Conference Paper
BibTex RIS Cite
Year 2020, Volume: 7 Issue: 2, 122 - 144, 29.11.2020

Abstract

References

  • Akin, A., Abaci, R., & Cetin, B. (2007). The validity and reliability study of the turkish version of the metacognitive awareness inventory. Educational Science: Theory & Practice, 7(2), 671-678.
  • Ann Haefner, L., & Zembal‐Saul, C. (2004). Learning by doing? Prospective elementary teachers’ developing understandings of scientific inquiry and science teaching and learning. International Journal of Science Education, 26(13), 1653-1674.
  • Aslan, S. (2010). Ortaöğretim 10. sınıf öğrencilerinin üst bilimsel süreç ve eleştirel düşünme becerilerinin geliştirilmesine bilimsel tartışma odaklı öğretim yaklaşımının etkisi (Unpublished doctoral dissertation). Gazi University, Ankara.
  • Bloom, B. S., Hastings, J. T., & Madaus, G. F. (1971). Handbook on formative and summative assessment of student learning. New York: McGraw-Hill Book Co.
  • Buehl, M. M., & Alexander, P. A. (2001). Beliefs about academic knowledge. Educational Psychology Review, 13(4), 385-418.
  • Cano, F. (2005). Epistemological beliefs and approaches to learning: their change through secondary school and their influence on academic performance. British Journal of Educational Psychology, 75, 203-221.
  • Cartier, J., Rudolph, J., & Stewart, J. (2001). The nature and structure of scientific models. National Center for Improving Student Learning and Achievement in Mathematics and Science (NCISLA).
  • Caulfield-Sloan, M. B., & Ruzicka, M. F. (2005). The Effect of Teachers’ Staff Development in the Use of Higher-Order Questioning Strategies on Third Grade Students’ Rubric Science Assessment Performance. Planning and Changing, 36, 157-175.
  • Cobb, P., & Steffe, L. P. (1983). The constructivist researcher as teacher and model builder. Journal for Research in Mathematics Education, 14(2), 83-94.
  • Conley, A. M., Pintrich, P. R., Wekiri, I., & Harrison, D. (2004). Changes in epistemological beliefs in elementary science students. Contemporary Educational Psychology, 29,186-204.
  • Çalışoğlu, M., Tortum, T., Erişmiş, F., & Koçyiğit, D. (2015). Yeni yapılandırılan 3. sınıf hayat bilgisi ve fen bilimleri derslerine yönelik öğretmen görüşleri. Journal of International Multidisciplinary Academic Researches, 2(2), 1-11.
  • Deryakulu, D. (2002). Denetim odağı ve epistemolojik inançların öğretim materyalini kavramayı denetleme türü ve düzeyi ile ilişkisi. Hacettepe Üniversitesi Eğitim Bilimleri Fakültesi Dergisi, 22, 55-61.
  • Deryakulu, D., & Bıkmaz, F. H. (2003). Bilimsel epistemolojik inançlar ölçeğinin geçerlik ve güvenirlik çalışması. Eğitim Bilimleri ve Uygulama 2(4), 243-257.
  • Engelhardt, P. V., Corpuz, E. G., Ozimek, D. J. & Rebello, N. S. (2003). The teaching experiment - What it is and what it isn’t. Paper presented at the Physics Education Research Conference, Madison, WI.
  • Eroğlu E.S., & Güven K. (2006). Üniversite öğrencilerinin epistemolojik inançlarının bazı değişkenler açısından incelenmesi. Selçuk Üniversitesi Sosyal Bilimler Enstitüsü Dergisi, 1(16), 295-312.
  • Facione, P. A. (1998). Critical thinking: What it is and why it counts. Millbrae, CA: The California Academic Press.
  • Field, A. (2009). Discovering Statistics Using SPSS (3rd Ed). London: Sage.
  • Güven, B. (2006). Öğretmen adaylarının küresel geometri anlama düzeylerinin karakterize edilmesi (Unpublished doctoral dissertation). Karadeniz Teknik University, Trabzon.
  • Haladyna, T. M. (1997). Writing Test Items to Evaluate Higher Order Thinking. Allyn & Bacon, 160 Gould Street, Needham Heights, MA 02194-2310.
  • Hammer, D. (1994). Epistemological beliefs in introductory physics. Cognition and Instruction, 12(2), 151-183.
  • Hand, B., Prain, V., & Wallace, C. (2002). Influences of writing tasks on students' answers to recall and higher-level test questions. Research in Science Education, 32(1), 19-34.
