Research Article
BibTex RIS Cite

EVALUATION OF THIRD PARTY LOGISTICS (3PL) PROVIDERS FROM A SUSTAINABILITY PERSPECTIVE: AN INTEGRATED APPROACH BASED ON FUCOM

Year 2025, Volume: 18 Issue: 1, 1 - 31, 30.01.2025

Abstract

In the traditional approach, 3PL selection has been based solely on cost for many years. However, businesses have realized that more than cost is required as a single criterion in supplier selection. They have included sustainability-oriented criteria in their evaluation processes in parallel with increasing environmental concerns. The present study aims to comprehensively evaluate 3PL providers on traditional criteria and sustainability by integrating FUCOM-based TOPSIS, SAW, and MABAC techniques. A total of 7 criteria were used in the research: 2 from the Economic dimension, three from the Environmental dimension, and 2 from the Social dimension. The opinions of five experts were analyzed by the FUCOM method, and the results revealed that the most important criterion was "cost" and the least essential criterion was "Occupational safety and health". According to the results of TOPSIS, SAW, and MABAC techniques, the most appropriate alternative is A3, while the last is A4. In order to test the consistency of the results, a two-stage sensitivity analysis was performed. In the first stage, the criteria are weighted according to SWARA and BWM techniques. In contrast, in the second stage, Copeland and Borda count techniques integrate TOPSIS, SAW, and MABAC methods' ranking results and obtain a final ranking. The evaluation model's reliability of the results tested by sensitivity analysis provides a decision support system for more effective and efficient 3PL selection for businesses.

