THE IMPACT OF ETHEREUM ON ERC-20 TOKENS: A COMPARATIVE ANALYSIS WITH LSTM AND CNN MODELS
Year 2025,
Volume: 18 Issue: 1, 476 - 492, 30.01.2025
Mehmet Çınar
,
Muhammet Apak
Abstract
Ethereum, developed by Vitalik Buterin in 2013, has significantly advanced blockchain technology through smart contracts and ERC-20 token standards. This study examines the impact of Ethereum on ERC-20 tokens using Long Short-Term Memory (LSTM) and Convolutional Neural Networks (CNN) models. For this purpose, LSTM and CNN models were trained using Ethereum data and then employed to predict ERC-20 token prices. According to the study's results, the LSTM model achieved high accuracy rates for LINK, MATIC, and UNI tokens but performed poorly in predicting RNDR token prices. The CNN model provided the highest accuracy for LINK tokens and yielded successful results in predicting RNDR token prices. However, the CNN model showed lower performance for MATIC and UNI tokens than the LSTM model. These findings indicate that both LSTM and CNN
models significantly impact the prediction of Ethereum's ERC-20 token price dynamics. The variability in model performances across tokens highlights the influence of market dynamics and liquidity levels. In light of these differences, the study emphasizes the importance of selecting the model based on the token's characteristics and market conditions.
Project Number
SYL-2024-1740
References
- Abubaker, S. S., ve Farid, S. R. (2022). Stock market prediction using LSTM. International Journal for Research in Applied Science Engineering Technology, 10(4), 3178-3184.
- Akbulaev, N., Mammadov, I., ve Hemdullayeva, M. (2020). Correlation and regression analysis of the relation between ethereum price and both its volume and bitcoin price. Journal of Structured Finance, 26(2), 46-56.
- Albayrak, E. ve Saran, A. N. (2023). Istatistiksel ve derin öğrenme modellerini kullanarak hisse senedi fiyat tahmini. Bilgisayar Bilimleri ve Mühendisliği Dergisi, 16(2), 161-169.
- Altan, A., Karasu, S. ve Bekiros, S. (2019). Digital currency forecasting with chaotic meta-heuristic bio-inspired signal processing techniques. Chaos, Solitons & Fractals, 126, 325-336.
- Aygün, B. ve Kabakçı, E. G. (2021). Comparison of statistical and machine learning algorithms for forecasting daily bitcoin returns. Avrupa Bilim ve Teknoloji Dergisi, 21, 444-454.
- Babu, R., Usha, D., Kirubadevi, T. ve Kumar, P. S. (2023). Stock price prediction using LSTM. Journal of Survey in Fisheries Sciences. 10(3S), 4135-4140.
- Buterin, V. (2014). A next-generation smart contract and decentralized application platform. White Paper, 3(37), 2-1.
- Chen, J. (2023). Analysis of bitcoin price prediction using machine learning. Journal of Risk Financial Management, 16(51), 1-25.
- Cuffe, P. (2018). The role of the erc-20 token standard in a financial revolution: The Case of Initial Coin Offerings. In IEC-IEEE-KATS Academic Challenge. IEC-IEEE-KATS.
- Demirci, E. ve Karaatlı, M. (2023). Kripto Para fiyatlarının LSTM ve GRU modelleri ile tahmini. Mehmet Akif Ersoy Üniversitesi İktisadi ve İdari Bilimler Fakültesi Dergisi. 10(1), 134-157.
- Demir, A., Akılotu, B. N., Kadiroğlu, Z. ve Şengür, A. (2019). Bitcoin price prediction using machine learning methods. 1st International Informatics and Software Engineering Conference (UBMYK), Ankara, Turkey, 2019.
- Dhokane, R. M. ve Agarwal, S. (2024). LSTM deep learning based stock price prediction with bollinger band, RSI, MACD, and OHLC Features. International Journal of Intelligent Systems and Applications in Engineering. 12(3). 1169-1176.
- Gao, S. (2023). Research on stock price prediction based on CNN-LSTM combined model. Advances in Computer, Signals and Systems, 7(9), 73-79.
- He, K., ve Jiang, Q. (2022). Research on stock prediction algorithm based on CNN and LSTM. Academic Journal of Computing & Information Science, 5(12), 98-106.
- Hirai, Y. (2017). Defining the ethereum virtual machine for interactive theorem provers. in financial cryptography and data security: fc 2017 international workshops, WAHC, BITCOIN, VOTING, WTSC, And TA, Sliema, Malta, April 7, 2017, Revised Selected Papers 21 (pp. 520-535). Springer International Publishing.
