Research Article
BibTex RIS Cite
Year 2022, Volume: 9 Issue: 2, 139 - 164, 25.12.2022

Abstract

Supporting Institution

Yok

Project Number

Yok

References

  • Ainley, J., Pratt, D., & Hansen, A. (2006). Connecting engagement and focus in pedagogic task design. British Educational Research Journal, 32(1), 23-38. https://doi.org/10.1080/01411920500401971
  • Arastaman, G., Fidan, İ. Ö., & Fidan, T. (2018). Nitel araştırmada geçerlik ve güvenirlik: Kuramsal bir inceleme. Yüzüncü Yıl Üniversitesi Eğitim Fakültesi Dergisi, 15(1), 37-75. http://dx.doi.org/10.23891/efdyyu.2018.61
  • Ball, D. L. (1988). Unlearning to teach mathematics. National Center for Research on Teacher Education.
  • Ball, D. L. (1996). Teacher learning and the mathematics reform: What we think we know and what we need to learn. Phi Delta Kappan International, 77(7), 500-508.
  • Burkhardt, H., & Swan, M. (2013). Task design for systemic improvement: Principles and frameworks. In C. Margolinas (Ed.). Task design in mathematics education (Proceedings of ICMI Study 22. ICMI Study 22, Jul 2014, Oxford, United Kingdom) pp. 431-439. Oxford, United Kingdom.
  • Cobb, P. (1994). An exchange: Constructivism in mathematics and science education. Educational Researcher, 23(7), 4–4. https://doi.org/10.2307/1176932
  • Çenberci, S., & Özgen, K. (2021). Matematik öğretmen adaylarının etkinlik tasarımında günlük yaşamla ilişkilendirmeyi yansıtma becerileri. Batı Anadolu Eğitim Bilimleri Dergisi, 12(1), 70-95. https://doi.org/10.51460/baebd.838118
  • Doyle, W. (1983). Academic work. Review of Educational Research, 53(2), 159-199. https://doi.org/10.3102/00346543053002159
  • Feiman-Nemser, S., & Featherstone, H. (1992). The student, the teacher, and the moon. In S. Feiman-Nemser & H. Featherstone (Eds.), Exploring teaching: Reinventing an introductory course. Teacher College Press.
  • Fosnot, C. T. (1989). Enquiring teachers, enquiring learners: A constructivist approach for teaching. Teachers College Press.
  • Geiger, V., Forgasz, H., Goos, M., & Bennison, A. (2014). Devising principles of design for numeracy tasks. In J. Anderson, M. Cavanagh & A. Prescott (Eds.). Curriculum in focus: Research guided practice (Proceedings of the 37th annual conference of the Mathematics Education Research Group of Australasia) pp. 239–246. Sydney: Merga.
  • Geiger, V., Galbraith, P., Niss, M., & Delzoppo, C. (2022). Develoing a task design and implementation framework for fostering mathematical modelling competencies. Educational Studies in Mathematics, 109, 313-336. https://doi.org/10.1007/s10649-021-10039-y
  • Glaser, R. (1989). Expertise and learning: How do we think about instructional processes now that we have discovered knowledge structures? In D. Klahr & K. Kotovsky (Eds.), Complex information processing: The impact of Herbert A. Simon (pp. 269-282). Erlbaum.
  • Gustafsson, P., & Ryve, A. (2021). Developing design principles and task types for classroom response system tasks in mathematics. International Journal of Mathematical Education in Science and Technology. DOI: 10.1080/0020739X.2021.1931514
  • Kamii, C., Lewis, B. A., & Kirkland, L. (2001). Manipulatives: When are they useful? Journal of Mathematical Behavior, 20(1), 21-31. https://doi.org/10.1016/S0732-3123(01)00059-1
  • Kieran, C., Doorman, M., & Ohtani, M. (2015). Frameworks and principles for task design. In A. Watson, M. Ohtani (Eds.), Task design in mathematics education (pp. 19-81). Springer. https://doi.org/10.1007/978-3-319-09629-2_2
  • Komatsu, K., & Jones, K. (2019). Task design principles for heuristic refutation in dynamic geometry environments. International Journal of Science and Mathematics Education, 17, 801-824. https://doi.org/10.1007/s10763-018-9892-0
  • Lesh, R., Post, T., & Behr, M. (1987). Representations and translations among representations in mathematics learning and problem solving. Problems of Representation in the Teaching and Learning of Mathematics, 21, 33-40.
  • Leung, A., & Baccaglini-Frank, A. (2017). Digital technologies in designing mathematics education tasks. Mathematics Education in the Digital Era.