References

  • Akpınar, M. E. (2021). Third-Party Logistics (3PL) Provider Selection Using Hybrid Model of SWARA and WASPAS. International Journal of Pure and Applied Sciences, 7(3), 371–382. https://doi.org/10.29132/ijpas.972885
  • Ambika, P., Ayshwarya, B., Nguyen, P. T., Hashim, W., Rinjani, F., Muslihudin, M., ... & Maseleno, A. (2019). The best of village head performance: Simple additive weighting method. International Journal of Recent Technology and Engineering, 8(2), 1568-1572.
  • Arslantaş, O., Gümüş, M., & Özder, E. H. (2023). Scholarship recipient selection for higher education with AHP, SAW and TOPSIS. Journal of Turkish Operations Management, 7(2), 1685-1700. https://doi.org/10.56554/jtom.1140823
  • Asadabadi, M. R., Ahmadi, H. B., Gupta, H., & Liou, J. J. H. (2023). Supplier selection to support environmental sustainability: the stratified BWM TOPSIS method. Annals of Operations Research, 322(1), 321–344. https://doi.org/10.1007/s10479-022-04878-y
  • Ayçin, E. (2018). Üçüncü parti lojistik hizmet sağlayıcı seçim kriterlerinin gri dematel bütünleşik yaklaşımıyla belirlenmesi. Alphanumeric Journal, 6(2), 277-292. https://doi.org/10.17093/alphanumeric.418829
  • Ayçin, E., & Aşan, H. (2021). İş zekası uygulamaları seçimindeki kriterlerin önem ağırlıklarının FUCOM yöntemi ile belirlenmesi. Afyon Kocatepe Üniversitesi İktisadi ve İdari Bilimler Fakültesi Dergisi, 23(2), 195-208. https://doi.org/10.33707/akuiibfd.903563
  • Ayshwarya, B., Firdiansah, F. A., Alfian, F. Y., Nguyen, P. T., Hashim, W., Shankar, K., ... & Maseleno, A. (2019). The best land selection using simple additive weighting. International Journal of Recent Technology and Engineering, 8(2 Special Issue 3), 1520-1525.
  • Azadi, A., Jalali, A. S., & Navidi, M. N. (2023). Land evaluation approaches comparing TOPSIS and SAW with parametric methods for rice cultivation. Environmental Monitoring and Assessment, 195(11). https://doi.org/10.1007/s10661-023-11849-8
  • Badi, I., Muhammad, L. J., Abubakar, M., & Bakır, M. (2022). Measuring Sustainability Performance Indicators Using FUCOM-MARCOS Methods. Operational Research in Engineering Sciences: Theory and Applications, 5(2), 99–116. https://doi.org/10.31181/oresta040722060b
  • Bayazit, O. (2006). Use of analytic network process in vendor selection decisions. Benchmarking, 13(5), 566– 579. https://doi.org/10.1108/14635770610690410
  • Bulak, M. E., Kozanoğlu, O., Aydoğduoğlu, Ş. N., Göçer, F., & Algül, R. (2021). E-Ticaret Sitelerinin Kullanılabilirliğinin AHP ve TOPSİS Yöntemleriyle Karşılaştırılması. European Journal of Science and Technology. https://doi.org/10.31590/ejosat.963658
  • Bulgurcu, B., & Nakiboglu, G. (2018). An extent analysis of 3PL provider selection criteria: A case on Turkey cement sector. Cogent Business and Management, 5(1). https://doi.org/10.1080/23311975.2018.1469183
  • Cahyapratama, A., & Sarno, R. (2018). Application of Analytic Hierarchy Process (AHP) and Simple Additive Weighting (SAW) methods in singer selection process. In 2018 International Conference on Information and Communications Technology (ICOIACT), 234-239.
  • Chakraborty, S., Raut, R. D., Rofin, T. M., Chatterjee, S., & Chakraborty, S. (2023). A comparative analysis of Multi-Attributive Border Approximation Area Comparison (MABAC) model for healthcare supplier selection in fuzzy environments. Decision Analytics Journal, 8, 100290. https://doi.org/10.1016/j.dajour.2023.100290
  • Chakraborty, S., Sarkar, B., & Chakraborty, S. (2023). A FUCOM-MABAC-based integrated approach for performance evaluation of the Indian National Parks. OPSEARCH, 60(1), 125–154. https://doi.org/10.1007/s12597-022-00611-2
  • Chan, F. T. S., Chan, H. K., Ip, R. W. L., & Lau, H. C. W. (2007). A decision support system for supplier selection in the airline industry. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 221(4), 741–758. https://doi.org/10.1243/09544054JEM629
  • Chen, Z. H., Wu, D. F., Luo, W., & Cheng, X. J. (2024). A hybrid heterogeneous framework for medical waste disposal evaluation by fusing group BWM and regret-rejoice MABAC. Expert Systems with Applications, 249, 123514. https://doi.org/10.1016/j.eswa.2024.123514
  • Chou, S. Y., Chang, Y. H., & Shen, C. Y. (2008). A fuzzy simple additive weighting system under group decision-making for facility location selection with objective/subjective attributes. European Journal of Operational Research, 189(1), 132-145. https://doi.org/10.1016/j.ejor.2007.05.006
  • Çakır, E., Tozan, H., & Vayvay, Ö. (2009). A Method For Selecting Third Party Logistic Service Provider Using Fuzzy AHP. Journal of Naval Sciences and Engineering, 5(3), 38-54.
  • Dai, X., Li, H., Zhou, L., & Wu, Q. (2024). The SMAA-MABAC approach for healthcare supplier selection in belief distribution environment with uncertainties. Engineering Applications of Artificial Intelligence, 129, 107654. https://doi.org/10.1016/j.engappai.2023.107654
  • Daim, T. U., Udbye, A., & Balasubramanian, A. (2013). Use of analytic hierarchy process (AHP) for selection of 3PL providers. Journal of Manufacturing Technology Management, 24(1), 28–51. https://doi.org/10.1108/17410381311287472
  • Dang, P. F., Sun, L. F., Yang, Z. X., Gong, B., Zhu, J., & Yuan, S. (2024). A comprehensive risk assessment method of hydrogenation units integrating DEMATEL-TOPSIS-CM. International Journal of Hydrogen Energy, 79, 411-422. https://doi.org/10.1016/j.ijhydene.2024.01.094
  • Demirtaş, M. C. (2022). Üniversite Rektörlerinin Sosyal Medya Kullanimlarinin Mabac Yöntemi İle Değerlendirilmesi. Öneri Dergisi, 17(57), 102-147. https://doi.org/10.14783/maruoneri.941348
  • Do, Q. H., Tran, V. T., & Tran, T. T. (2024). Evaluating Lecturer Performance in Vietnam: An Application of Fuzzy AHP and Fuzzy TOPSIS Methods. Heliyon, 10. https://doi.org/10.1016/j.heliyon.2024.e30772
  • Ecer, F. (2018). Third-party logistics (3PLs) provider selection via fuzzy AHP and EDAS integrated model. Technological and Economic Development of Economy, 24(2), 615–634. https://doi.org/10.3846/20294913.2016.1213207
  • Ecer, F. (2021). FUCOM sübjektif ağırlıklandırma yöntemi ile rüzgâr çiftliği yer seçimini etkileyen faktörlerin analizi. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 27(1), 24-34. https://doi.org/10.5505/pajes.2020.93271
  • Ecer, F. (2021). Sürdürülebilir Tedarikçi Seçimi: FUCOM Sübjektif Ağırlıklandırma Yöntemi Temelli MAIRCA Yaklaşımı. Journal of Mehmet Akif Ersoy University Economics and Administrative Sciences Faculty, 8(1), 26-48. https://doi.org/10.30798/makuiibf.691693
  • Ecer, F. (2021). A consolidated MCDM framework for performance assessment of battery electric vehicles based on ranking strategies. Renewable and Sustainable Energy Reviews, 143, 110916. https://doi.org/10.1016/j.rser.2021.110916
  • Ekin, E., & Dolanbay, G. (2024). AHP Temelli TOPSIS Yöntemi ile Yer Seçim Problemine İlişkin Bir Uygulama. İstanbul Gelişim Üniversitesi Sosyal Bilimler Dergisi, 11(1), 301-317. https://doi.org/10.17336/igusbd.1209399
  • Eren, T., & Gür, S. (2017). Online alışveriş siteleri için AHP ve TOPSIS yöntemleri ile 3PL firma seçimi. Hitit Üniversitesi Sosyal Bilimler Enstitüsü Dergisi, 10(2), 819-834. https://doi.org/10.17218/hititsosbil.285102
  • Erginel, N., Şentürk, S., & Binici, Y. (2014). The use of ANP method based on BOCR criteria for 3PL provider selection. Anadolu University Journal of Science and Technology B-Theoretical Sciences, 3(1), 33- 44. https://doi.org/10.20290/btdb.61937
  • Fan, J., Lei, T., & Wu, M. (2024). MEREC-MABAC method based on cumulative prospect theory for picture fuzzy sets: Applications to wearable health technology devices. Expert Systems with Applications, 124749. https://doi.org/10.1016/j.eswa.2024.124749
  • Forson, E. D., Kwayisi, D., Kazapoe, R. W., Ntori, C., Adjei, S. K., Mahamuda, A., ... & Amedzro, K. Y. (2024). Application of a hybrid BWM-TOPSIS approach for mineral potential mapping. Heliyon, 10(11). https://doi.org/10.1016/j.heliyon.2024.e31743
  • Gardas, B. B., D. Raut, R., & Narkhede, B. E. (2019). Analysing the 3PL service provider’s evaluation criteria through a sustainable approach. International Journal of Productivity and Performance Management, 68(5), 958–980. https://doi.org/10.1108/IJPPM-04-2018-0154
  • Genç, V., Özdağoğlu, A., & Keleş, M. K. (2022). Otomobil motor yağı alternatiflerinin FUCOM, MAIRCA, MABAC ve BWM yöntemleri ile değerlendirilmesi. Journal of Transportation and Logistics, 7(1), 55-82. https://doi.org/10.26650/JTL.2022.1020313
  • Göl, H., & Catay, B. (2007). Third-party logistics provider selection: Insights from a Turkish automotive company. Supply Chain Management: An International Journal, 12(6), 379–384. https://doi.org/10.1108/13598540710826290
  • Gölcük, İ., Durmaz, E. D., & Şahin, R. (2023). Bulanık FUCOM ve bulanık çizge teorisi-matris yaklaşımı ile iş güvenliği risklerinin önceliklendirilmesi. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 38(1), 57-70. https://doi.org/10.17341/gazimmfd.970514