- Hu, Z., Zhao, Y., ve Khushi, M. (2021). A survey of forex and stock price prediction using deep learning. Applied System Innovation, 4(1), 9, 1-34.
- Huang, Y. P., ve Yen, M. F. (2019). A new perspective of performance comparison among machine learning algorithms for financial distress prediction. Applied Soft Computing, 83, 105663.
- Kashyap, S., Singh, M. ve V., L. (2022). A deep learning approach for crypto price prediction. International Research Journal of Engineering and Technology. 9(6), 2976-2981.
- Kumar, D., ve Rath, S.K. (2020). Predicting the trends of price for ethereum using deep learning techniques. In: Dash, S., Lakshmi, C., Das, S., Panigrahi, B. (Eds) Artificial Intelligence and Evolutionary Computations in Engineering Systems. Advances in Intelligent Systems and Computing, 1056. Springer, Singapore.
- Kumar, A.S., Pv, G., ve Jackson, B. (2023). Machine learning-based time series analysis for cryptocurrency price prediction: a systematic review and research. In 2023 International Conference On Networking and Communications (ICNWC) (Pp. 1-5). IEEE.
- Pankaj. (2022, July). A systematic review for crypto currency price prediction using machine learning. In 2022 Fifth International Conference On Computational Intelligence and Communication Technologies (CCICT) (pp. 339-343). IEEE.
- Kumari, PDSS L. vd. (2023). Analyzing crypto currency price trends with LSTM-based models. International Journal of Creative Research Thoughts. 11(4), 1-4.
- Ladhari, A. ve Boubaker, H. (2024). Deep learning models for bitcoin prediction using hybrid approaches with gradient-specific optimization. Forecasting. 6, 279–295.
- Lara-Benítez, P., Carranza-García, M., Luna-Romera, J.M. ve Riquelme, J. C. (2020). Temporal convolutional networks applied to energy-related time series forecasting, Applied Sciences, 10 (7), 2322, 1-17.
- Li, P., Zhang, J., ve Krebs, P. (2022) Prediction of flow based on a CNN-LSTM combined deep learning approach. Water, 14, 993, 1-13.
- Livieris, I. E., Kiriakidou, N., Stavroyiannis, S., & Pintelas, P. (2021). An advanced CNN-LSTM model for cryptocurrency forecasting. Electronics, 10(287), 1-16.
- Metin, S. (2021). Kripto para fiyatlarının regresyon analizi yöntemleri ile tahmini: bitcoin, etherum ve ripple. 2. Uluslararası Sosyal Bilimler ve İnovasyon Kongresi. 24-25 Mayıs 2021, Ankara.
- Millikan, E., Subramanian, P., ve Joseph, M. H. (2021). Bitcoin vision: using machine learning and data mining to predict the short-term and long-term price of bitcoin. Current Trends in Management and Information Technology. 751-760.
- Minotti, G. (2022). Cryptocurrencies price prediction using LSTM neural network model, Universita Ca’Forscari Venezia, Master’s Degree in Economics and Finance.
- Mudassir, M., Bennbaia, S., Unal, D., ve Hammoudeh, M. (2020). Time-series forecasting of bitcoin prices using high- dimensional features: a machine learning approach. Neural Computing and Applications.1-15.
- Nair, M., Marie, M. I. ve Abd-Elmegid, L. A. (2023). Prediction of cryptocurrency price using time series data and deep learning algorithms. International Journal of Advanced Computer Science and Applications. 14(8), 338-347.
- Odabaşı, M. B. ve Toklu, M. C. (2023). Yapay sinir ağları ve derin öğrenme algoritmalarının kripto para fiyat tahmininde karşılaştırmalı analizi. Zeki Sistemler Teori ve Uygulamaları Dergisi. 6(2), 96-107.
- Oladele, S. I. I. (2023). Deep neural network: predicting future prices of cryptocurency using LSTM and GRU. Preprints, 1-10.
- Oliva, G. A. (2022). Mining the ethereum blockchain platform: best practices and pitfalls (msr 2022 tutorial). In Proceedings of The 19th International Conference On Mining Software Repositories, 201-202.
- Patel, M. M., Tanwar, S., Gupta, R. ve Kumar, N. (2020), A deep learning-based cryptocurrency price prediction scheme for financial institutions. Journal of Information Security and Applications, 55, 1-12.
