geometric score function of Pythagorean fuzzy numbers determined by the reliable information region and its application to group decision-making. Engineering Applications of Artificial Intelligence, 121, 105973. doi: https://doi.org/10.1016/j.engappai.2023.105973
  • Zhang, T., Li, H., Fang, Y., Luo, M., & Cao, K. (2023). Joint dispatching and cooperative trajectory planning for multiple autonomous forklifts in a warehouse: A search-and-learning-based approach. Electronics, 12(18), 3820. doi: https://doi.org/10.3390/electronics12183820

PYTHAGOREAN FUZZY-BASED CRITIC-MARCOS METHOD FOR AUTONOMOUS FORKLIFT SELECTION

Year 2024, Volume: 32 Issue: 3, 1485 - 1499
https://doi.org/10.31796/ogummf.1496123

Abstract

In production and storage facilities, forklifts are commonly used to increase the efficiency of operations. Particularly in recent years, advancements in technology and the implementation of Industry 4.0 practices have led to the adoption of autonomous forklifts in modern enterprises, replacing conventional forklifts. These environmentally friendly and 24/7 operational vehicles not only enhance productivity within the organization but also mitigate accidents stemming from human error. This study has been developed to support modern enterprises in the process of selecting autonomous forklifts. The criteria for selecting these vehicles have been determined through a review of the literature. To minimize the impact of uncertainties and subjectivity in this process, the problem has been solved using Pythagorean fuzzy numbers. After determining the weights of the criteria with the CRITIC (Criteria Importance Through Intercriteria Correlation) method, the alternatives were evaluated using the MARCOS (Measurement of Alternatives and Ranking according to COmpromise Solution) method. In conclusion, among the eight specified criteria, charging time, turning radius, and maximum load capacity have been identified as the most significant criteria. As the optimal alternative for different evaluation criteria, the A7 alternative produced in North America has been determined.