  • Güngör, H. Y. (2024). Analysis of Financial Performance of Public Sports Clubs in Türkiye via CRITIC-Based SAW Method. MANAS Sosyal Araştırmalar Dergisi, 13(2), 499-509. https://doi.org/10.33206/mjss.1366043
  • Hidayad, M. K., & Utama, D. N. (2022). Third-Party Logistic Selection for Logistic Aggregator Company using Multi-Criteria Decision Making. Journal of Computer Science, 18(9), 811–820. https://doi.org/10.3844/jcssp.2022.811.820
  • Hwang, C. L., & Yoon, K. P. (1981). TOPSIS (Technique for Order Preference by Similarity to Ideal Solution)– A Multiple Attribute Decision Making: Multiple Attribute Decision Making–Methods and Applications, a State-Of-The-At Survey. Springer Publications.
  • Jayant, A., Singh, P., & Gandhi, I. (2015). Article: Application of AHP-VIKOR Hybrid MCDM Approach for 3pl Selection: A Case Study. In Article in International Journal of Computer Applications. IJCA. https://www.researchgate.net/publication/283149392
  • Jharkharia, S., & Shankar, R. (2007). Selection of logistics service provider: An analytic network process (ANP) approach. Omega, 35(3), 274–289. https://doi.org/10.1016/j.omega.2005.06.005
  • Jovčić, S., & Průša, P. (2021). A hybrid mcdm approach in third-party logistics (3pl) provider selection. Mathematics, 9(21). https://doi.org/10.3390/math9212729
  • Kannan, D., Garg, K., Jha, P. C., & Diabat, A. (2017). Integrating disassembly line balancing in the planning of a reverse logistics network from the perspective of a third party provider. Annals of Operations Research, 253(1), 353–376. https://doi.org/10.1007/s10479-016-2272-7
  • Keleş, M. K. (2022). CRITIC temelli MABAC yöntemi ile Türk Hava Yollarının yıllara göre performansının değerlendirilmesi. Mehmet Akif Ersoy Üniversitesi Uygulamalı Bilimler Dergisi, 6(1), 53-67. https://doi.org/10.31200/makuubd.1070559
  • Keleş, S., & Demiral, Ö. (2023). Üçüncü Parti Lojistik Tedarikçisi Seçim Kriterlerinin Uzman Görüşlerine Göre Belirlenmesi. Artuklu Kaime Uluslararası İktisadi ve İdari Araştırmalar Dergisi, 6(1), 1-19. https://doi.org/10.55119/artuklu.1055488
  • Khan, H. U., Abbas, M., Alruwaili, O., Nazir, S., Siddiqi, M. H., & Alanazi, S. (2024). Selection of a smart and secure education school system based on the Internet of Things using Entropy and TOPSIS approaches. Computers in Human Behavior, 108346. https://doi.org/10.1016/j.chb.2024.108346
  • Komsiyah, S., Ayuliana., & Balqis, D. A. (2023). Analysis of decision support system for determining industrial sub-district using DEMATEL-MABAC methods. Procedia Computer Science, 216, 499-509. https://doi.org/10.1016/j.procs.2022.12.162
  • Korucuk, S. (2018). Soğuk zincir taşımacılığı yapan işletmelerde 3pl firma seçimi: İstanbul örneği. Iğdır Üniversitesi Sosyal Bilimler Dergisi, (16), 341-366.
  • Kucukaltan, B., Irani, Z., & Aktas, E. (2016). A decision support model for identification and prioritization of key performance indicators in the logistics industry. Computers in Human Behavior, 65, 346–358. https://doi.org/10.1016/j.chb.2016.08.045
  • Li, F., Li, L., Jin, C., Wang, R., Wang, H., & Yang, L. (2012). A 3PL supplier selection model based on fuzzy sets. Computers and Operations Research, 39(8), 1879–1884. https://doi.org/10.1016/j.cor.2011.06.022
  • Li, Y., Zhang, Y., Zhang, X., Zhao, J., Huang, Y., Wang, Z., & Yi, Y. (2024). Distribution of geothermal resources in Eryuan County based on entropy weight TOPSIS and AHP‒TOPSIS methods. Natural Gas Industry B, 11(2), 213-226. https://doi.org/10.1016/j.ngib.2024.03.002
  • Liu, A., Li, Z., Shang, W. L., & Ochieng, W. (2023). Performance evaluation model of transportation infrastructure: Perspective of COVID-19. Transportation Research Part A: Policy and Practice, 170. https://doi.org/10.1016/j.tra.2023.103605
  • Mandal, U., & Seikh, M. R. (2023). Interval-valued spherical fuzzy MABAC method based on Dombi aggregation operators with unknown attribute weights to select plastic waste management process. Applied Soft Computing, 145, 110516. https://doi.org/10.1016/j.asoc.2023.110516
  • Mavi, R. K., Goh, M., & Zarbakhshnia, N. (2017). Sustainable third-party reverse logistic provider selection with fuzzy SWARA and fuzzy MOORA in plastic industry. International Journal of Advanced Manufacturing Technology, 91(5–8), 2401–2418. https://doi.org/10.1007/s00170-016-9880-x
  • Mercan, T., & Can, A. (2023). İşgören Seçiminde Etkili Olan Faktörlerin FUCOM Yöntemi ile Değerlendirilmesi: Bir Havayolu İşletmesinde Uygulama. Süleyman Demirel Üniversitesi Vizyoner Dergisi, 14(40), 1311-1329. https://doi.org/10.21076/vizyoner.1271318
  • Nguyen, T. M. H., & Ménoury, M. (2022). Selection of 3PL providers for overseas market expansion: insights from a Vietnamese company. Journal of Supply Chain Management Science. https://doi.org/10.18757/jscms.2022.6846
  • Nila, B., & Roy, J. (2023). A new hybrid MCDM framework for third-party logistics provider selection under sustainability perspectives. Expert Systems with Applications, 234. https://doi.org/10.1016/j.eswa.2023.121009
  • Ozcalici, M. (2022). Asset allocation with multi-criteria decision making techniques. Decision Making: Applications in Management and Engineering, 5(2), 78-119. https://doi.org/10.31181/dmame0305102022o
  • Özbek, H. E., & Oğuz, S. (2024). Yeniden Kullanılabilir Maskeler için Çevre Dostu Tedarikçi Seçimi: Entropi Tabanlı TOPSIS Yöntemi ile Bir Uygulama. Alanya Akademik Bakış, 8(2), 563-575. https://doi.org/10.29023/alanyaakademik.1406618
  • Özdağoğlu, A., Keleş, M. K., & Genç, V. (2021). FUCOM ve PROMETHEE yöntemleri ile ticari araç seçimi: peyzaj firmasında bir uygulama. Atatürk Üniversitesi Sosyal Bilimler Enstitüsü Dergisi, 25(Özel Sayı), 231-253. https://doi.org/10.53487/ataunisosbil.825910
  • Özdağoğlu, A., Keleş, M. K., & Işıldak, B. (2021). Havalimanlarının Bulanık DEMATEL ve MABAC yöntemleri ile sıralanması. Ömer Halisdemir Üniversitesi İktisadi ve İdari Bilimler Fakültesi Dergisi, 14(1), 46-67. https://doi.org/10.25287/ohuiibf.697259
  • Öztürkçü, N., & Özcan, S. (2024). Bütünleşik ANP, MARCOS, WASPAS ve MAIRCA Yöntemleri Kullanılarak Proje Lojistiği Operasyonlarında Üçüncü Parti Lojistik Hizmet Sağlayıcı Seçimi. Dicle Üniversitesi İktisadi ve İdari Bilimler Fakültesi Dergisi, 14(27), 98-125. https://doi.org/10.53092/duiibfd.1308549
  • Özüdoğru, H., & Uzun, H. (2024). Sigortacılık Sektöründe Hizmet Kalitesinin Değerlendirilmesi: AHS ve TOPSIS Yöntemi. İşletme Araştırmaları Dergisi, 16(2), 1200-1225. https://doi.org/10.20491/isarder.2024.1851
  • Pala, O. (2023). MEREC-CORR ve SAW temelli lojistik performans değerlendirme. Dicle Üniversitesi İktisadi ve İdari Bilimler Fakültesi Dergisi, 13(25), 117-135. https://doi.org/10.53092/duiibfd.1130928
  • Pamucar, D., Chatterjee, K., & Zavadskas, E. K. (2019). Assessment of third-party logistics provider using multi-criteria decision-making approach based on interval rough numbers. Computers and Industrial Engineering, 127, 383–407. https://doi.org/10.1016/j.cie.2018.10.023
  • Pamučar, D., & Ćirović, G. (2015). The selection of transport and handling resources in logistics centers using Multi-Attributive Border Approximation area Comparison (MABAC). Expert Systems with Applications, 42(6), 3016–3028. https://doi.org/10.1016/j.eswa.2014.11.057
  • Pamucar, D., Macura, D., Tavana, M., Božanić, D., & Knežević, N. (2022). An integrated rough group multicriteria decision-making model for the ex-ante prioritization of infrastructure projects: Serbian Railways case. Socio-Economic Planning Sciences, 79. https://doi.org/10.1016/j.seps.2021.101098
  • Pamučar, D., Stević, Ž., & Sremac, S. (2018). A new model for determining weight coefficients of criteria in MCDM models: Full Consistency Method (FUCOM). Symmetry, 10(9). https://doi.org/10.3390/sym10090393
  • Patel, H., & Chang, C. T. (2024). Beyond throughput: Evaluating maritime port competitiveness using MABAC and Bayesian methods. Computers & Industrial Engineering, 110248. https://doi.org/10.1016/j.cie.2024.110248
  • Peker, B. N., & Görener, A. (2022). Tesis Yeri Seçiminde Kriterlerin Önem Ağırlıklarının Bulanık FUCOM Yöntemiyle Belirlenmesi. İstanbul Ticaret Üniversitesi Sosyal Bilimler Dergisi, 21(45), 1512-1536. https://doi.org/10.46928/iticusbe.1212318
  • Perçin, S. (2009). Evaluation of third-party logistics (3PL) providers by using a two-phase AHP and TOPSIS methodology. Benchmarking, 16(5), 588–604. https://doi.org/10.1108/14635770910987823
  • Prakash, C., & Barua, M. K. (2016). A combined MCDM approach for evaluation and selection of third-party reverse logistics partner for Indian electronics industry. Sustainable Production and Consumption, 7, 66–78. https://doi.org/10.1016/j.spc.2016.04.001
  • Raj, D., Maity, S. R., & Das, B. (2023). Optimization of Process Parameters of Laser Cladding on AISI 410 Using MEREC Integrated MABAC Method. Arabian Journal for Science and Engineering. https://doi.org/10.1007/s13369-023-08487-0