- Polat, O. G. (2024). LSTM model ile bitcoin fiyatı tahminlemesi. İstanbul Ticaret Üniversitesi Finans Enstitüsü. Yüksek Lisans Tezi.
- Rajagukguk, R. A., Ramadhan, R. A., & Lee, H. J. (2020). A review on deep learning models for forecasting time series data of solar irradiance and photovoltaic power. Energies, 13(24), 6623.
- Sağır, A. B. (2024). Hisse senedi alım satımında parçacık sürü optimizasyonu tabanlı CNN-LSTM ağlarının kullanılması. İstanbul Aydın Üniversitesi Lisansüstü Eğitim Enstitüsü. Yüksek Lisans Tezi.
- Sari, R., Kusrini, K., Hidayat, T. ve Orphanoudakis, T. (2023). Improved LSTM method for predicting cryptocurrency price using short-term data. Indonesian Journal of Computing and Cybernetics Systems. 17(1), 33-44.
- Seabe, P.L., Moutsinga, C.R.B. ve Pindza, E. (2023). Forecasting cryptocurrency prices using LSTM, GRU, and bi-directional LSTM: a deep learning approach. Fractal and Fractional, 7(203), 1-18.
- Sezer, O. B., Gudelek, M. U., ve Ozbayoglu, A. M. (2020). Financial time series forecasting with deep learning: a systematic literature review: 2005–2019. Applied Soft Computing, 90, 106181.
- Şenol, D. & Denizhan, B. (2023). Kripto para değerinin yapay sinir ağları ve regresyon analizi ile tahmini. Endüstri Mühendisliği. 34(1), 42-69.
- Tanışman, S., Karcıoğlu, A. A., Uğur, A. ve Bulut, H. (2021). Bitcoin fiyatının LSTM ağı ve ARIMA zaman serisi modeli kullanarak tahmini ve karşılaştırılması. Avrupa Bilim ve Teknoloji Dergisi, (32), 514-520.
- Taş, A. İ., Gülüm, P. ve Tulum, G. (2021). Finansal piyasalarda hisse fiyatlarının derin öğrenme ve yapay sinir ağı yöntemleri ile tahmin edilmesi; S&P 500 Endeksi Örneği. Düzce Üniversitesi Bilim ve Teknoloji Dergisi, 9, 446-460.
- Tran, T. K., Le, T. T. T., Bui, T. T., Dang, V. Q., ve Senkerik, R. (2022). Constructing a cryptocurrency-price prediction model using deep learning. in 2022 International Conference on Engineering and Emerging Technologies (ICEET) (pp. 1-6). IEEE.
- Yurtsever, M. (2021). Gold price forecasting using LSTM, Bi-LSTM and GRU. Avrupa Bilim ve Teknoloji Dergisi, 31 (1), 341-347.
- Wardak, A. B. ve Rasheed, J. (2022). Bitcoin cryptocurrency price prediction using long short-term memory recurrent neural network. European Journal of Science and Technology, (38), 47-53.
- Wen, N. S. ve Ling, L. S. (2023). Evaluation of cryptocurrency price prediction using LSTM and CNN models. International Journal on Informatics Visualization. 7(3-2), 2016-2024.
- Xu, D. (2023). Price prediction of cryptocurrency based on LSTM Model: evidence from ethereum. Highlights in Science Engineering and Technology. 39, 744-748.
- Zhang, R. (2022). LSTM-based stock prediction modeling and analysis. Proceedings of the 7th International Conference On Financial Innovation and Economic Development. 211, 2537-2542.
- Zhang, C. (2023). The analysis of the risks and improvements of erc20 tokens. Highlights in Science, Engineering and Technology, 39, 1093-1097.
- Zhou, H. (2022). Research of text classification based on TF-IDT and CNN-LSTM. Journal of Physics Conference Series, 2171, 1, 1-9.