  • Hand, B., Wallace, C. W., & Yang, E. M. (2004). Using a Science Writing Heuristic to enhance learning outcomes from laboratory activities in seventh‐grade science: quantitative and qualitative aspects. International Journal of Science Education, 26(2), 131-149.
  • Henderson, J. (2001). Reflective teaching: Professional artistry through inquiry (3rd ed.). Upper Saddle River, NJ: Merrill/Prentice Hall. Hohenshell, L. M., & Hand, B. (2006). Writing‐to‐learn strategies in secondary school cell biology: A mixed method study. International Journal of Science Education, 28(2-3), 261-289.
  • Hunting, R. P. (1997). Clinical interview methods in mathematics education research and practice. Journal of Mathematical Behavior. 16(2), 145-165.
  • Keys, C. W., Hand, B., Prain, V., & Collins, S. (1999). Using the science writing heuristic as a tool for learning from laboratory investigations in secondary science. Journal of Research in Science Teaching, 36(10), 1065-1084.
  • Kramarski, B., Mevarech, Z. R., & Arami, M. (2002). The effects of metacognitive instruction on solving mathematical authentic tasks. Educational Studies in Mathematics, 49(2), 225-250.
  • Lesh, R., & Kelly, A. (2000). Multitiered teaching experiments. In A. Kelly & R. Lesh (Eds.), Research Design in Mathematics and Science Education (pp. 197-230). Mahwah, NJ: Lawrence Earlbaum Associates.
  • Milli Eğitim Bakanlığı- MONE (2013). İlköğretim kurumları (ilkokullar ve ortaokullar) fen bilimleri dersi, (3, 4, 5, 6, 7 ve 8. sınıflar) öğretim programı. Ankara: Talim Terbiye Kurulu Başkanlığı.
  • Özkan, S. (2008). Modeling elementary students’ science achievement: The interrelationships among epistemological beliefs, learning approaches, and self-regulated learning strategies (Unpublished doctoral dissertation). Middle East Technical University, Ankara.
  • Patton, M. Q. (2002). Two decades of developments in qualitative inquiry a personal, experiential perspective. Qualitative Social Work, 1(3), 261-283.
  • Piaget, J. (1952). The child’s conception of number. New York: Humanities Press. Sampson, V., & Gleim, L. (2009). Argument-driven inquiry to promote the understanding of important concepts & practices in biology. The American Biology Teacher, 71(8), 465-472.
  • Schraw, G. & Dennison, R. S. (1994). Assesing metacognitive awareness, Contemporary Educational Psychology, 19, 460-475.
  • Smith, C. L., Maclin, D., Houghton, C., & Hennessey, M. G. (2000). Sixth-grade students’ epistemologies of science: The impact of school science experiences on epistemological development. Cognition and Instruction, 18(3), 349-422.
  • Songer, N. B., & Linn, M. C. (1991). How do students’ views of science influence knowledge integration? Journal of Research in Science Teaching, 28(9), 761-784.
  • Stathopoulou, C., & Vosniadou, S. (2007). Exploring the relationship between physics related epistemological beliefs and physics understanding. Contemporary Educational Psychology, 32(3), 255-281.
  • Steffe, L. P. (1991). The constructivist teaching experiment: Illustrations and implications. In E. vonGlasersfeld (Ed.), Radical constructivism in mathematics education (pp. 177-194). Boston, MA: Kluwer Academic Press.
  • Steffe, L. P., & Thompson, P. W. (2000). Teaching experiment methodology: Underlying principles and essential elements. In R. Lesh & A. E. Kelly (Eds.), Research design in mathematics and science education (pp. 267-307). Hillsdale, NJ: Erlbaum.
  • Steffe, L.P., Thompson, P.W. & Glasersfeld, V. E. (2000). Teaching experiment methodology: Underlying principles and essential elements. In A.E. Kelly ve R.A. Lesh (Eds.), Handbook of Research design in mathematics and science education (pp. 267-306), Mahwah, NJ: Lawrence Erlbaum Associates, Publishers.
  • Von Glasersfeld, E. (1995). Radical Constructivism: A Way of Knowing and Learning. Studies in Mathematics Education Series: 6. Falmer Press, Taylor & Francis Inc., 1900 Frost Road, Suite 101, Bristol, PA 19007.
  • Yıldırım, A., & Şimşek, H. (2005). Sosyal Bilimlerde Nitel Araştırma Yöntemleri. Ankara: Seçkin Yayıncılık.