References

  • Abdellatif, M., Shoeir, M., Talaat, O., Gabalah, M., Elbably, M., & Saleh, S. (2018). Design of an autonomous forklift using kinect, MATEC Web Conference, 1-5, Malezya. doi: https://doi.org/10.1051/matecconf/201815304005
  • Abuzied, H., Nazih, N., & Sahbel, A. (2024). Design and simulation of eco-friendly smartphone controlled forklift. Heliyon, 10, e30682. doi: https://doi.org/10.1016/j.heliyon.2024.e30682
  • Ahmed, I., Jeon, G., & Piccialli, F. (2022). From artificial intelligence to explainable artificial intelligence in industry 4.0: A survey on what, how, and where. IEEE Transactions on Industrial Informatics, 18(8), 5031-5042. doi: https://doi.org/ 10.1109/TII.2022.3146552
  • Amio, F. F., Ahmed, N., Jeong, S., Jung, I., & Nam, K. (2024). Optimizing precision material handling: Elevating performance and safety through enhanced motion control in industrial forklifts. Electronics, 13(9), 1732. doi: https://doi.org/10.3390/electronics13091732
  • Atalık, G. & Senturk, S. (2019). A new ranking method for triangular intuitionistic fuzzy number based on gergonne point. Nicel Bilimler Dergisi, 1(1), 59-73. doi: https://orcid.org/0000-0002-9503-7388
  • Ayçin, E. ve Arsu, T. (2022). Sosyal gelişme endeksine göre ülkelerin değerlendirilmesi: MEREC ve MARCOS yöntemleri ile bir uygulama. İzmir Yönetim Dergisi, 2(2), 75-88. doi: https://doi.org/10.56203/iyd.1084310
  • Bhat, A., Kai, N., Suzuki, T., Shiroshima, T., & Yoshida, H. (2023). An advanced autonomous forklift based on a networked control system. IFAC Papers Online, 56(2), 11444-11449. doi: https://doi.org/10.1016/j.ifacol.2023.10.432
  • Birkocak, D. T., Acar, E., Bakadur, A. Ç., Ütebay, B., & Özdağoğlu, A. (2023). An application of the MARCOS method within the framework of sustainability to determine the optimum recycled fibre-containing fabric. Fibers and Polymers, 24(7), 2595-2608. doi: https://doi.org/ 10.1007/s12221-023-00197-6
  • Chen, Y., Zhong, J., Mumtaz, J., Zhou, S., & Zhu, L. (2023). An improved spider monkey optimization algorithm for multi-objective planning and scheduling problems of PCB assembly line. Expert Systems with Applications, 120600. doi: https://doi.org/10.1016/j.eswa.2023.120600
  • Choi, M., Ahn, S., & Seo, J. O. (2020). VR-Based investigation of forklift operator situation awareness for preventing collision accidents. Accident Analysis and Prevention, 136, 105404. doi: https://doi.org/10.1016/j.aap.2019.105404
  • Demirci, A. ve Manavgat, G. (2021). Veri zarflama analizi, TOPSIS ve VIKOR teknikleriyle forklift aracı seçimi: Karma model önerisi. Hacettepe Üniversitesi Sosyal Bilimler Dergisi, 3(1). https://dergipark.org.tr/tr/download/article-file/1223229
  • Dey, B. K., Bhuniya, S., & Sarkar, B. (2021). Involvement of controllable lead time and variable demand for a smart manufacturing system under a supply chain management. Expert Systems with Applications, 184, 115464. doi: https://doi.org/10.1016/j.eswa.2021.115464
  • Diakoulaki, D., Mavrotas, G., & Papayannakis, L. (1995). Determining objective weights in multiple criteria problems: The critic method. Computers & Operations Research, 22(7), 763-770. doi: https://doi.org/10.1016/0305-0548(94)00059-H
  • Ersoy, N. (2022). Kriter ağırlıklandırma yöntemlerinin ÇKKV sonuçları üzerindeki etkisine yönelik gerçek bir hayat uygulaması. MANAS Sosyal Araştırmalar Dergisi, 11(4), 1449-1463. doi: https://doi.org/10.33206/mjss.1026666
  • Ertemel, A. V., Menekse, A., & Camgoz Akdag, H. (2023). Smartphone addiction assessment using Pythagorean fuzzy CRITIC-TOPSIS. Sustainability, 15(5), 3955. doi: https://doi.org/10.3390/su15053955
  • Fazlollahtabar, H., Smailbašić, A., & Stević, Ž. (2019). FUCOM method in group decision-making: Selection of forklift in a warehouse. Decision Making: Applications in Management and Engineering, 2(1), 49-65. doi: https://doi.org/10.31181/dmame1901065f
  • Görçün, Ö. F., Ulutaş, A., Topal, A., & Ecer, F. (2024). Telescopic forklift on through a novel interval-valued Fermatean fuzzy PIPRECIA-WISP approach. Expert Systems with Applications, 255, 124674. doi: https://doi.org/10.1016/j.eswa.2024.124674
  • Gurrala, K. R., Helmy, M., & Ndiaye, M. (2022). Edible packaging selection employing hybrid CRITIC and TOPSIS method, 2022 International Conference On Decision Aid Sciences And Applications (DASA), 822-826, Tayland. doi: https://doi.org/10.1109/DASA54658.2022.976501
  • Keleş, N. (2023). A multi-criteria decision-making framework based on the MEREC method for the comprehensive solution of forklift selecetion problem. Eskişehir Osmangazi Üniversitesi İİBF Dergisi, 18(2), 573-590. doi: https://doi.org/10.17153/oguiibf.1270016
  • Liaw, C. F., Hsu, W. C. J., & Lo, H. W. (2020). A hybrid MCDM model to evaluate and classify outsourcing providers in manufacturing. Symmetry, 12(12), 1962. doi: https://doi.org/10.3390/sym12121962
  • Liu, Z. (2023). Selecting renewable desalination using uncertain data: an MCDM framework combining mixed objective weighting and interval MARCOS. Water Supply, 23(4), 1571-1586. doi: https://doi.org/ 10.2166/ws.2023.049
  • Lopez, J., Zalama, E., & Gomez-Garcia-Bermejo, J. (2022). A simulation and control framework for AGV based transport systems. Simulation Modelling Practice and Theory, 116, 102430. doi: https://doi.org/10.1016/j.simpat.2021.102430
