Research Article
BibTex RIS Cite

INVESTIGATION OF THE EFFECT ON SOIL LIQUEFACTION ANALYSIS OF EARTHQUAKE RECORD SCALING METHODS

Year 2024, Volume: 32 Issue: 3, 1500 - 1508
https://doi.org/10.31796/ogummf.1510630

Abstract

It is of vital importance to determine the liquefaction risk of water-saturated soils in earthquake zones and to take appropriate measures. In order to minimize these risks, the behavior of soils under repetitive loads should be understood in detail and this information should be taken into account in building designs. Site-specific soil behavior and response analyses should be performed to evaluate each structure on its own. In addition, it is of great importance to select the correct earthquake acceleration records and perform liquefaction analyses considering the seismicity characteristics of the region. The earthquake acceleration records used in these analyses can be scaled in time-domain and frequency-domain. However, these scaling methods may cause differences in earthquake acceleration records. These scaling methods, which are based on the peak ground acceleration (PGA) value of the region and the spectral acceleration graph recommended by the Turkish Building Earthquake Code 2019 for the region, cause changes in the earthquake acceleration record. In this study, liquefaction analyses were performed on a water-saturated soil profile at a construction site located in an earthquake zone using two different scaling methods and the effect of the scaling method on the results was examined in detail. This study provides an important contribution to future building designs and mitigation of earthquake risks.

References

  • Afacan K (2019). Estimation of excess pore pressure generation and nonlinear site response of liquefied areas. Geotechnical Engineering - Advances in Soil Mechanics and Foundation Engineering. 1-21.
  • AFAD. Earthquake catalog (2024). T.C. Ministry of Interior Disaster and Emergency Management Presidency.
  • Alielahi H, Adampira M, (2016). Seismic effects of two-dimensional subsurface cavity on the ground motion by BEM: Amplification patterns and engineering applications, International Journal of Civil Engineering, 14. 233–251.
  • Alnuaim A, Alsanabani N, Alshenawy A (2020). Monotonic and cyclic behavior of salt-encrusted flat (Sabkha) soil. International Journal of Civil Engineering. 19. 187-198.
  • Arslan G, Borekci M, Sahin B, Denizer MI, Duman KS (2018). Performance evaluation of in-plan irregular rc frame buildings based on Turkish Seismic Cod. International Journal of Civil Engineering. 16. 323–333.
  • Chakrabortty P, Nilay N, Das A (2020). Effect of silt content on liquefaction susceptibility of fine saturated river bed sands. International Journal of Civil Engineering. 19. 549-561. 2020.
  • Ebrahimi Motlagh, HR, Rahai A (2017). Dynamic response of a continuous-deck bridge with different skew degrees to near-field ground motions. International Journal of Civil Engineering. 5. 715–725.
  • Fahjan YM, (2008). Selection and Scaling of Real Earthquake Accelerograms to Fit the Turkish Desingn Spectra. Technical J Turkish Chamb Civ Eng. 19. 4423–4444.
  • Güler E, Savas H, Afacan KB (2021). Examining The Liquefaction Potential Of Adapazari Sand Under Different Loads Adapazari. 6. International Conference on Earthquake Engineering and Seismology. Gebze, Kocaeli, Türkiye.
  • Hashash YMA, Musgrove MI, Harmon JA, Groholski D, Phillips CA, Park D (2016) DEEPSOIL V6.1, User Manual. Urbana, IL, Board of Trustees of University of Illinois at Urbana-Champaign.
  • Hubler JF, Athanasopoulos-Zekkos A, Zekkos D (2018). Monotonic and cyclic simple shear response of gravel-sand mixtures. Soil Dynamics and Earthquake Engineering. 115. 291-304.
  • Kutanis M, Bal IE, Local soil conditions effect on structural damage distribution. In: 11th soil mechanics and foundation engineering congress, Trabzon.
  • Mase LZ, Likitlersuang S, Tobita T (2019). Cyclic Behaviour and liquefaction resistance of izumio sands in Osaka, Japan. Marine Georesources Geotechnology. 37. 765-774.
  • Mase LZ, Likitlersuang S, Tobita T (2020). Verification of liquefaction potential during the strong earthquake at the border of Thailand-Myanmar. Journal of Earthquake Engineering. 26. 2023-2050.
  • Özdemir Z, Fahjan YM (2008). Comparison of time and frequency domain scaling of real accelerograms to match earthquake design spectra. Sixth Natl Conf Earthq Eng.
  • Pandya S, Sachan A (2019). Experimental studies on effect of load repetition on dynamic characteristics of saturated Ahmedabad cohesive soil. International Journal of Civil Engineering. 17. 781–792.
  • Seed HB, Tokimatsu K, Harder LF, Chung RM (1985). Influence of SPT procedures in soil liquefaction resistance evaluations. Journal of Geotechnical Engineering. 12. 1425-1445.
  • Tekin İ (1969). Kuzey Anadolu Fayı hakkında. MTA Journal.
  • TBDY, (2019). Türkiye Bina Deprem Yönetmeliği, 2018. Ankara.
  • Yu S, Tamura M, Kouichi H (2018) Evaluation of liquefaction potential in terms of surface wave method The 14th Worl d Conference on Earthquake Engineering, Beijing, China.
  • Zülküf K, Erken A (2009) Adapazarı zeminlerinin dinamik davranış özellikleri. İTÜ Mühendislik Dergisi, 8, 157-168.