  • Liljedahl, P., Chernoff, E., & Zazkis, R. (2007). Interweaving mathematics and pedagogy in task design: A tale of one task. Journal of Mathematics Teacher Education, 10, 239-249. https://doi.org/10.1007/s10857-007-9047-7
  • Lithner, J. (2017). Principles for designing mathematical tasks that enhance imitative and creative reasoning. Zdm-Mathematics Education, 49(6), 937-949. https://doi.org/10.1007/s11858-017-0867-3
  • MacDonald, J. (2008). Blended learning and online tutoring: Planning learner support and activity design (2. bs. ed.). Gower Publishing Company.
  • Miles, M. B., & Huberman, A. M. (1994). Qualitative data analysis: An expanded sourcebook. Sage.
  • MEB. (2018). Talim ve Terbiye Kurulu Başkanlığı ilköğretim matematik dersi (1,2,3,4,5, 6, 7 ve 8. sınıflar) öğretim programı. Milli Eğitim Bakanlığı.
  • Mosenthal, J. H., & Ball, D. L. (1992). Constructing new forms of teaching: Subject matter knowledge in inservice teacher education. Journal of Teacher Education, 43, 347-356.
  • Özkan, U. B. (2021). Eğitim bilimleri araştırmaları için doküman inceleme yöntemi. Ankara: Pegem Akademi.
  • Özmantar, M. F., & Bingölbali, E. (2009). Etkinlik tasarımı ve temel tasarım prensipleri. E. Bingölballi ve M. F. Özmantar (Editörler), İlköğretimde karşılaşılan matematiksel zorluklar ve çözüm önerileri içinde (s. 313-348). Pegem Akademi.
  • Öztürk, B., & Kurtuluş, A. (2017). Ortaokul öğrencilerinin üstbilişsel farkındalık düzeyi ile matematik öz yeterlik algısının matematik başarısına etkisi. Dicle Üniversitesi Ziya Gökalp Eğitim Fakültesi Dergisi, 31, 762-778. https://doi.org/10.14582/DUZGEF.1840
  • Öztürk, F. ve Işık, A. (2018). İlköğretim matematik öğretmeni adaylarının etkinlik hazırlama süreçlerinin incelenmesi. Bayburt Eğitim Fakültesi Dergisi, 13(26), 513-545.
  • Partnership for 21st Century Skills. (2009). A framework for twenty-first century learning. Retrieved from http://www.p21.org/
  • Patton, M. Q. (1987). How to use qualitative methods in evaluation. Sage.
  • Roehrig, G.H., Moore, T.J., Wang, H.-H., & Park, M.S. (2012). Is adding the e enough? Investigating the impact of K-12 engineering standards on the implementation of STEM integration. School Science and Mathematics, 112, 31-44. https://doi.org/10.1111/j.1949-8594.2011.00112.x
  • Romberg, T. A. (1992). Mathematics assessment and evaluation: Imperatives for mathematics educators. Wisconsin Center for Education Research.
  • Stein, M. K., & Bovalino, J. W. (2001). Manipulatives: One piece of the puzzle. Mathematics Teaching in the Middle School, 6(6), 356-359.
  • Stein, M. K., & Lane, S. (1996) Instructional tasks and the development of student capacity to think and reason: An analysis of the relationship between teaching and learning in a reform mathematics project. Educational Research and Evaluation, 2(1), 50-80. DOI: 10.1080/1380361960020103
  • Stylianides, A. J., & Stylianides, G. J. (2008). Studying the classroom implementation of tasks: High-level mathematical tasks embedded in ‘real-life’contexts. Teaching and Teacher Education, 24(4), 859-875. https://doi.org/10.1016/j.tate.2007.11.015
  • Türkiye Yeterlik Çerçevesi [TYÇ]. (2022). Türkiye yeterlikler çerçevesi tanımlayıcıları. Retrieved from https://www.tyc.gov.tr/sayfa/seviye-tanimlayicilari-i712200cd-6948-4b48-8c34-4ad207efbaac.html
  • Uğurel, I., & Bukova-Güzel, E. (2010). Matematiksel öğrenme etkinlikleri üzerine bir araştırma ve kavramsal bir çerçeve önerisi. Hacettepe Üniversitesi Eğitim Fakültesi Dergisi, 39, 333-347.
  • Van de Walle, J. A. (2007). Elementary and middle school mathematics: Teaching developmentally (6th ed.). Pearson /Allyn and Bacon.
  • Yeşildere-İmre, S. (2020). Matematiksel etkinlik tasarım ilkeleri. Y. Dede, M. F. Doğan ve F. Aslan-Tutak (Editörler), Matematik eğitiminde etkinlikler ve uygulamaları içinde (ss. 165-188). Pegem Akademi, Ankara.
  • Yıldırım, A., & Şimşek, H. (2011). Sosyal bilimlerde nitel araştırma yöntemleri. Ankara: Seçkin Yayıncılık.