ETHEREUM'UN ERC-20 TOKENLARI ÜZERİNDEKİ ETKİSİ: LSTM VE CNN MODELLERİYLE KARŞILAŞTIRMALI BİR ANALİZ
Year 2025,
Volume: 18 Issue: 1, 476 - 492, 30.01.2025
Mehmet Çınar
,
Muhammet Apak
Abstract
Vitalik Buterin tarafından 2013 yılında geliştirilen Ethereum, akıllı sözleşmeler ve ERC-20 token standartları ile blockchain teknolojisini önemli ölçüde ileri taşımıştır. Bu çalışmada Ethereum'un ERC-20 tokenları üzerindeki etkisi Long Short-Term Memory (LSTM) ve Convolutional Neural Networks (CNN) modelleri kullanılarak incelenmektedir. Bu amaçla Ethereum verileri kullanılarak LSTM ve CNN modelleri yardımıyla model eğitimleri gerçekleştirilmiştir. Daha sonra eğitilen modeller ERC-20 token fiyatlarını tahmin etmek amacıyla kullanılmıştır. Çalışmada uygulanan tüm analizler. Çalışma sonuçlarına göre, LSTM modeli; LINK, MATIC ve UNI tokenları için yüksek doğruluk oranlarına ulaşmış, ancak RNDR tokeni tahminlerinde daha düşük performans sergilemiştir. CNN modeli ise LINK tokeni için en yüksek doğruluğu sağlamış ve RNDR tokeni tahminlerinde de başarılı sonuçlar elde etmiştir. Bununla birlikte, CNN modeli MATIC ve UNI tokenlarında LSTM modeline göre daha düşük bir performans sergilemiştir. Bu bulgular, hem LSTM hem de CNN modellerinin Ethereum'un ERC-20 token fiyat dinamiklerini tahmin etmede belirgin bir etkiye sahip olduğunu ortaya koymaktadır. Model performanslarının token bazında değişkenlik göstermesi, piyasa dinamikleri ve likidite seviyelerinin etkisini işaret etmektedir. Çalışma, bu farklılıkların model seçiminde tokenin özelliklerine ve piyasa koşullarına göre yapılmasının önemini vurgulamaktadır.
Supporting Institution
Bursa Uludağ Üniversitesi Bilimsel Araştırma Projeleri Birimi
Project Number
SYL-2024-1740
Thanks
Desteklerinden ötürü Bursa Uludağ Üniversitesi Bilimsel Araştırma Projeleri Koordinasyon Birimi’ne teşekkür eDERİZ.
References
- Abubaker, S. S., ve Farid, S. R. (2022). Stock market prediction using LSTM. International Journal for Research in Applied Science Engineering Technology, 10(4), 3178-3184.
- Akbulaev, N., Mammadov, I., ve Hemdullayeva, M. (2020). Correlation and regression analysis of the relation between ethereum price and both its volume and bitcoin price. Journal of Structured Finance, 26(2), 46-56.
- Albayrak, E. ve Saran, A. N. (2023). Istatistiksel ve derin öğrenme modellerini kullanarak hisse senedi fiyat tahmini. Bilgisayar Bilimleri ve Mühendisliği Dergisi, 16(2), 161-169.
- Altan, A., Karasu, S. ve Bekiros, S. (2019). Digital currency forecasting with chaotic meta-heuristic bio-inspired signal processing techniques. Chaos, Solitons & Fractals, 126, 325-336.
- Aygün, B. ve Kabakçı, E. G. (2021). Comparison of statistical and machine learning algorithms for forecasting daily bitcoin returns. Avrupa Bilim ve Teknoloji Dergisi, 21, 444-454.
- Babu, R., Usha, D., Kirubadevi, T. ve Kumar, P. S. (2023). Stock price prediction using LSTM. Journal of Survey in Fisheries Sciences. 10(3S), 4135-4140.
- Buterin, V. (2014). A next-generation smart contract and decentralized application platform. White Paper, 3(37), 2-1.
- Chen, J. (2023). Analysis of bitcoin price prediction using machine learning. Journal of Risk Financial Management, 16(51), 1-25.
- Cuffe, P. (2018). The role of the erc-20 token standard in a financial revolution: The Case of Initial Coin Offerings. In IEC-IEEE-KATS Academic Challenge. IEC-IEEE-KATS.
- Demirci, E. ve Karaatlı, M. (2023). Kripto Para fiyatlarının LSTM ve GRU modelleri ile tahmini. Mehmet Akif Ersoy Üniversitesi İktisadi ve İdari Bilimler Fakültesi Dergisi. 10(1), 134-157.
- Demir, A., Akılotu, B. N., Kadiroğlu, Z. ve Şengür, A. (2019). Bitcoin price prediction using machine learning methods. 1st International Informatics and Software Engineering Conference (UBMYK), Ankara, Turkey, 2019.
- Dhokane, R. M. ve Agarwal, S. (2024). LSTM deep learning based stock price prediction with bollinger band, RSI, MACD, and OHLC Features. International Journal of Intelligent Systems and Applications in Engineering. 12(3). 1169-1176.