DEPREM İVME KAYITLARININ ÖLÇEKLENDİRME YÖNTEMLERİNİN ZEMİN SIVILAŞMA POTANSİYELİNE ETKİSİNİN İNCELENMESİ

Year 2024, Volume: 32 Issue: 3, 1500 - 1508
https://doi.org/10.31796/ogummf.1510630

Abstract

Deprem bölgelerindeki suya doygun zeminlerin sıvılaşma riskinin belirlenmesi ve uygun önlemlerin alınması hayati önem taşımaktadır. Bu risklerin minimize edilmesi için, zeminlerin tekrarlı yükler altında göstereceği davranışın detaylı bir şekilde anlaşılması ve yapı tasarımlarında bu bilgilerin dikkate alınması gerekmektedir. Sahaya özel yapılan zemin davranış ve tepki analizleriyle her yapının kendi özelinde değerlendirilmesi gerekmektedir. Ayrıca, bölgenin depremsellik özellikleri göz önünde bulundurularak, doğru deprem ivme kayıtlarının seçilmesi ve sıvılaşma analizlerinin yapılması büyük önem arz etmektedir. Bu analizlerde kullanılan deprem ivme kayıtları, zaman-tanım ve frekans-tanım alanında ölçeklenebilir. Ancak, bu ölçeklendirme yöntemleri, deprem ivme kayıtlarında farklılıklara neden olabilmektedir. Bölgenin pik yer ivmesi (PGA) değerine ve Türkiye Bina Deprem Yönetmeliği 2019’un bölgeye önerdiği spektral ivme grafiğine göre yapılan bu ölçeklendirmeler, deprem ivme kaydı üzerinde değişikliklere neden olmaktadır. Bu çalışmada, deprem bölgesinde yer alan bir inşaat sahasında suya doygun zemin profili üzerinde iki farklı ölçeklendirme yöntemi de kullanılarak sıvılaşma analizleri gerçekleştirilmiş ve ölçeklendirme yönteminin sonuçlar üzerindeki etkisi detaylı bir şekilde incelenmiştir. Bu yönüyle çalışma, gelecekteki yapı tasarımlarının zemin özelliklerine göre yapılması ve deprem risklerinin azaltılması adına önemli bir katkı sağlamaktadır.