  • Rane, N. L., Achari, A., Choudhary, S. P., Mallick, S. K., Pande, C. B., Srivastava, A., & Moharir, K. N. (2023). A decision framework for potential dam site selection using GIS, MIF and TOPSIS in Ulhas river basin, India. Journal of Cleaner Production, 423. https://doi.org/10.1016/j.jclepro.2023.138890
  • Raut, R., Kharat, M., Kamble, S., & Kumar, C. S. (2018). Sustainable evaluation and selection of potential third-party logistics (3PL) providers: An integrated MCDM approach. Benchmarking, 25(1), 76–97. https://doi.org/10.1108/BIJ-05-2016-0065
  • Rony, M. A., Aslamiyah, S., & Anggraeni, M. D. (2023). Implementation of analytical hierarchy process and simple additive weighting for major selection. Jurnal Mantik, 7(1), 39-49.
  • Roy, J., Pamučar, D., & Kar, S. (2020). Evaluation and selection of third party logistics provider under sustainability perspectives: an interval valued fuzzy-rough approach. Annals of Operations Research, 293(2), 669–714. https://doi.org/10.1007/s10479-019-03501-x
  • Sabry, I., Hewidy, A. M., Naseri, M., & Mourad, A. H. I. (2024). Optimization of Process Parameters of Metal Inert Gas Welding Process on Aluminum Alloy 6063 Pipes Using Taguchi-TOPSIS Approach. Journal of Alloys and Metallurgical Systems, 100085.
  • Sahir, S. H., Rosmawati, R., & Minan, K. (2017). Simple additive weighting method to determining employee salary increase rate. International Journal of Scientific Research in Science and Technology, 3(8), 42- 48.
  • Sahoo, D., Parida, P. K., & Pati, B. (2024). Efficient fuzzy multi-criteria decision-making for optimal college location selection: A comparative study of min–max fuzzy TOPSIS approach. Results in Control and Optimization, 15, 100422. https://doi.org/10.1016/j.rico.2024.100422
  • Sarkis, J., & Talluri, S. (2002). A Model for Strategic Supplier Selection. Journal of Supply Chain Management, 38(4), 18–28. https://doi.org/10.1111/j.1745-493X.2002.tb00117.x
  • Sasananan, M., Narkhede, B. E., Gardas, B. B., & Raut, R. D. (2016). Selection of Third Party Logistics Service Provider Using a Multi-Criteria Decision Making Approach for Indian Cement Manufacturing Industries. Thammasat International Journal of Science and Technology, 21(3). https://doi.org/10.14456/tijsat.2016.23
  • Savun-hekimoğlu, B., Erbay, B., Burak, Z. S., & Gazioğlu, C. (2021). A comparative MCDM analysis of potential short-term measures for dealing with mucilage problem in the Sea of Marmara. International Journal of Environment and Geoinformatics, 8(4), 572-580. https://doi.org/10.30897/ijegeo.1026107
  • Sen, D. K., Datta, S., & Mahapatra, S. S. (2017). Decision Support Framework for Selection of 3PL Service Providers: Dominance-Based Approach in Combination with Grey Set Theory. International Journal of Information Technology and Decision Making, 16(1), 25–57. https://doi.org/10.1142/S0219622016500474
  • Setyani, R. E., & Saputra, R. (2016). Flood-prone areas mapping at Semarang City by using simple additive weighting method. Procedia-Social and Behavioral Sciences, 227, 378-386.
  • Seyedmohammadi, J., Sarmadian, F., Jafarzadeh, A. A., Ghorbani, M. A., & Shahbazi, F. (2018). Application of SAW, TOPSIS and fuzzy TOPSIS models in cultivation priority planning for maize, rapeseed and soybean crops. Geoderma, 310, 178–190. https://doi.org/10.1016/j.geoderma.2017.09.012
  • Shakouri, H., Nabaee, M., & Aliakbarisani, S. (2014). A quantitative discussion on the assessment of power supply technologies: DEA (data envelopment analysis) and SAW (simple additive weighting) as complementary methods for the “Grammar”. Energy, 64, 640-647. http://dx.doi.org/10.1016/j.energy.2013.10.022
  • Singh, R. K., Gunasekaran, A., & Kumar, P. (2018). Third party logistics (3PL) selection for cold chain management: a fuzzy AHP and fuzzy TOPSIS approach. Annals of Operations Research, 267(1–2), 531–553. https://doi.org/10.1007/s10479-017-2591-3
  • Situmeang, I. J. T., Hummairoh, S., Harahap, S. M., & Mesran, M. (2021). Application of SAW (simple additive weighting) for the selection of campus ambassadors. International Journal of Informatics and Computer Science, 5(1), 21-28. http://dx.doi.org/10.30865/ijics.v5i1.2847
  • Soba, M., & Şimşek, A. (2019). Bulanık TOPSIS Yöntemiyle Üçüncü Parti Lojistik (3pl) Hizmeti Veren Bir Firmanın Seçimi. International Journal of Social and Humanities Sciences Research (JSHSR), 6(33), 380-399. https://doi.org/10.26450/jshsr.1051
  • Sonar, H. C., & Kulkarni, S. D. (2021). An integrated AHP-MABAC approach for electric vehicle selection. Research in Transportation Business & Management, 41, 100665. https://doi.org/10.1016/j.rtbm.2021.100665
  • Sremac, S., Stević, Ž., Pamučar, D., Arsić, M., & Matić, B. (2018). Evaluation of a third-party logistics (3PL) provider using a rough SWARA-WASPAS model based on a new rough dombi aggregator. Symmetry, 10(8). https://doi.org/10.3390/sym10080305
  • Sun, H., Yu, Q., Wang, X., Zhang, X., & Ruan, X. (2024). Exploring sustainable watershed flood risks management: an innovative TFAHP-TOPSIS methodology in the Georges River Basin, Australia. International Journal of Disaster Risk Reduction, 104626. https://doi.org/10.1016/j.ijdrr.2024.104626
  • Tuljak-Suban, D., & Bajec, P. (2020). Integration of AHP and GTMA to make a reliable decision in complex decision-making problems: Application of the logistics provider selection problem as a case study. Symmetry, 12(5). https://doi.org/10.3390/SYM12050766
  • Ulutaş, A. (2019). Entropi ve MABAC yöntemleri ile personel seçimi. OPUS International Journal of Society Researches, 13(19), 1552-1573. https://doi.org/10.26466/opus.580456
  • Ulutaş, A. (2019). SWARA ve MAIRCA Yöntemleri İle Catering Firması Seçimi. Business & Management Studies: An International Journal, 7(4), 1467–1479. https://doi.org/10.15295/bmij.v7i4.1166
  • Ulutaş, A., Topal, A., Görçün, Ö. F., & Ecer, F. (2024). Evaluation of third-party logistics service providers for car manufacturing firms using a novel integrated grey LOPCOW-PSI-MACONT model. Expert Systems with Applications, 241. https://doi.org/10.1016/j.eswa.2023.122680
  • Wang, C. N., Nguyen, N. A. T., & Dang, T. T. (2023). Sustainable Evaluation of Major Third-Party Logistics Providers: A Framework of an MCDM-Based Entropy Objective Weighting Method. Mathematics, 11(19). https://doi.org/10.3390/math11194203
  • Waziana, W., Irviani, R., Oktaviani, I., Satria, F., Kurniawan, D., & Maseleno, A. (2018). Fuzzy Simple Additive Weighting for Determination of Recipients Breeding Farm Program. International Journal of Pure and Applied Mathematics, 118(7), 93-100.
  • Yadav, S., Garg, D., & Luthra, S. (2020). Selection of third-party logistics services for internet of things-based agriculture supply chain management Selection of third-party logistics services for internet of thingsbased 205. In Int. J. Logistics Systems and Management (Vol. 35, Issue 2).
  • Yagmahan, B., & Yılmaz, H. (2023). An integrated ranking approach based on group multi-criteria decision making and sensitivity analysis to evaluate charging stations under sustainability. Environment, Development and Sustainability, 25(1), 96-121. https://doi.org/10.1007/s10668-021-02044-1
  • Yayla, A. Y., Oztekin, A., Gumus, A. T., & Gunasekaran, A. (2015). A hybrid data analytic methodology for 3PL transportation provider evaluation using fuzzy multi-criteria decision making. International Journal of Production Research, 53(20), 6097–6113. https://doi.org/10.1080/00207543.2015.1022266
  • Yazdani, M., Zarate, P., Coulibaly, A., & Zavadskas, E. K. (2017). A group decision making support system in logistics and supply chain management. Expert Systems with Applications, 88, 376–392. https://doi.org/10.1016/j.eswa.2017.07.014
  • Yürüyen, A. A., & Ulutaş, A. (2020). Bulanık AHP ve bulanık EDAS yöntemleri ile üçüncü parti lojistik firması seçimi. Anemon Muş Alparslan Üniversitesi Sosyal Bilimler Dergisi, 8(İktisadi ve İdari Bilimler), 283-294. https://doi.org/10.18506/anemon.767354
  • Zeydan, M., Çolpan, C., & Çobanoģlu, C. (2011). A combined methodology for supplier selection and performance evaluation. Expert Systems with Applications, 38(3), 2741–2751. https://doi.org/10.1016/j.eswa.2010.08.064
  • Zhang, J., Zhang, S., Qiao, J., Wei, J., Wang, L., Li, Z., & Zhuo, J. (2024). Safety resilience evaluation of hydrogen refueling stations based on improved TOPSIS approach. International Journal of Hydrogen Energy, 66, 396-405. https://doi.org/10.1016/j.ijhydene.2024.04.129
  • Zhu, X., Ran, Y., Zhang, G., Chen, J., & Heli, L. (2023). Identification of maintenance significant items for machine tools by integrating DEMATEL and MABAC with spherical fuzzy sets. Engineering Applications of Artificial Intelligence, 126, 107155. https://doi.org/10.1016/j.engappai.2023.107155
  • Zolfani, S. H., & Chatterjee, P. (2019). Comparative evaluation of sustainable design based on Step-Wise Weight Assessment Ratio Analysis (SWARA) and Best Worst Method (BWM) methods: a perspective on household furnishing materials. Symmetry, 11(1), 74. https://doi.org/10.3390/sym11010074