- Gao, S. (2023). Research on stock price prediction based on CNN-LSTM combined model. Advances in Computer, Signals and Systems, 7(9), 73-79.
- He, K., ve Jiang, Q. (2022). Research on stock prediction algorithm based on CNN and LSTM. Academic Journal of Computing & Information Science, 5(12), 98-106.
- Hirai, Y. (2017). Defining the ethereum virtual machine for interactive theorem provers. in financial cryptography and data security: fc 2017 international workshops, WAHC, BITCOIN, VOTING, WTSC, And TA, Sliema, Malta, April 7, 2017, Revised Selected Papers 21 (pp. 520-535). Springer International Publishing.
- Hu, Z., Zhao, Y., ve Khushi, M. (2021). A survey of forex and stock price prediction using deep learning. Applied System Innovation, 4(1), 9, 1-34.
- Huang, Y. P., ve Yen, M. F. (2019). A new perspective of performance comparison among machine learning algorithms for financial distress prediction. Applied Soft Computing, 83, 105663.
- Kashyap, S., Singh, M. ve V., L. (2022). A deep learning approach for crypto price prediction. International Research Journal of Engineering and Technology. 9(6), 2976-2981.
- Kumar, D., ve Rath, S.K. (2020). Predicting the trends of price for ethereum using deep learning techniques. In: Dash, S., Lakshmi, C., Das, S., Panigrahi, B. (Eds) Artificial Intelligence and Evolutionary Computations in Engineering Systems. Advances in Intelligent Systems and Computing, 1056. Springer, Singapore.
- Kumar, A.S., Pv, G., ve Jackson, B. (2023). Machine learning-based time series analysis for cryptocurrency price prediction: a systematic review and research. In 2023 International Conference On Networking and Communications (ICNWC) (Pp. 1-5). IEEE.
- Pankaj. (2022, July). A systematic review for crypto currency price prediction using machine learning. In 2022 Fifth International Conference On Computational Intelligence and Communication Technologies (CCICT) (pp. 339-343). IEEE.
- Kumari, PDSS L. vd. (2023). Analyzing crypto currency price trends with LSTM-based models. International Journal of Creative Research Thoughts. 11(4), 1-4.
- Ladhari, A. ve Boubaker, H. (2024). Deep learning models for bitcoin prediction using hybrid approaches with gradient-specific optimization. Forecasting. 6, 279–295.
- Lara-Benítez, P., Carranza-García, M., Luna-Romera, J.M. ve Riquelme, J. C. (2020). Temporal convolutional networks applied to energy-related time series forecasting, Applied Sciences, 10 (7), 2322, 1-17.
- Li, P., Zhang, J., ve Krebs, P. (2022) Prediction of flow based on a CNN-LSTM combined deep learning approach. Water, 14, 993, 1-13.
- Livieris, I. E., Kiriakidou, N., Stavroyiannis, S., & Pintelas, P. (2021). An advanced CNN-LSTM model for cryptocurrency forecasting. Electronics, 10(287), 1-16.
- Metin, S. (2021). Kripto para fiyatlarının regresyon analizi yöntemleri ile tahmini: bitcoin, etherum ve ripple. 2. Uluslararası Sosyal Bilimler ve İnovasyon Kongresi. 24-25 Mayıs 2021, Ankara.
- Millikan, E., Subramanian, P., ve Joseph, M. H. (2021). Bitcoin vision: using machine learning and data mining to predict the short-term and long-term price of bitcoin. Current Trends in Management and Information Technology. 751-760.
- Minotti, G. (2022). Cryptocurrencies price prediction using LSTM neural network model, Universita Ca’Forscari Venezia, Master’s Degree in Economics and Finance.
- Mudassir, M., Bennbaia, S., Unal, D., ve Hammoudeh, M. (2020). Time-series forecasting of bitcoin prices using high- dimensional features: a machine learning approach. Neural Computing and Applications.1-15.
- Nair, M., Marie, M. I. ve Abd-Elmegid, L. A. (2023). Prediction of cryptocurrency price using time series data and deep learning algorithms. International Journal of Advanced Computer Science and Applications. 14(8), 338-347.
- Odabaşı, M. B. ve Toklu, M. C. (2023). Yapay sinir ağları ve derin öğrenme algoritmalarının kripto para fiyat tahmininde karşılaştırmalı analizi. Zeki Sistemler Teori ve Uygulamaları Dergisi. 6(2), 96-107.