  • Market Research Future. (2024). Erişim adresi: https//www.marketresearchfuture.com/reports/autonomous-forklift-market 21410/?utm_term=&utm_campaign=&utm_source=adwords&utm_medium=ppc&hsa_acc=2893753364&hsa_cam=20993525697&hsa_grp=159373415435&hsa_ad=690148612733&hsa_src=g&hsa_tgt=dsa-2295322977996&hsa_kw=&hsa_mt=&hsa_net=adwords&hsa_ver=3&gad_source=1
  • Mishra, A. R., Rani, P., Pamucar, D., & Saha, A. (2023). An integrated Pythagorean fuzzy fairly operator-based MARCOS method for solving the sustainable circular supplier selection problem. Annals of Operations Research, 1-42. doi: https://doi.org/10.1007/s10479-023-05453-9
  • Mitra, A. (2022). Cotton fibre selection based on quality value using measurement of alternatives and ranking according to compromise solution (MARCOS) method. Research Journal of Textile and Apparel, 28(2), 299-316. doi: https://doi.org/10.1108/RJTA-03-2022-0030
  • Mohammadpour, M., Kelouwani, S., Gaudreau, M. A., Zeghmi, L., Amamou, A., Bahmanabadi, H. … Graba, M. (2024). Energy-efficient motion planning of an autonomous forklift using deep neural networks and kinetic model. Expert Systems with Applications, 237, 121623. doi: https://doi.org/10.1016/j.eswa.2023.121623
  • Pamučar, D. & Ćirović, G. (2015). The selection of transport and handling resources in logistics centers using multi-attributive. Expert Systems with Applications, 42(6), 3016-3028. doi: https://doi.org/10.1016/j.eswa.2014.11.057
  • Sarıçalı, G. ve Kundakcı, N. (2017). Forklift alternatiflerinin KEMIRA-M yöntemi ile değerlendirilmesi. Optimum Ekonomi ve Yönetim Bilimleri Dergisi, 4(1), 35-53. doi: https://doi.org/10.17541/optimum.285053
  • Saxena, P., Kumar, V., & Ram, M. (2022). A novel CRITIC-TOPSIS approach for optimal selection of software reliability growth model (SRGM). Quality and Reliability Engineering International, 38(5), 2501-2520. doi: https://doi.org/10.1002/qre.3087
  • Shete, R. G., Kakade, S. K., & Dhanvijay, M. (2021). A blind-spot assistance for forklift using ultrasonic sensor, 2021 IEEE International Conference on Technology, Research, and Innovation for Betterment of Society (TRIBES), 1-4, Hindistan. doi: https://doi.org/10.1109/TRIBES52498.2021.9751672
  • Stević, Ž., Pamučar, D., Puška, A., & Chatterjee, P. (2020). Sustainable supplier selection in healthcare industries using a new MCDM method: Measurement of alternatives and ranking according to COmpromise solution (MARCOS). Computers & Industrial Engineering, 140, 106231. doi: https://doi.org/10.1016/j.cie.2019.106231
  • Toktaş Palut, P. ve Okçuoğlu, F. (2019). Depo tasarımı ve yerleşimi: Bir gerçek hayat uygulaması. Beykent Üniversitesi Fen ve Mühendislik Bilimleri Dergisi, 12(2), 14-22. doi: https://doi.org/10.20854/bujse.577992
  • Trung, D. D. (2022). Development of data normalization methods for multi-criteria decision making: applying for MARCOS method. Manufacturing Review, 9, 22. doi: https://doi.org/10.1051/mfreview/2022019
  • Tuş, A. & Aytaç Adalı, E. (2019). The new combination with CRITIC and WASPAS methods for the time and attendance software selection problem. Opsearch, 56, 528–538. doi: https://doi.org/10.1007/s12597-019-00371-6
  • Ulutaş, A., Karabasevic, D., Popovic, G., Stanujkic, D., Nguyen, P. T., & Karaköy, Ç. (2020). Development of a novel integrated CCSD-ITARA-MARCOS decision-making approach for stackers selection in a logistics system. Mathematics, 8(10), 1672. doi: https://doi.org/10.3390/math8101672
  • Ulutaş, A., Topal, A., Karabasevic, D., & Balo, F. (2023). Selection of a forklift for a cargo company with fuzzy BWM and fuzzy MCRAT methods. Axioms, 12(5), 467. https://doi.org/10.3390/axioms12050467
  • Vorasawad, K., Park, M., & Kim, C. (2023). Efficient navigation and motion control for autonomous forklifts in smart warehouses: LSPB trajectory planning and MPC implementation. Machines, 11(12), 1050. doi: https://doi.org/10.3390/machines11121050
  • Wang, Y., Wang, W., Wang, Z., Deveci, M., Roy, S. K., & Kadry, S. (2024). Selection of sustainable food suppliers using the Pythagorean fuzzy CRITIC-MARCOS method, Information Sciences, 664, 120326. doi: https://doi.org/10.1016/j.ins.2024.120326
  • Yager, R. R. (2014). Pythagorean membership grades in multicriteria decision-making. IEEE Transactions on Fuzzy Systems, 22, 958-965. doi: https://doi.org/10.1109/TFUZZ.2013.2278989
  • Zadeh L. A. (1965). Fuzzy Sets. Information and Control, 8(3), 338-353. doi: https://doi.org/10.2307/2272014
  • Zafar, S., Alamgir, Z., & Rehman, M. H. (2021). An effective blockchain evaluation system based on entropy-CRITIC weight method and MCDM techniques. Peer-to-Peer Networking and Applications, 14(5), 3110-3123. doi: https://doi.org/10.1007/s12083-021-01173-8
  • Zhang, D. & Wang, G. (2023). Geometric score function of Pythagorean fuzzy numbers determined by the reliable information region and its application to group decision-making. Engineering Applications of Artificial Intelligence, 121, 105973. doi: https://doi.org/10.1016/j.engappai.2023.105973
  • Zhang, T., Li, H., Fang, Y., Luo, M., & Cao, K. (2023). Joint dispatching and cooperative trajectory planning for multiple autonomous forklifts in a warehouse: A search-and-learning-based approach. Electronics, 12(18), 3820. doi: https://doi.org/10.3390/electronics12183820
There are 43 citations in total.