ÜÇÜNCÜ TARAF LOJİSTİK (3PL) SAĞLAYICILARININ SÜRDÜRÜLEBİLİRLİK PERSPEKTİFİNDEN DEĞERLENDİRİLMESİ: FUCOM TEMELLİ ENTEGRE BİR YAKLAŞIM

Year 2025, Volume: 18 Issue: 1, 1 - 31, 30.01.2025

Abstract

Geleneksel yaklaşımda 3PL seçimi, uzun yıllar boyunca sadece maliyet temelli olmuştur. Ancak işletmeler, tedarikçi seçiminde tek bir kriter olarak maliyetin yeterli olmadığının farkına varmış ve artan çevresel kaygılara paralel olarak sürdürülebilirlik odaklı kriterleri de değerlendirme süreçlerine dahil etmişlerdir. Bu bağlamda mevcut çalışma, FUCOM temelli TOPSIS, SAW ve MABAC tekniklerinin entegrasyonu ile 3PL sağlayıcıların yalnızca geleneksel kriterler değil aynı zamanda sürdürülebilirlik odağında kapsamlı bir şekilde değerlendirilmesini amaçlamaktadır. Araştırmada, Ekonomik boyuttan 2, Çevresel boyuttan 3 ve Sosyal boyuttan 2 olmak üzere toplam 7 kriter kullanılmıştır. Beş uzmandan alınan görüşler, FUCOM yöntemi ile analiz edilmiş ve sonuçlar, en önemli kriterin “maliyet”, en az önemli kriterin ise “İş güvenliği ve işçi sağlığı” olduğunu ortaya koymuştur. TOPSIS, SAW ve MABAC tekniklerinin sonuçlarına göre, en uygun alternatif A3 iken en son seçenek A4‘tür. Sonuçların tutarlılığını test etmek amacıyla iki aşamalı duyarlılık analizi gerçekleştirilmiştir. Birinci aşamada kriterler, SWARA ve BWM tekniklerine göre ağırlıklandırılırken ikinci aşamada TOPSIS, SAW ve MABAC yöntemlerinin sıralama sonuçlarını entegre etmek ve nihai bir sıralama elde etmek amacıyla Copeland ve Borda sayımı teknikleri kullanılmıştır. Duyarlılık analiziyle sonuçlarının güvenilirliği test edilen değerlendirme modeli, işletmeler için daha etkin ve verimli 3PL seçimine yönelik bir karar destek sistemi sunmaktadır.