Improvement of Students’ Scientific Epistemological Beliefs and Metacognitive Awareness through Argument-Based Inquiry Teaching

Year 2020, Volume: 7 Issue: 2, 122 - 144, 29.11.2020

Abstract

The main aim of the study is to obtain a more detailed understanding on how teaching argument-based inquiry helps develop students’ scientific epistemological beliefs and metacognitive awareness. Argument-based inquiry was used as the teaching method in this research. In research done up to now in science education, this method has not been used to determine the scientific epistemological beliefs and metacognitive awareness of middle school students. Consequently, this study is important in terms of filling this vacancy in the area. In this study, whole-class teaching experiment method was used in the teaching period. In this method, the researcher takes up the role of the teacher, and at the same time, combines theory and practice in a classroom setting. The present study was carried out in one of the public middle school. The researcher used two scales as pre and post-tests, they are Epistemological Beliefs Questionnaire and Metacognitive Awareness Inventory. The researcher used both descriptive statistics and inferential statistics so as to analyse the data. The researcher put forward descriptive statistics as percentages, mean, range, standard deviation, minimum, maximum, skewness and kurtosis on the other hand for inferential statistics the researcher used paired-sample t-test to analyse the mean differences between pre and post-tests. The results demonstrated that there is a significant difference between the mean scores for scientific epistemological beliefs pre-test and post-test. However, the results showed that no significant difference between the mean scores for metacognitive awareness pre-test and post-test.