References

  • Afacan K (2019). Estimation of excess pore pressure generation and nonlinear site response of liquefied areas. Geotechnical Engineering - Advances in Soil Mechanics and Foundation Engineering. 1-21.
  • AFAD. Earthquake catalog (2024). T.C. Ministry of Interior Disaster and Emergency Management Presidency.
  • Alielahi H, Adampira M, (2016). Seismic effects of two-dimensional subsurface cavity on the ground motion by BEM: Amplification patterns and engineering applications, International Journal of Civil Engineering, 14. 233–251.
  • Alnuaim A, Alsanabani N, Alshenawy A (2020). Monotonic and cyclic behavior of salt-encrusted flat (Sabkha) soil. International Journal of Civil Engineering. 19. 187-198.
  • Arslan G, Borekci M, Sahin B, Denizer MI, Duman KS (2018). Performance evaluation of in-plan irregular rc frame buildings based on Turkish Seismic Cod. International Journal of Civil Engineering. 16. 323–333.
  • Chakrabortty P, Nilay N, Das A (2020). Effect of silt content on liquefaction susceptibility of fine saturated river bed sands. International Journal of Civil Engineering. 19. 549-561. 2020.
  • Ebrahimi Motlagh, HR, Rahai A (2017). Dynamic response of a continuous-deck bridge with different skew degrees to near-field ground motions. International Journal of Civil Engineering. 5. 715–725.
  • Fahjan YM, (2008). Selection and Scaling of Real Earthquake Accelerograms to Fit the Turkish Desingn Spectra. Technical J Turkish Chamb Civ Eng. 19. 4423–4444.
  • Güler E, Savas H, Afacan KB (2021). Examining The Liquefaction Potential Of Adapazari Sand Under Different Loads Adapazari. 6. International Conference on Earthquake Engineering and Seismology. Gebze, Kocaeli, Türkiye.
  • Hashash YMA, Musgrove MI, Harmon JA, Groholski D, Phillips CA, Park D (2016) DEEPSOIL V6.1, User Manual. Urbana, IL, Board of Trustees of University of Illinois at Urbana-Champaign.
  • Hubler JF, Athanasopoulos-Zekkos A, Zekkos D (2018). Monotonic and cyclic simple shear response of gravel-sand mixtures. Soil Dynamics and Earthquake Engineering. 115. 291-304.
  • Kutanis M, Bal IE, Local soil conditions effect on structural damage distribution. In: 11th soil mechanics and foundation engineering congress, Trabzon.
  • Mase LZ, Likitlersuang S, Tobita T (2019). Cyclic Behaviour and liquefaction resistance of izumio sands in Osaka, Japan. Marine Georesources Geotechnology. 37. 765-774.
  • Mase LZ, Likitlersuang S, Tobita T (2020). Verification of liquefaction potential during the strong earthquake at the border of Thailand-Myanmar. Journal of Earthquake Engineering. 26. 2023-2050.
  • Özdemir Z, Fahjan YM (2008). Comparison of time and frequency domain scaling of real accelerograms to match earthquake design spectra. Sixth Natl Conf Earthq Eng.
  • Pandya S, Sachan A (2019). Experimental studies on effect of load repetition on dynamic characteristics of saturated Ahmedabad cohesive soil. International Journal of Civil Engineering. 17. 781–792.
  • Seed HB, Tokimatsu K, Harder LF, Chung RM (1985). Influence of SPT procedures in soil liquefaction resistance evaluations. Journal of Geotechnical Engineering. 12. 1425-1445.
  • Tekin İ (1969). Kuzey Anadolu Fayı hakkında. MTA Journal.
  • TBDY, (2019). Türkiye Bina Deprem Yönetmeliği, 2018. Ankara.
  • Yu S, Tamura M, Kouichi H (2018) Evaluation of liquefaction potential in terms of surface wave method The 14th Worl d Conference on Earthquake Engineering, Beijing, China.
  • Zülküf K, Erken A (2009) Adapazarı zeminlerinin dinamik davranış özellikleri. İTÜ Mühendislik Dergisi, 8, 157-168.
There are 21 citations in total.