References

  • Akpınar, M. E. (2021). Third-Party Logistics (3PL) Provider Selection Using Hybrid Model of SWARA and WASPAS. International Journal of Pure and Applied Sciences, 7(3), 371–382. https://doi.org/10.29132/ijpas.972885
  • Ambika, P., Ayshwarya, B., Nguyen, P. T., Hashim, W., Rinjani, F., Muslihudin, M., ... & Maseleno, A. (2019). The best of village head performance: Simple additive weighting method. International Journal of Recent Technology and Engineering, 8(2), 1568-1572.
  • Arslantaş, O., Gümüş, M., & Özder, E. H. (2023). Scholarship recipient selection for higher education with AHP, SAW and TOPSIS. Journal of Turkish Operations Management, 7(2), 1685-1700. https://doi.org/10.56554/jtom.1140823
  • Asadabadi, M. R., Ahmadi, H. B., Gupta, H., & Liou, J. J. H. (2023). Supplier selection to support environmental sustainability: the stratified BWM TOPSIS method. Annals of Operations Research, 322(1), 321–344. https://doi.org/10.1007/s10479-022-04878-y
  • Ayçin, E. (2018). Üçüncü parti lojistik hizmet sağlayıcı seçim kriterlerinin gri dematel bütünleşik yaklaşımıyla belirlenmesi. Alphanumeric Journal, 6(2), 277-292. https://doi.org/10.17093/alphanumeric.418829
  • Ayçin, E., & Aşan, H. (2021). İş zekası uygulamaları seçimindeki kriterlerin önem ağırlıklarının FUCOM yöntemi ile belirlenmesi. Afyon Kocatepe Üniversitesi İktisadi ve İdari Bilimler Fakültesi Dergisi, 23(2), 195-208. https://doi.org/10.33707/akuiibfd.903563
  • Ayshwarya, B., Firdiansah, F. A., Alfian, F. Y., Nguyen, P. T., Hashim, W., Shankar, K., ... & Maseleno, A. (2019). The best land selection using simple additive weighting. International Journal of Recent Technology and Engineering, 8(2 Special Issue 3), 1520-1525.
  • Azadi, A., Jalali, A. S., & Navidi, M. N. (2023). Land evaluation approaches comparing TOPSIS and SAW with parametric methods for rice cultivation. Environmental Monitoring and Assessment, 195(11). https://doi.org/10.1007/s10661-023-11849-8
  • Badi, I., Muhammad, L. J., Abubakar, M., & Bakır, M. (2022). Measuring Sustainability Performance Indicators Using FUCOM-MARCOS Methods. Operational Research in Engineering Sciences: Theory and Applications, 5(2), 99–116. https://doi.org/10.31181/oresta040722060b
  • Bayazit, O. (2006). Use of analytic network process in vendor selection decisions. Benchmarking, 13(5), 566– 579. https://doi.org/10.1108/14635770610690410
  • Bulak, M. E., Kozanoğlu, O., Aydoğduoğlu, Ş. N., Göçer, F., & Algül, R. (2021). E-Ticaret Sitelerinin Kullanılabilirliğinin AHP ve TOPSİS Yöntemleriyle Karşılaştırılması. European Journal of Science and Technology. https://doi.org/10.31590/ejosat.963658
  • Bulgurcu, B., & Nakiboglu, G. (2018). An extent analysis of 3PL provider selection criteria: A case on Turkey cement sector. Cogent Business and Management, 5(1). https://doi.org/10.1080/23311975.2018.1469183
  • Cahyapratama, A., & Sarno, R. (2018). Application of Analytic Hierarchy Process (AHP) and Simple Additive Weighting (SAW) methods in singer selection process. In 2018 International Conference on Information and Communications Technology (ICOIACT), 234-239.
  • Chakraborty, S., Raut, R. D., Rofin, T. M., Chatterjee, S., & Chakraborty, S. (2023). A comparative analysis of Multi-Attributive Border Approximation Area Comparison (MABAC) model for healthcare supplier selection in fuzzy environments. Decision Analytics Journal, 8, 100290. https://doi.org/10.1016/j.dajour.2023.100290
  • Chakraborty, S., Sarkar, B., & Chakraborty, S. (2023). A FUCOM-MABAC-based integrated approach for performance evaluation of the Indian National Parks. OPSEARCH, 60(1), 125–154. https://doi.org/10.1007/s12597-022-00611-2
  • Chan, F. T. S., Chan, H. K., Ip, R. W. L., & Lau, H. C. W. (2007). A decision support system for supplier selection in the airline industry. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 221(4), 741–758. https://doi.org/10.1243/09544054JEM629
  • Chen, Z. H., Wu, D. F., Luo, W., & Cheng, X. J. (2024). A hybrid heterogeneous framework for medical waste disposal evaluation by fusing group BWM and regret-rejoice MABAC. Expert Systems with Applications, 249, 123514. https://doi.org/10.1016/j.eswa.2024.123514
  • Chou, S. Y., Chang, Y. H., & Shen, C. Y. (2008). A fuzzy simple additive weighting system under group decision-making for facility location selection with objective/subjective attributes. European Journal of Operational Research, 189(1), 132-145. https://doi.org/10.1016/j.ejor.2007.05.006
  • Çakır, E., Tozan, H., & Vayvay, Ö. (2009). A Method For Selecting Third Party Logistic Service Provider Using Fuzzy AHP. Journal of Naval Sciences and Engineering, 5(3), 38-54.
  • Dai, X., Li, H., Zhou, L., & Wu, Q. (2024). The SMAA-MABAC approach for healthcare supplier selection in belief distribution environment with uncertainties. Engineering Applications of Artificial Intelligence, 129, 107654. https://doi.org/10.1016/j.engappai.2023.107654
  • Daim, T. U., Udbye, A., & Balasubramanian, A. (2013). Use of analytic hierarchy process (AHP) for selection of 3PL providers. Journal of Manufacturing Technology Management, 24(1), 28–51. https://doi.org/10.1108/17410381311287472
  • Dang, P. F., Sun, L. F., Yang, Z. X., Gong, B., Zhu, J., & Yuan, S. (2024). A comprehensive risk assessment method of hydrogenation units integrating DEMATEL-TOPSIS-CM. International Journal of Hydrogen Energy, 79, 411-422. https://doi.org/10.1016/j.ijhydene.2024.01.094
  • Demirtaş, M. C. (2022). Üniversite Rektörlerinin Sosyal Medya Kullanimlarinin Mabac Yöntemi İle Değerlendirilmesi. Öneri Dergisi, 17(57), 102-147. https://doi.org/10.14783/maruoneri.941348
  • Do, Q. H., Tran, V. T., & Tran, T. T. (2024). Evaluating Lecturer Performance in Vietnam: An Application of Fuzzy AHP and Fuzzy TOPSIS Methods. Heliyon, 10. https://doi.org/10.1016/j.heliyon.2024.e30772
  • Ecer, F. (2018). Third-party logistics (3PLs) provider selection via fuzzy AHP and EDAS integrated model. Technological and Economic Development of Economy, 24(2), 615–634. https://doi.org/10.3846/20294913.2016.1213207
  • Ecer, F. (2021). FUCOM sübjektif ağırlıklandırma yöntemi ile rüzgâr çiftliği yer seçimini etkileyen faktörlerin analizi. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 27(1), 24-34. https://doi.org/10.5505/pajes.2020.93271
  • Ecer, F. (2021). Sürdürülebilir Tedarikçi Seçimi: FUCOM Sübjektif Ağırlıklandırma Yöntemi Temelli MAIRCA Yaklaşımı. Journal of Mehmet Akif Ersoy University Economics and Administrative Sciences Faculty, 8(1), 26-48. https://doi.org/10.30798/makuiibf.691693
  • Ecer, F. (2021). A consolidated MCDM framework for performance assessment of battery electric vehicles based on ranking strategies. Renewable and Sustainable Energy Reviews, 143, 110916. https://doi.org/10.1016/j.rser.2021.110916
  • Ekin, E., & Dolanbay, G. (2024). AHP Temelli TOPSIS Yöntemi ile Yer Seçim Problemine İlişkin Bir Uygulama. İstanbul Gelişim Üniversitesi Sosyal Bilimler Dergisi, 11(1), 301-317. https://doi.org/10.17336/igusbd.1209399
  • Eren, T., & Gür, S. (2017). Online alışveriş siteleri için AHP ve TOPSIS yöntemleri ile 3PL firma seçimi. Hitit Üniversitesi Sosyal Bilimler Enstitüsü Dergisi, 10(2), 819-834. https://doi.org/10.17218/hititsosbil.285102
  • Erginel, N., Şentürk, S., & Binici, Y. (2014). The use of ANP method based on BOCR criteria for 3PL provider selection. Anadolu University Journal of Science and Technology B-Theoretical Sciences, 3(1), 33- 44. https://doi.org/10.20290/btdb.61937
  • Fan, J., Lei, T., & Wu, M. (2024). MEREC-MABAC method based on cumulative prospect theory for picture fuzzy sets: Applications to wearable health technology devices. Expert Systems with Applications, 124749. https://doi.org/10.1016/j.eswa.2024.124749
  • Forson, E. D., Kwayisi, D., Kazapoe, R. W., Ntori, C., Adjei, S. K., Mahamuda, A., ... & Amedzro, K. Y. (2024). Application of a hybrid BWM-TOPSIS approach for mineral potential mapping. Heliyon, 10(11). https://doi.org/10.1016/j.heliyon.2024.e31743
  • Gardas, B. B., D. Raut, R., & Narkhede, B. E. (2019). Analysing the 3PL service provider’s evaluation criteria through a sustainable approach. International Journal of Productivity and Performance Management, 68(5), 958–980. https://doi.org/10.1108/IJPPM-04-2018-0154
  • Genç, V., Özdağoğlu, A., & Keleş, M. K. (2022). Otomobil motor yağı alternatiflerinin FUCOM, MAIRCA, MABAC ve BWM yöntemleri ile değerlendirilmesi. Journal of Transportation and Logistics, 7(1), 55-82. https://doi.org/10.26650/JTL.2022.1020313
  • Göl, H., & Catay, B. (2007). Third-party logistics provider selection: Insights from a Turkish automotive company. Supply Chain Management: An International Journal, 12(6), 379–384. https://doi.org/10.1108/13598540710826290
  • Gölcük, İ., Durmaz, E. D., & Şahin, R. (2023). Bulanık FUCOM ve bulanık çizge teorisi-matris yaklaşımı ile iş güvenliği risklerinin önceliklendirilmesi. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 38(1), 57-70. https://doi.org/10.17341/gazimmfd.970514
  • Güngör, H. Y. (2024). Analysis of Financial Performance of Public Sports Clubs in Türkiye via CRITIC-Based SAW Method. MANAS Sosyal Araştırmalar Dergisi, 13(2), 499-509. https://doi.org/10.33206/mjss.1366043