Details

Primary Language Turkish
Subjects Manufacturing and Industrial Engineering (Other)
Journal Section Research Articles
Authors

Elif Çaloğlu Büyükselçuk 0000-0002-5976-6727

Early Pub Date December 12, 2024
Publication Date
Submission Date June 5, 2024
Acceptance Date October 12, 2024
Published in Issue Year 2024 Volume: 32 Issue: 3

Cite

APA Çaloğlu Büyükselçuk, E. (2024). PİSAGOR BULANIK SAYILARA DAYALI CRITIC-MARCOS YÖNTEMİ İLE OTONOM FORKLİFT SEÇİMİ. Eskişehir Osmangazi Üniversitesi Mühendislik Ve Mimarlık Fakültesi Dergisi, 32(3), 1485-1499. https://doi.org/10.31796/ogummf.1496123
AMA Çaloğlu Büyükselçuk E. PİSAGOR BULANIK SAYILARA DAYALI CRITIC-MARCOS YÖNTEMİ İLE OTONOM FORKLİFT SEÇİMİ. ESOGÜ Müh Mim Fak Derg. December 2024;32(3):1485-1499. doi:10.31796/ogummf.1496123
Chicago Çaloğlu Büyükselçuk, Elif. “PİSAGOR BULANIK SAYILARA DAYALI CRITIC-MARCOS YÖNTEMİ İLE OTONOM FORKLİFT SEÇİMİ”. Eskişehir Osmangazi Üniversitesi Mühendislik Ve Mimarlık Fakültesi Dergisi 32, no. 3 (December 2024): 1485-99. https://doi.org/10.31796/ogummf.1496123.
EndNote Çaloğlu Büyükselçuk E (December 1, 2024) PİSAGOR BULANIK SAYILARA DAYALI CRITIC-MARCOS YÖNTEMİ İLE OTONOM FORKLİFT SEÇİMİ. Eskişehir Osmangazi Üniversitesi Mühendislik ve Mimarlık Fakültesi Dergisi 32 3 1485–1499.
IEEE E. Çaloğlu Büyükselçuk, “PİSAGOR BULANIK SAYILARA DAYALI CRITIC-MARCOS YÖNTEMİ İLE OTONOM FORKLİFT SEÇİMİ”, ESOGÜ Müh Mim Fak Derg, vol. 32, no. 3, pp. 1485–1499, 2024, doi: 10.31796/ogummf.1496123.
ISNAD Çaloğlu Büyükselçuk, Elif. “PİSAGOR BULANIK SAYILARA DAYALI CRITIC-MARCOS YÖNTEMİ İLE OTONOM FORKLİFT SEÇİMİ”. Eskişehir Osmangazi Üniversitesi Mühendislik ve Mimarlık Fakültesi Dergisi 32/3 (December 2024), 1485-1499. https://doi.org/10.31796/ogummf.1496123.
JAMA Çaloğlu Büyükselçuk E. PİSAGOR BULANIK SAYILARA DAYALI CRITIC-MARCOS YÖNTEMİ İLE OTONOM FORKLİFT SEÇİMİ. ESOGÜ Müh Mim Fak Derg. 2024;32:1485–1499.
MLA Çaloğlu Büyükselçuk, Elif. “PİSAGOR BULANIK SAYILARA DAYALI CRITIC-MARCOS YÖNTEMİ İLE OTONOM FORKLİFT SEÇİMİ”. Eskişehir Osmangazi Üniversitesi Mühendislik Ve Mimarlık Fakültesi Dergisi, vol. 32, no. 3, 2024, pp. 1485-99, doi:10.31796/ogummf.1496123.
Vancouver Çaloğlu Büyükselçuk E. PİSAGOR BULANIK SAYILARA DAYALI CRITIC-MARCOS YÖNTEMİ İLE OTONOM FORKLİFT SEÇİMİ. ESOGÜ Müh Mim Fak Derg. 2024;32(3):1485-99.

20873  13565  13566 15461  13568    14913