References

  • Akin, A., Abaci, R., & Cetin, B. (2007). The validity and reliability study of the turkish version of the metacognitive awareness inventory. Educational Science: Theory & Practice, 7(2), 671-678.
  • Ann Haefner, L., & Zembal‐Saul, C. (2004). Learning by doing? Prospective elementary teachers’ developing understandings of scientific inquiry and science teaching and learning. International Journal of Science Education, 26(13), 1653-1674.
  • Aslan, S. (2010). Ortaöğretim 10. sınıf öğrencilerinin üst bilimsel süreç ve eleştirel düşünme becerilerinin geliştirilmesine bilimsel tartışma odaklı öğretim yaklaşımının etkisi (Unpublished doctoral dissertation). Gazi University, Ankara.
  • Bloom, B. S., Hastings, J. T., & Madaus, G. F. (1971). Handbook on formative and summative assessment of student learning. New York: McGraw-Hill Book Co.
  • Buehl, M. M., & Alexander, P. A. (2001). Beliefs about academic knowledge. Educational Psychology Review, 13(4), 385-418.
  • Cano, F. (2005). Epistemological beliefs and approaches to learning: their change through secondary school and their influence on academic performance. British Journal of Educational Psychology, 75, 203-221.
  • Cartier, J., Rudolph, J., & Stewart, J. (2001). The nature and structure of scientific models. National Center for Improving Student Learning and Achievement in Mathematics and Science (NCISLA).
  • Caulfield-Sloan, M. B., & Ruzicka, M. F. (2005). The Effect of Teachers’ Staff Development in the Use of Higher-Order Questioning Strategies on Third Grade Students’ Rubric Science Assessment Performance. Planning and Changing, 36, 157-175.
  • Cobb, P., & Steffe, L. P. (1983). The constructivist researcher as teacher and model builder. Journal for Research in Mathematics Education, 14(2), 83-94.
  • Conley, A. M., Pintrich, P. R., Wekiri, I., & Harrison, D. (2004). Changes in epistemological beliefs in elementary science students. Contemporary Educational Psychology, 29,186-204.
  • Çalışoğlu, M., Tortum, T., Erişmiş, F., & Koçyiğit, D. (2015). Yeni yapılandırılan 3. sınıf hayat bilgisi ve fen bilimleri derslerine yönelik öğretmen görüşleri. Journal of International Multidisciplinary Academic Researches, 2(2), 1-11.
  • Deryakulu, D. (2002). Denetim odağı ve epistemolojik inançların öğretim materyalini kavramayı denetleme türü ve düzeyi ile ilişkisi. Hacettepe Üniversitesi Eğitim Bilimleri Fakültesi Dergisi, 22, 55-61.
  • Deryakulu, D., & Bıkmaz, F. H. (2003). Bilimsel epistemolojik inançlar ölçeğinin geçerlik ve güvenirlik çalışması. Eğitim Bilimleri ve Uygulama 2(4), 243-257.
  • Engelhardt, P. V., Corpuz, E. G., Ozimek, D. J. & Rebello, N. S. (2003). The teaching experiment - What it is and what it isn’t. Paper presented at the Physics Education Research Conference, Madison, WI.
  • Eroğlu E.S., & Güven K. (2006). Üniversite öğrencilerinin epistemolojik inançlarının bazı değişkenler açısından incelenmesi. Selçuk Üniversitesi Sosyal Bilimler Enstitüsü Dergisi, 1(16), 295-312.
  • Facione, P. A. (1998). Critical thinking: What it is and why it counts. Millbrae, CA: The California Academic Press.
  • Field, A. (2009). Discovering Statistics Using SPSS (3rd Ed). London: Sage.
  • Güven, B. (2006). Öğretmen adaylarının küresel geometri anlama düzeylerinin karakterize edilmesi (Unpublished doctoral dissertation). Karadeniz Teknik University, Trabzon.
  • Haladyna, T. M. (1997). Writing Test Items to Evaluate Higher Order Thinking. Allyn & Bacon, 160 Gould Street, Needham Heights, MA 02194-2310.
  • Hammer, D. (1994). Epistemological beliefs in introductory physics. Cognition and Instruction, 12(2), 151-183.
  • Hand, B., Prain, V., & Wallace, C. (2002). Influences of writing tasks on students' answers to recall and higher-level test questions. Research in Science Education, 32(1), 19-34.
  • Hand, B., Wallace, C. W., & Yang, E. M. (2004). Using a Science Writing Heuristic to enhance learning outcomes from laboratory activities in seventh‐grade science: quantitative and qualitative aspects. International Journal of Science Education, 26(2), 131-149.