  • Hidayad, M. K., & Utama, D. N. (2022). Third-Party Logistic Selection for Logistic Aggregator Company using Multi-Criteria Decision Making. Journal of Computer Science, 18(9), 811–820. https://doi.org/10.3844/jcssp.2022.811.820
  • Hwang, C. L., & Yoon, K. P. (1981). TOPSIS (Technique for Order Preference by Similarity to Ideal Solution)– A Multiple Attribute Decision Making: Multiple Attribute Decision Making–Methods and Applications, a State-Of-The-At Survey. Springer Publications.
  • Jayant, A., Singh, P., & Gandhi, I. (2015). Article: Application of AHP-VIKOR Hybrid MCDM Approach for 3pl Selection: A Case Study. In Article in International Journal of Computer Applications. IJCA. https://www.researchgate.net/publication/283149392
  • Jharkharia, S., & Shankar, R. (2007). Selection of logistics service provider: An analytic network process (ANP) approach. Omega, 35(3), 274–289. https://doi.org/10.1016/j.omega.2005.06.005
  • Jovčić, S., & Průša, P. (2021). A hybrid mcdm approach in third-party logistics (3pl) provider selection. Mathematics, 9(21). https://doi.org/10.3390/math9212729
  • Kannan, D., Garg, K., Jha, P. C., & Diabat, A. (2017). Integrating disassembly line balancing in the planning of a reverse logistics network from the perspective of a third party provider. Annals of Operations Research, 253(1), 353–376. https://doi.org/10.1007/s10479-016-2272-7
  • Keleş, M. K. (2022). CRITIC temelli MABAC yöntemi ile Türk Hava Yollarının yıllara göre performansının değerlendirilmesi. Mehmet Akif Ersoy Üniversitesi Uygulamalı Bilimler Dergisi, 6(1), 53-67. https://doi.org/10.31200/makuubd.1070559
  • Keleş, S., & Demiral, Ö. (2023). Üçüncü Parti Lojistik Tedarikçisi Seçim Kriterlerinin Uzman Görüşlerine Göre Belirlenmesi. Artuklu Kaime Uluslararası İktisadi ve İdari Araştırmalar Dergisi, 6(1), 1-19. https://doi.org/10.55119/artuklu.1055488
  • Khan, H. U., Abbas, M., Alruwaili, O., Nazir, S., Siddiqi, M. H., & Alanazi, S. (2024). Selection of a smart and secure education school system based on the Internet of Things using Entropy and TOPSIS approaches. Computers in Human Behavior, 108346. https://doi.org/10.1016/j.chb.2024.108346
  • Komsiyah, S., Ayuliana., & Balqis, D. A. (2023). Analysis of decision support system for determining industrial sub-district using DEMATEL-MABAC methods. Procedia Computer Science, 216, 499-509. https://doi.org/10.1016/j.procs.2022.12.162
  • Korucuk, S. (2018). Soğuk zincir taşımacılığı yapan işletmelerde 3pl firma seçimi: İstanbul örneği. Iğdır Üniversitesi Sosyal Bilimler Dergisi, (16), 341-366.
  • Kucukaltan, B., Irani, Z., & Aktas, E. (2016). A decision support model for identification and prioritization of key performance indicators in the logistics industry. Computers in Human Behavior, 65, 346–358. https://doi.org/10.1016/j.chb.2016.08.045
  • Li, F., Li, L., Jin, C., Wang, R., Wang, H., & Yang, L. (2012). A 3PL supplier selection model based on fuzzy sets. Computers and Operations Research, 39(8), 1879–1884. https://doi.org/10.1016/j.cor.2011.06.022
  • Li, Y., Zhang, Y., Zhang, X., Zhao, J., Huang, Y., Wang, Z., & Yi, Y. (2024). Distribution of geothermal resources in Eryuan County based on entropy weight TOPSIS and AHP‒TOPSIS methods. Natural Gas Industry B, 11(2), 213-226. https://doi.org/10.1016/j.ngib.2024.03.002
  • Liu, A., Li, Z., Shang, W. L., & Ochieng, W. (2023). Performance evaluation model of transportation infrastructure: Perspective of COVID-19. Transportation Research Part A: Policy and Practice, 170. https://doi.org/10.1016/j.tra.2023.103605
  • Mandal, U., & Seikh, M. R. (2023). Interval-valued spherical fuzzy MABAC method based on Dombi aggregation operators with unknown attribute weights to select plastic waste management process. Applied Soft Computing, 145, 110516. https://doi.org/10.1016/j.asoc.2023.110516
  • Mavi, R. K., Goh, M., & Zarbakhshnia, N. (2017). Sustainable third-party reverse logistic provider selection with fuzzy SWARA and fuzzy MOORA in plastic industry. International Journal of Advanced Manufacturing Technology, 91(5–8), 2401–2418. https://doi.org/10.1007/s00170-016-9880-x
  • Mercan, T., & Can, A. (2023). İşgören Seçiminde Etkili Olan Faktörlerin FUCOM Yöntemi ile Değerlendirilmesi: Bir Havayolu İşletmesinde Uygulama. Süleyman Demirel Üniversitesi Vizyoner Dergisi, 14(40), 1311-1329. https://doi.org/10.21076/vizyoner.1271318
  • Nguyen, T. M. H., & Ménoury, M. (2022). Selection of 3PL providers for overseas market expansion: insights from a Vietnamese company. Journal of Supply Chain Management Science. https://doi.org/10.18757/jscms.2022.6846
  • Nila, B., & Roy, J. (2023). A new hybrid MCDM framework for third-party logistics provider selection under sustainability perspectives. Expert Systems with Applications, 234. https://doi.org/10.1016/j.eswa.2023.121009
  • Ozcalici, M. (2022). Asset allocation with multi-criteria decision making techniques. Decision Making: Applications in Management and Engineering, 5(2), 78-119. https://doi.org/10.31181/dmame0305102022o
  • Özbek, H. E., & Oğuz, S. (2024). Yeniden Kullanılabilir Maskeler için Çevre Dostu Tedarikçi Seçimi: Entropi Tabanlı TOPSIS Yöntemi ile Bir Uygulama. Alanya Akademik Bakış, 8(2), 563-575. https://doi.org/10.29023/alanyaakademik.1406618
  • Özdağoğlu, A., Keleş, M. K., & Genç, V. (2021). FUCOM ve PROMETHEE yöntemleri ile ticari araç seçimi: peyzaj firmasında bir uygulama. Atatürk Üniversitesi Sosyal Bilimler Enstitüsü Dergisi, 25(Özel Sayı), 231-253. https://doi.org/10.53487/ataunisosbil.825910
  • Özdağoğlu, A., Keleş, M. K., & Işıldak, B. (2021). Havalimanlarının Bulanık DEMATEL ve MABAC yöntemleri ile sıralanması. Ömer Halisdemir Üniversitesi İktisadi ve İdari Bilimler Fakültesi Dergisi, 14(1), 46-67. https://doi.org/10.25287/ohuiibf.697259
  • Öztürkçü, N., & Özcan, S. (2024). Bütünleşik ANP, MARCOS, WASPAS ve MAIRCA Yöntemleri Kullanılarak Proje Lojistiği Operasyonlarında Üçüncü Parti Lojistik Hizmet Sağlayıcı Seçimi. Dicle Üniversitesi İktisadi ve İdari Bilimler Fakültesi Dergisi, 14(27), 98-125. https://doi.org/10.53092/duiibfd.1308549
  • Özüdoğru, H., & Uzun, H. (2024). Sigortacılık Sektöründe Hizmet Kalitesinin Değerlendirilmesi: AHS ve TOPSIS Yöntemi. İşletme Araştırmaları Dergisi, 16(2), 1200-1225. https://doi.org/10.20491/isarder.2024.1851
  • Pala, O. (2023). MEREC-CORR ve SAW temelli lojistik performans değerlendirme. Dicle Üniversitesi İktisadi ve İdari Bilimler Fakültesi Dergisi, 13(25), 117-135. https://doi.org/10.53092/duiibfd.1130928
  • Pamucar, D., Chatterjee, K., & Zavadskas, E. K. (2019). Assessment of third-party logistics provider using multi-criteria decision-making approach based on interval rough numbers. Computers and Industrial Engineering, 127, 383–407. https://doi.org/10.1016/j.cie.2018.10.023
  • Pamučar, D., & Ćirović, G. (2015). The selection of transport and handling resources in logistics centers using Multi-Attributive Border Approximation area Comparison (MABAC). Expert Systems with Applications, 42(6), 3016–3028. https://doi.org/10.1016/j.eswa.2014.11.057
  • Pamucar, D., Macura, D., Tavana, M., Božanić, D., & Knežević, N. (2022). An integrated rough group multicriteria decision-making model for the ex-ante prioritization of infrastructure projects: Serbian Railways case. Socio-Economic Planning Sciences, 79. https://doi.org/10.1016/j.seps.2021.101098
  • Pamučar, D., Stević, Ž., & Sremac, S. (2018). A new model for determining weight coefficients of criteria in MCDM models: Full Consistency Method (FUCOM). Symmetry, 10(9). https://doi.org/10.3390/sym10090393
  • Patel, H., & Chang, C. T. (2024). Beyond throughput: Evaluating maritime port competitiveness using MABAC and Bayesian methods. Computers & Industrial Engineering, 110248. https://doi.org/10.1016/j.cie.2024.110248
  • Peker, B. N., & Görener, A. (2022). Tesis Yeri Seçiminde Kriterlerin Önem Ağırlıklarının Bulanık FUCOM Yöntemiyle Belirlenmesi. İstanbul Ticaret Üniversitesi Sosyal Bilimler Dergisi, 21(45), 1512-1536. https://doi.org/10.46928/iticusbe.1212318
  • Perçin, S. (2009). Evaluation of third-party logistics (3PL) providers by using a two-phase AHP and TOPSIS methodology. Benchmarking, 16(5), 588–604. https://doi.org/10.1108/14635770910987823
  • Prakash, C., & Barua, M. K. (2016). A combined MCDM approach for evaluation and selection of third-party reverse logistics partner for Indian electronics industry. Sustainable Production and Consumption, 7, 66–78. https://doi.org/10.1016/j.spc.2016.04.001
  • Raj, D., Maity, S. R., & Das, B. (2023). Optimization of Process Parameters of Laser Cladding on AISI 410 Using MEREC Integrated MABAC Method. Arabian Journal for Science and Engineering. https://doi.org/10.1007/s13369-023-08487-0
  • Rane, N. L., Achari, A., Choudhary, S. P., Mallick, S. K., Pande, C. B., Srivastava, A., & Moharir, K. N. (2023). A decision framework for potential dam site selection using GIS, MIF and TOPSIS in Ulhas river basin, India. Journal of Cleaner Production, 423. https://doi.org/10.1016/j.jclepro.2023.138890
  • Raut, R., Kharat, M., Kamble, S., & Kumar, C. S. (2018). Sustainable evaluation and selection of potential third-party logistics (3PL) providers: An integrated MCDM approach. Benchmarking, 25(1), 76–97. https://doi.org/10.1108/BIJ-05-2016-0065