- Oladele, S. I. I. (2023). Deep neural network: predicting future prices of cryptocurency using LSTM and GRU. Preprints, 1-10.
- Oliva, G. A. (2022). Mining the ethereum blockchain platform: best practices and pitfalls (msr 2022 tutorial). In Proceedings of The 19th International Conference On Mining Software Repositories, 201-202.
- Patel, M. M., Tanwar, S., Gupta, R. ve Kumar, N. (2020), A deep learning-based cryptocurrency price prediction scheme for financial institutions. Journal of Information Security and Applications, 55, 1-12.
- Polat, O. G. (2024). LSTM model ile bitcoin fiyatı tahminlemesi. İstanbul Ticaret Üniversitesi Finans Enstitüsü. Yüksek Lisans Tezi.
- Rajagukguk, R. A., Ramadhan, R. A., & Lee, H. J. (2020). A review on deep learning models for forecasting time series data of solar irradiance and photovoltaic power. Energies, 13(24), 6623.
- Sağır, A. B. (2024). Hisse senedi alım satımında parçacık sürü optimizasyonu tabanlı CNN-LSTM ağlarının kullanılması. İstanbul Aydın Üniversitesi Lisansüstü Eğitim Enstitüsü. Yüksek Lisans Tezi.
- Sari, R., Kusrini, K., Hidayat, T. ve Orphanoudakis, T. (2023). Improved LSTM method for predicting cryptocurrency price using short-term data. Indonesian Journal of Computing and Cybernetics Systems. 17(1), 33-44.
- Seabe, P.L., Moutsinga, C.R.B. ve Pindza, E. (2023). Forecasting cryptocurrency prices using LSTM, GRU, and bi-directional LSTM: a deep learning approach. Fractal and Fractional, 7(203), 1-18.
- Sezer, O. B., Gudelek, M. U., ve Ozbayoglu, A. M. (2020). Financial time series forecasting with deep learning: a systematic literature review: 2005–2019. Applied Soft Computing, 90, 106181.
- Şenol, D. & Denizhan, B. (2023). Kripto para değerinin yapay sinir ağları ve regresyon analizi ile tahmini. Endüstri Mühendisliği. 34(1), 42-69.
- Tanışman, S., Karcıoğlu, A. A., Uğur, A. ve Bulut, H. (2021). Bitcoin fiyatının LSTM ağı ve ARIMA zaman serisi modeli kullanarak tahmini ve karşılaştırılması. Avrupa Bilim ve Teknoloji Dergisi, (32), 514-520.
- Taş, A. İ., Gülüm, P. ve Tulum, G. (2021). Finansal piyasalarda hisse fiyatlarının derin öğrenme ve yapay sinir ağı yöntemleri ile tahmin edilmesi; S&P 500 Endeksi Örneği. Düzce Üniversitesi Bilim ve Teknoloji Dergisi, 9, 446-460.
- Tran, T. K., Le, T. T. T., Bui, T. T., Dang, V. Q., ve Senkerik, R. (2022). Constructing a cryptocurrency-price prediction model using deep learning. in 2022 International Conference on Engineering and Emerging Technologies (ICEET) (pp. 1-6). IEEE.
- Yurtsever, M. (2021). Gold price forecasting using LSTM, Bi-LSTM and GRU. Avrupa Bilim ve Teknoloji Dergisi, 31 (1), 341-347.
- Wardak, A. B. ve Rasheed, J. (2022). Bitcoin cryptocurrency price prediction using long short-term memory recurrent neural network. European Journal of Science and Technology, (38), 47-53.
- Wen, N. S. ve Ling, L. S. (2023). Evaluation of cryptocurrency price prediction using LSTM and CNN models. International Journal on Informatics Visualization. 7(3-2), 2016-2024.
- Xu, D. (2023). Price prediction of cryptocurrency based on LSTM Model: evidence from ethereum. Highlights in Science Engineering and Technology. 39, 744-748.
- Zhang, R. (2022). LSTM-based stock prediction modeling and analysis. Proceedings of the 7th International Conference On Financial Innovation and Economic Development. 211, 2537-2542.
- Zhang, C. (2023). The analysis of the risks and improvements of erc20 tokens. Highlights in Science, Engineering and Technology, 39, 1093-1097.
- Zhou, H. (2022). Research of text classification based on TF-IDT and CNN-LSTM. Journal of Physics Conference Series, 2171, 1, 1-9.