Details

Primary Language Turkish
Subjects Civil Geotechnical Engineering
Journal Section Research Articles
Authors

Ersin Güler 0000-0002-5679-8838

Early Pub Date December 12, 2024
Publication Date
Submission Date July 4, 2024
Acceptance Date October 2, 2024
Published in Issue Year 2024 Volume: 32 Issue: 3

Cite

APA Güler, E. (2024). DEPREM İVME KAYITLARININ ÖLÇEKLENDİRME YÖNTEMLERİNİN ZEMİN SIVILAŞMA POTANSİYELİNE ETKİSİNİN İNCELENMESİ. Eskişehir Osmangazi Üniversitesi Mühendislik Ve Mimarlık Fakültesi Dergisi, 32(3), 1500-1508. https://doi.org/10.31796/ogummf.1510630
AMA Güler E. DEPREM İVME KAYITLARININ ÖLÇEKLENDİRME YÖNTEMLERİNİN ZEMİN SIVILAŞMA POTANSİYELİNE ETKİSİNİN İNCELENMESİ. ESOGÜ Müh Mim Fak Derg. December 2024;32(3):1500-1508. doi:10.31796/ogummf.1510630
Chicago Güler, Ersin. “DEPREM İVME KAYITLARININ ÖLÇEKLENDİRME YÖNTEMLERİNİN ZEMİN SIVILAŞMA POTANSİYELİNE ETKİSİNİN İNCELENMESİ”. Eskişehir Osmangazi Üniversitesi Mühendislik Ve Mimarlık Fakültesi Dergisi 32, no. 3 (December 2024): 1500-1508. https://doi.org/10.31796/ogummf.1510630.
EndNote Güler E (December 1, 2024) DEPREM İVME KAYITLARININ ÖLÇEKLENDİRME YÖNTEMLERİNİN ZEMİN SIVILAŞMA POTANSİYELİNE ETKİSİNİN İNCELENMESİ. Eskişehir Osmangazi Üniversitesi Mühendislik ve Mimarlık Fakültesi Dergisi 32 3 1500–1508.
IEEE E. Güler, “DEPREM İVME KAYITLARININ ÖLÇEKLENDİRME YÖNTEMLERİNİN ZEMİN SIVILAŞMA POTANSİYELİNE ETKİSİNİN İNCELENMESİ”, ESOGÜ Müh Mim Fak Derg, vol. 32, no. 3, pp. 1500–1508, 2024, doi: 10.31796/ogummf.1510630.
ISNAD Güler, Ersin. “DEPREM İVME KAYITLARININ ÖLÇEKLENDİRME YÖNTEMLERİNİN ZEMİN SIVILAŞMA POTANSİYELİNE ETKİSİNİN İNCELENMESİ”. Eskişehir Osmangazi Üniversitesi Mühendislik ve Mimarlık Fakültesi Dergisi 32/3 (December 2024), 1500-1508. https://doi.org/10.31796/ogummf.1510630.
JAMA Güler E. DEPREM İVME KAYITLARININ ÖLÇEKLENDİRME YÖNTEMLERİNİN ZEMİN SIVILAŞMA POTANSİYELİNE ETKİSİNİN İNCELENMESİ. ESOGÜ Müh Mim Fak Derg. 2024;32:1500–1508.
MLA Güler, Ersin. “DEPREM İVME KAYITLARININ ÖLÇEKLENDİRME YÖNTEMLERİNİN ZEMİN SIVILAŞMA POTANSİYELİNE ETKİSİNİN İNCELENMESİ”. Eskişehir Osmangazi Üniversitesi Mühendislik Ve Mimarlık Fakültesi Dergisi, vol. 32, no. 3, 2024, pp. 1500-8, doi:10.31796/ogummf.1510630.
Vancouver Güler E. DEPREM İVME KAYITLARININ ÖLÇEKLENDİRME YÖNTEMLERİNİN ZEMİN SIVILAŞMA POTANSİYELİNE ETKİSİNİN İNCELENMESİ. ESOGÜ Müh Mim Fak Derg. 2024;32(3):1500-8.

20873  13565  13566 15461  13568    14913