  • Rony, M. A., Aslamiyah, S., & Anggraeni, M. D. (2023). Implementation of analytical hierarchy process and simple additive weighting for major selection. Jurnal Mantik, 7(1), 39-49.
  • Roy, J., Pamučar, D., & Kar, S. (2020). Evaluation and selection of third party logistics provider under sustainability perspectives: an interval valued fuzzy-rough approach. Annals of Operations Research, 293(2), 669–714. https://doi.org/10.1007/s10479-019-03501-x
  • Sabry, I., Hewidy, A. M., Naseri, M., & Mourad, A. H. I. (2024). Optimization of Process Parameters of Metal Inert Gas Welding Process on Aluminum Alloy 6063 Pipes Using Taguchi-TOPSIS Approach. Journal of Alloys and Metallurgical Systems, 100085.
  • Sahir, S. H., Rosmawati, R., & Minan, K. (2017). Simple additive weighting method to determining employee salary increase rate. International Journal of Scientific Research in Science and Technology, 3(8), 42- 48.
  • Sahoo, D., Parida, P. K., & Pati, B. (2024). Efficient fuzzy multi-criteria decision-making for optimal college location selection: A comparative study of min–max fuzzy TOPSIS approach. Results in Control and Optimization, 15, 100422. https://doi.org/10.1016/j.rico.2024.100422
  • Sarkis, J., & Talluri, S. (2002). A Model for Strategic Supplier Selection. Journal of Supply Chain Management, 38(4), 18–28. https://doi.org/10.1111/j.1745-493X.2002.tb00117.x
  • Sasananan, M., Narkhede, B. E., Gardas, B. B., & Raut, R. D. (2016). Selection of Third Party Logistics Service Provider Using a Multi-Criteria Decision Making Approach for Indian Cement Manufacturing Industries. Thammasat International Journal of Science and Technology, 21(3). https://doi.org/10.14456/tijsat.2016.23
  • Savun-hekimoğlu, B., Erbay, B., Burak, Z. S., & Gazioğlu, C. (2021). A comparative MCDM analysis of potential short-term measures for dealing with mucilage problem in the Sea of Marmara. International Journal of Environment and Geoinformatics, 8(4), 572-580. https://doi.org/10.30897/ijegeo.1026107
  • Sen, D. K., Datta, S., & Mahapatra, S. S. (2017). Decision Support Framework for Selection of 3PL Service Providers: Dominance-Based Approach in Combination with Grey Set Theory. International Journal of Information Technology and Decision Making, 16(1), 25–57. https://doi.org/10.1142/S0219622016500474
  • Setyani, R. E., & Saputra, R. (2016). Flood-prone areas mapping at Semarang City by using simple additive weighting method. Procedia-Social and Behavioral Sciences, 227, 378-386.
  • Seyedmohammadi, J., Sarmadian, F., Jafarzadeh, A. A., Ghorbani, M. A., & Shahbazi, F. (2018). Application of SAW, TOPSIS and fuzzy TOPSIS models in cultivation priority planning for maize, rapeseed and soybean crops. Geoderma, 310, 178–190. https://doi.org/10.1016/j.geoderma.2017.09.012
  • Shakouri, H., Nabaee, M., & Aliakbarisani, S. (2014). A quantitative discussion on the assessment of power supply technologies: DEA (data envelopment analysis) and SAW (simple additive weighting) as complementary methods for the “Grammar”. Energy, 64, 640-647. http://dx.doi.org/10.1016/j.energy.2013.10.022
  • Singh, R. K., Gunasekaran, A., & Kumar, P. (2018). Third party logistics (3PL) selection for cold chain management: a fuzzy AHP and fuzzy TOPSIS approach. Annals of Operations Research, 267(1–2), 531–553. https://doi.org/10.1007/s10479-017-2591-3
  • Situmeang, I. J. T., Hummairoh, S., Harahap, S. M., & Mesran, M. (2021). Application of SAW (simple additive weighting) for the selection of campus ambassadors. International Journal of Informatics and Computer Science, 5(1), 21-28. http://dx.doi.org/10.30865/ijics.v5i1.2847
  • Soba, M., & Şimşek, A. (2019). Bulanık TOPSIS Yöntemiyle Üçüncü Parti Lojistik (3pl) Hizmeti Veren Bir Firmanın Seçimi. International Journal of Social and Humanities Sciences Research (JSHSR), 6(33), 380-399. https://doi.org/10.26450/jshsr.1051
  • Sonar, H. C., & Kulkarni, S. D. (2021). An integrated AHP-MABAC approach for electric vehicle selection. Research in Transportation Business & Management, 41, 100665. https://doi.org/10.1016/j.rtbm.2021.100665
  • Sremac, S., Stević, Ž., Pamučar, D., Arsić, M., & Matić, B. (2018). Evaluation of a third-party logistics (3PL) provider using a rough SWARA-WASPAS model based on a new rough dombi aggregator. Symmetry, 10(8). https://doi.org/10.3390/sym10080305
  • Sun, H., Yu, Q., Wang, X., Zhang, X., & Ruan, X. (2024). Exploring sustainable watershed flood risks management: an innovative TFAHP-TOPSIS methodology in the Georges River Basin, Australia. International Journal of Disaster Risk Reduction, 104626. https://doi.org/10.1016/j.ijdrr.2024.104626
  • Tuljak-Suban, D., & Bajec, P. (2020). Integration of AHP and GTMA to make a reliable decision in complex decision-making problems: Application of the logistics provider selection problem as a case study. Symmetry, 12(5). https://doi.org/10.3390/SYM12050766
  • Ulutaş, A. (2019). Entropi ve MABAC yöntemleri ile personel seçimi. OPUS International Journal of Society Researches, 13(19), 1552-1573. https://doi.org/10.26466/opus.580456
  • Ulutaş, A. (2019). SWARA ve MAIRCA Yöntemleri İle Catering Firması Seçimi. Business & Management Studies: An International Journal, 7(4), 1467–1479. https://doi.org/10.15295/bmij.v7i4.1166
  • Ulutaş, A., Topal, A., Görçün, Ö. F., & Ecer, F. (2024). Evaluation of third-party logistics service providers for car manufacturing firms using a novel integrated grey LOPCOW-PSI-MACONT model. Expert Systems with Applications, 241. https://doi.org/10.1016/j.eswa.2023.122680
  • Wang, C. N., Nguyen, N. A. T., & Dang, T. T. (2023). Sustainable Evaluation of Major Third-Party Logistics Providers: A Framework of an MCDM-Based Entropy Objective Weighting Method. Mathematics, 11(19). https://doi.org/10.3390/math11194203
  • Waziana, W., Irviani, R., Oktaviani, I., Satria, F., Kurniawan, D., & Maseleno, A. (2018). Fuzzy Simple Additive Weighting for Determination of Recipients Breeding Farm Program. International Journal of Pure and Applied Mathematics, 118(7), 93-100.
  • Yadav, S., Garg, D., & Luthra, S. (2020). Selection of third-party logistics services for internet of things-based agriculture supply chain management Selection of third-party logistics services for internet of thingsbased 205. In Int. J. Logistics Systems and Management (Vol. 35, Issue 2).
  • Yagmahan, B., & Yılmaz, H. (2023). An integrated ranking approach based on group multi-criteria decision making and sensitivity analysis to evaluate charging stations under sustainability. Environment, Development and Sustainability, 25(1), 96-121. https://doi.org/10.1007/s10668-021-02044-1
  • Yayla, A. Y., Oztekin, A., Gumus, A. T., & Gunasekaran, A. (2015). A hybrid data analytic methodology for 3PL transportation provider evaluation using fuzzy multi-criteria decision making. International Journal of Production Research, 53(20), 6097–6113. https://doi.org/10.1080/00207543.2015.1022266
  • Yazdani, M., Zarate, P., Coulibaly, A., & Zavadskas, E. K. (2017). A group decision making support system in logistics and supply chain management. Expert Systems with Applications, 88, 376–392. https://doi.org/10.1016/j.eswa.2017.07.014
  • Yürüyen, A. A., & Ulutaş, A. (2020). Bulanık AHP ve bulanık EDAS yöntemleri ile üçüncü parti lojistik firması seçimi. Anemon Muş Alparslan Üniversitesi Sosyal Bilimler Dergisi, 8(İktisadi ve İdari Bilimler), 283-294. https://doi.org/10.18506/anemon.767354
  • Zeydan, M., Çolpan, C., & Çobanoģlu, C. (2011). A combined methodology for supplier selection and performance evaluation. Expert Systems with Applications, 38(3), 2741–2751. https://doi.org/10.1016/j.eswa.2010.08.064
  • Zhang, J., Zhang, S., Qiao, J., Wei, J., Wang, L., Li, Z., & Zhuo, J. (2024). Safety resilience evaluation of hydrogen refueling stations based on improved TOPSIS approach. International Journal of Hydrogen Energy, 66, 396-405. https://doi.org/10.1016/j.ijhydene.2024.04.129
  • Zhu, X., Ran, Y., Zhang, G., Chen, J., & Heli, L. (2023). Identification of maintenance significant items for machine tools by integrating DEMATEL and MABAC with spherical fuzzy sets. Engineering Applications of Artificial Intelligence, 126, 107155. https://doi.org/10.1016/j.engappai.2023.107155
  • Zolfani, S. H., & Chatterjee, P. (2019). Comparative evaluation of sustainable design based on Step-Wise Weight Assessment Ratio Analysis (SWARA) and Best Worst Method (BWM) methods: a perspective on household furnishing materials. Symmetry, 11(1), 74. https://doi.org/10.3390/sym11010074
There are 109 citations in total.

Details

Primary Language Turkish
Subjects Business Administration
Journal Section Articles
Authors

Hasan Emin Gürler 0000-0002-5813-1631

Publication Date January 30, 2025
Submission Date January 22, 2024
Acceptance Date October 2, 2024
Published in Issue Year 2025 Volume: 18 Issue: 1

Cite

APA Gürler, H. E. (2025). ÜÇÜNCÜ TARAF LOJİSTİK (3PL) SAĞLAYICILARININ SÜRDÜRÜLEBİLİRLİK PERSPEKTİFİNDEN DEĞERLENDİRİLMESİ: FUCOM TEMELLİ ENTEGRE BİR YAKLAŞIM. Ömer Halisdemir Üniversitesi İktisadi Ve İdari Bilimler Fakültesi Dergisi, 18(1), 1-31.

Creative Commons Lisansı
Ömer Halisdemir Universitesi Iktisadi ve Idari Bilimler Fakültesi Dergisi (OHUIIBF) is licensed under the Creative Commons Attribution-Noncommercial-Pseudonymity License 4.0 international license.