Evaluation of Primary School Mathematics Teacher Candidates' Activity Design Processes in the Context of Activity Design Principles

Year 2022, Volume: 9 Issue: 2, 139 - 164, 25.12.2022

Abstract

Activity design is an integral part of mathematics education. This study aims to examine the pre-service primary level mathematics teachers’ consideration of the principles of activity design in the process of designing activities. For this purpose, a multiple case study as a qualitative research method was used in the study. The participants of the study consisted of 54 undergraduate students studying in the 3rd year of Primary Level Mathematics Teacher Education programme of a state university in the spring semester of the 2020-2021 academic year. The data of the study were collected by examining the activity designs in the lesson plans prepared by the students. In the analysis of the data obtained, descriptive analysis was carried out in line with the theoretical framework put forward by Yeşildere-İmre (2020). Based on the research findings, it was determined that none of the pre-service teachers included the student perspective in the purpose statement in the activities they designed and all pre-service teachers expressed the purpose of the activity from the perspective of the instructor. In addition, it was found that none of the pre-service teachers designed an activity which considered assessment. In addition, it was observed that none of the pre-service teachers used an expression for informing the students within the scope of the assessment of the activity.

Project Number

Yok

References

  • Ainley, J., Pratt, D., & Hansen, A. (2006). Connecting engagement and focus in pedagogic task design. British Educational Research Journal, 32(1), 23-38. https://doi.org/10.1080/01411920500401971
  • Arastaman, G., Fidan, İ. Ö., & Fidan, T. (2018). Nitel araştırmada geçerlik ve güvenirlik: Kuramsal bir inceleme. Yüzüncü Yıl Üniversitesi Eğitim Fakültesi Dergisi, 15(1), 37-75. http://dx.doi.org/10.23891/efdyyu.2018.61
  • Ball, D. L. (1988). Unlearning to teach mathematics. National Center for Research on Teacher Education.
  • Ball, D. L. (1996). Teacher learning and the mathematics reform: What we think we know and what we need to learn. Phi Delta Kappan International, 77(7), 500-508.
  • Burkhardt, H., & Swan, M. (2013). Task design for systemic improvement: Principles and frameworks. In C. Margolinas (Ed.). Task design in mathematics education (Proceedings of ICMI Study 22. ICMI Study 22, Jul 2014, Oxford, United Kingdom) pp. 431-439. Oxford, United Kingdom.
  • Cobb, P. (1994). An exchange: Constructivism in mathematics and science education. Educational Researcher, 23(7), 4–4. https://doi.org/10.2307/1176932
  • Çenberci, S., & Özgen, K. (2021). Matematik öğretmen adaylarının etkinlik tasarımında günlük yaşamla ilişkilendirmeyi yansıtma becerileri. Batı Anadolu Eğitim Bilimleri Dergisi, 12(1), 70-95. https://doi.org/10.51460/baebd.838118
  • Doyle, W. (1983). Academic work. Review of Educational Research, 53(2), 159-199. https://doi.org/10.3102/00346543053002159
  • Feiman-Nemser, S., & Featherstone, H. (1992). The student, the teacher, and the moon. In S. Feiman-Nemser & H. Featherstone (Eds.), Exploring teaching: Reinventing an introductory course. Teacher College Press.