  • Henderson, J. (2001). Reflective teaching: Professional artistry through inquiry (3rd ed.). Upper Saddle River, NJ: Merrill/Prentice Hall. Hohenshell, L. M., & Hand, B. (2006). Writing‐to‐learn strategies in secondary school cell biology: A mixed method study. International Journal of Science Education, 28(2-3), 261-289.
  • Hunting, R. P. (1997). Clinical interview methods in mathematics education research and practice. Journal of Mathematical Behavior. 16(2), 145-165.
  • Keys, C. W., Hand, B., Prain, V., & Collins, S. (1999). Using the science writing heuristic as a tool for learning from laboratory investigations in secondary science. Journal of Research in Science Teaching, 36(10), 1065-1084.
  • Kramarski, B., Mevarech, Z. R., & Arami, M. (2002). The effects of metacognitive instruction on solving mathematical authentic tasks. Educational Studies in Mathematics, 49(2), 225-250.
  • Lesh, R., & Kelly, A. (2000). Multitiered teaching experiments. In A. Kelly & R. Lesh (Eds.), Research Design in Mathematics and Science Education (pp. 197-230). Mahwah, NJ: Lawrence Earlbaum Associates.
  • Milli Eğitim Bakanlığı- MONE (2013). İlköğretim kurumları (ilkokullar ve ortaokullar) fen bilimleri dersi, (3, 4, 5, 6, 7 ve 8. sınıflar) öğretim programı. Ankara: Talim Terbiye Kurulu Başkanlığı.
  • Özkan, S. (2008). Modeling elementary students’ science achievement: The interrelationships among epistemological beliefs, learning approaches, and self-regulated learning strategies (Unpublished doctoral dissertation). Middle East Technical University, Ankara.
  • Patton, M. Q. (2002). Two decades of developments in qualitative inquiry a personal, experiential perspective. Qualitative Social Work, 1(3), 261-283.
  • Piaget, J. (1952). The child’s conception of number. New York: Humanities Press. Sampson, V., & Gleim, L. (2009). Argument-driven inquiry to promote the understanding of important concepts & practices in biology. The American Biology Teacher, 71(8), 465-472.
  • Schraw, G. & Dennison, R. S. (1994). Assesing metacognitive awareness, Contemporary Educational Psychology, 19, 460-475.
  • Smith, C. L., Maclin, D., Houghton, C., & Hennessey, M. G. (2000). Sixth-grade students’ epistemologies of science: The impact of school science experiences on epistemological development. Cognition and Instruction, 18(3), 349-422.
  • Songer, N. B., & Linn, M. C. (1991). How do students’ views of science influence knowledge integration? Journal of Research in Science Teaching, 28(9), 761-784.
  • Stathopoulou, C., & Vosniadou, S. (2007). Exploring the relationship between physics related epistemological beliefs and physics understanding. Contemporary Educational Psychology, 32(3), 255-281.
  • Steffe, L. P. (1991). The constructivist teaching experiment: Illustrations and implications. In E. vonGlasersfeld (Ed.), Radical constructivism in mathematics education (pp. 177-194). Boston, MA: Kluwer Academic Press.
  • Steffe, L. P., & Thompson, P. W. (2000). Teaching experiment methodology: Underlying principles and essential elements. In R. Lesh & A. E. Kelly (Eds.), Research design in mathematics and science education (pp. 267-307). Hillsdale, NJ: Erlbaum.
  • Steffe, L.P., Thompson, P.W. & Glasersfeld, V. E. (2000). Teaching experiment methodology: Underlying principles and essential elements. In A.E. Kelly ve R.A. Lesh (Eds.), Handbook of Research design in mathematics and science education (pp. 267-306), Mahwah, NJ: Lawrence Erlbaum Associates, Publishers.
  • Von Glasersfeld, E. (1995). Radical Constructivism: A Way of Knowing and Learning. Studies in Mathematics Education Series: 6. Falmer Press, Taylor & Francis Inc., 1900 Frost Road, Suite 101, Bristol, PA 19007.
  • Yıldırım, A., & Şimşek, H. (2005). Sosyal Bilimlerde Nitel Araştırma Yöntemleri. Ankara: Seçkin Yayıncılık.
There are 40 citations in total.

Details

Primary Language English
Subjects Other Fields of Education
Journal Section Articles
Authors

Yurdagul Bogar

Publication Date November 29, 2020
Published in Issue Year 2020 Volume: 7 Issue: 2

Cite

APA Bogar, Y. (2020). Improvement of Students’ Scientific Epistemological Beliefs and Metacognitive Awareness through Argument-Based Inquiry Teaching. Osmangazi Journal of Educational Research, 7(2), 122-144.