  • Fosnot, C. T. (1989). Enquiring teachers, enquiring learners: A constructivist approach for teaching. Teachers College Press.
  • Geiger, V., Forgasz, H., Goos, M., & Bennison, A. (2014). Devising principles of design for numeracy tasks. In J. Anderson, M. Cavanagh & A. Prescott (Eds.). Curriculum in focus: Research guided practice (Proceedings of the 37th annual conference of the Mathematics Education Research Group of Australasia) pp. 239–246. Sydney: Merga.
  • Geiger, V., Galbraith, P., Niss, M., & Delzoppo, C. (2022). Develoing a task design and implementation framework for fostering mathematical modelling competencies. Educational Studies in Mathematics, 109, 313-336. https://doi.org/10.1007/s10649-021-10039-y
  • Glaser, R. (1989). Expertise and learning: How do we think about instructional processes now that we have discovered knowledge structures? In D. Klahr & K. Kotovsky (Eds.), Complex information processing: The impact of Herbert A. Simon (pp. 269-282). Erlbaum.
  • Gustafsson, P., & Ryve, A. (2021). Developing design principles and task types for classroom response system tasks in mathematics. International Journal of Mathematical Education in Science and Technology. DOI: 10.1080/0020739X.2021.1931514
  • Kamii, C., Lewis, B. A., & Kirkland, L. (2001). Manipulatives: When are they useful? Journal of Mathematical Behavior, 20(1), 21-31. https://doi.org/10.1016/S0732-3123(01)00059-1
  • Kieran, C., Doorman, M., & Ohtani, M. (2015). Frameworks and principles for task design. In A. Watson, M. Ohtani (Eds.), Task design in mathematics education (pp. 19-81). Springer. https://doi.org/10.1007/978-3-319-09629-2_2
  • Komatsu, K., & Jones, K. (2019). Task design principles for heuristic refutation in dynamic geometry environments. International Journal of Science and Mathematics Education, 17, 801-824. https://doi.org/10.1007/s10763-018-9892-0
  • Lesh, R., Post, T., & Behr, M. (1987). Representations and translations among representations in mathematics learning and problem solving. Problems of Representation in the Teaching and Learning of Mathematics, 21, 33-40.
  • Leung, A., & Baccaglini-Frank, A. (2017). Digital technologies in designing mathematics education tasks. Mathematics Education in the Digital Era.
  • Liljedahl, P., Chernoff, E., & Zazkis, R. (2007). Interweaving mathematics and pedagogy in task design: A tale of one task. Journal of Mathematics Teacher Education, 10, 239-249. https://doi.org/10.1007/s10857-007-9047-7
  • Lithner, J. (2017). Principles for designing mathematical tasks that enhance imitative and creative reasoning. Zdm-Mathematics Education, 49(6), 937-949. https://doi.org/10.1007/s11858-017-0867-3
  • MacDonald, J. (2008). Blended learning and online tutoring: Planning learner support and activity design (2. bs. ed.). Gower Publishing Company.
  • Miles, M. B., & Huberman, A. M. (1994). Qualitative data analysis: An expanded sourcebook. Sage.
  • MEB. (2018). Talim ve Terbiye Kurulu Başkanlığı ilköğretim matematik dersi (1,2,3,4,5, 6, 7 ve 8. sınıflar) öğretim programı. Milli Eğitim Bakanlığı.
  • Mosenthal, J. H., & Ball, D. L. (1992). Constructing new forms of teaching: Subject matter knowledge in inservice teacher education. Journal of Teacher Education, 43, 347-356.
  • Özkan, U. B. (2021). Eğitim bilimleri araştırmaları için doküman inceleme yöntemi. Ankara: Pegem Akademi.
  • Özmantar, M. F., & Bingölbali, E. (2009). Etkinlik tasarımı ve temel tasarım prensipleri. E. Bingölballi ve M. F. Özmantar (Editörler), İlköğretimde karşılaşılan matematiksel zorluklar ve çözüm önerileri içinde (s. 313-348). Pegem Akademi.
  • Öztürk, B., & Kurtuluş, A. (2017). Ortaokul öğrencilerinin üstbilişsel farkındalık düzeyi ile matematik öz yeterlik algısının matematik başarısına etkisi. Dicle Üniversitesi Ziya Gökalp Eğitim Fakültesi Dergisi, 31, 762-778. https://doi.org/10.14582/DUZGEF.1840
  • Öztürk, F. ve Işık, A. (2018). İlköğretim matematik öğretmeni adaylarının etkinlik hazırlama süreçlerinin incelenmesi. Bayburt Eğitim Fakültesi Dergisi, 13(26), 513-545.
  • Partnership for 21st Century Skills. (2009). A framework for twenty-first century learning. Retrieved from http://www.p21.org/
  • Patton, M. Q. (1987). How to use qualitative methods in evaluation. Sage.
  • Roehrig, G.H., Moore, T.J., Wang, H.-H., & Park, M.S. (2012). Is adding the e enough? Investigating the impact of K-12 engineering standards on the implementation of STEM integration. School Science and Mathematics, 112, 31-44. https://doi.org/10.1111/j.1949-8594.2011.00112.x
  • Romberg, T. A. (1992). Mathematics assessment and evaluation: Imperatives for mathematics educators. Wisconsin Center for Education Research.
  • Stein, M. K., & Bovalino, J. W. (2001). Manipulatives: One piece of the puzzle. Mathematics Teaching in the Middle School, 6(6), 356-359.
  • Stein, M. K., & Lane, S. (1996) Instructional tasks and the development of student capacity to think and reason: An analysis of the relationship between teaching and learning in a reform mathematics project. Educational Research and Evaluation, 2(1), 50-80. DOI: 10.1080/1380361960020103
  • Stylianides, A. J., & Stylianides, G. J. (2008). Studying the classroom implementation of tasks: High-level mathematical tasks embedded in ‘real-life’contexts. Teaching and Teacher Education, 24(4), 859-875. https://doi.org/10.1016/j.tate.2007.11.015
  • Türkiye Yeterlik Çerçevesi [TYÇ]. (2022). Türkiye yeterlikler çerçevesi tanımlayıcıları. Retrieved from https://www.tyc.gov.tr/sayfa/seviye-tanimlayicilari-i712200cd-6948-4b48-8c34-4ad207efbaac.html
  • Uğurel, I., & Bukova-Güzel, E. (2010). Matematiksel öğrenme etkinlikleri üzerine bir araştırma ve kavramsal bir çerçeve önerisi. Hacettepe Üniversitesi Eğitim Fakültesi Dergisi, 39, 333-347.
  • Van de Walle, J. A. (2007). Elementary and middle school mathematics: Teaching developmentally (6th ed.). Pearson /Allyn and Bacon.
  • Yeşildere-İmre, S. (2020). Matematiksel etkinlik tasarım ilkeleri. Y. Dede, M. F. Doğan ve F. Aslan-Tutak (Editörler), Matematik eğitiminde etkinlikler ve uygulamaları içinde (ss. 165-188). Pegem Akademi, Ankara.
  • Yıldırım, A., & Şimşek, H. (2011). Sosyal bilimlerde nitel araştırma yöntemleri. Ankara: Seçkin Yayıncılık.
There are 41 citations in total.

Details

Primary Language English
Subjects Other Fields of Education
Journal Section Articles
Authors

Gülşade Savaş

Emine Nur Ünveren Bilgiç 0000-0001-9684-4192

Project Number Yok
Publication Date December 25, 2022
Published in Issue Year 2022 Volume: 9 Issue: 2

Cite

APA Savaş, G., & Ünveren Bilgiç, E. N. (2022). Evaluation of Primary School Mathematics Teacher Candidates’ Activity Design Processes in the Context of Activity Design Principles. Osmangazi Journal of Educational Research, 9(2), 139-164.