Research Article
PDF Zotero Mendeley EndNote BibTex Cite

N-[2-(3-Metiltiyo(1,2,4-Tiyadiazol-5-yltiyo))asetil]benzamid Molekülünün İntegrin ve DNA ile Moleküler Kenetlenme Analizi

Year 2021, Volume 6, Issue 2, 19 - 27, 31.12.2021

Abstract

N-[2-(3-Metiltiyo(1,2,4-tiyadiazol-5-yltiyo))asetil]benzamid molekülünün (C12H11N3O2S3) en kararlı yapısı yarı deneysel AM1 hesaplamaları kullanılarak konformasyon analizi ile belirlenmiştir. Elde edilen en kararlı konformasyon, moleküler kenetlenme analizinde N-[2-(3-Metiltiyo(1,2,4-tiyadiazol-5-yltiyo))asetil]benzamid molekülünün başlangıç verisi olarak kullanılmıştır. Bu molekülün DNA ve hedef protein α5β1 integrini ile yapılan moleküler kenetlenme çalışmaları sonucunda bağlanma afiniteleri sırasıyla ΔG = -7.4 ve -7.7 kcal/mol olarak bulunmuştur. Antikanser çalışmalarda önemli rol oynayan hedef protein integrin ve DNA'nın bağlanma bölgeleri ve ligand-integrin ve ligand-DNA komplekslerinin etkileşimleri belirlenmiştir. İncelenen molekülün hedef moleküllerdeki 3D kenetlenmiş yapıları ve ligand reseptör komplekslerinin etkileşime giren grupları hesaplanmış ve şekillerde gösterilmiştir.

References

  • [1] Dikshith, T. S. S. (2013). Hazardous chemicals: safety management and global regulations. CRC press.
  • [2] Vincoli, J. W. (1996). Risk management for hazardous chemicals (Vol. 1). CRC Press.
  • [3] Penfold, B. R., & White, J. C. (1959). The crystal and molecular structure of benzamide. Acta Crystallographica, 12(2), 130-135.
  • [4] Huc, I. (2004). Aromatic oligoamide foldamers. European Journal of Organic Chemistry, 2004(1), 17-29.
  • [5] Kwolek, S. L., Morgan, P. W., Schaefgen, J. R., & Gulrich, L. W. (1977). Synthesis, anisotropic solutions, and fibers of poly (1, 4-benzamide). Macromolecules, 10(6), 1390-1396.
  • [6] Abe, Y. (2012). Polymer Science: A Comprehensive Reference, Lyotropic Polycondensation including Fibers, 469–495. doi:10.1016/B978-0-444-53349-4.00150-3.
  • [7] Asif, M. (2016). Pharmacological potential of benzamide analogues and their uses in medicinal chemistry. Modern Chemistry & Applications, 4(4), 1000194.
  • [8] Kreinin, A., Novitski, D., & Weizman, A. (2006). Amisulpride treatment of clozapine-induced hypersalivation in schizophrenia patients: a randomized, double-blind, placebo-controlled cross-over study. International clinical psychopharmacology, 21(2), 99-103.
  • [9] Ovdiichuk, O. (2016). New Variety of Pyridine and Pyrazine-Based Arginine Mimics: Synthesis, Structural Study and Preliminary Biological Evaluation (Doctoral dissertation, Université de Lorraine).
  • [10] Rouanet, J., Quintana, M., Auzeloux, P., Cachin, F., & Degoul, F. (2021). Benzamide derivative radiotracers targeting melanin for melanoma imaging and therapy: Preclinical/clinical development and combination with other treatments. Pharmacology & Therapeutics, 107829.
  • [11] Ren, G., Miao, Z., Liu, H., Jiang, L., Limpa-Amara, N., Mahmood, A & Cheng, Z. (2009). Melanin-targeted preclinical PET imaging of melanoma metastasis. Journal of Nuclear Medicine, 50(10), 1692-1699.
  • [12] Yilmaz, S., Ataei, S., & Yildiz, İ. (2020). Molecular docking studies on some benzamide derivatives as topoisomerase inhibitors. Journal of Faculty of Pharmacy of Ankara University, 44(3), 470-480.
  • [13] Bishayee, A., & Bhatia, D. (Eds.). (2018). Epigenetics of cancer prevention (Vol. 8). Academic Press.
  • [14] Gerson, S. L., Caimi, P. F., William, B. M., & Creger, R. J. (2018). Pharmacology and molecular mechanisms of antineoplastic agents for hematologic malignancies. In Hematology (pp. 849-912). Elsevier.
  • [15] Mottamal, M., Zheng, S., Huang, T. L., & Wang, G. (2015). Histone deacetylase inhibitors in clinical studies as templates for new anticancer agents. Molecules, 20(3), 3898-3941.
  • [16] Garmpis, N., Damaskos, C., Garmpi, A., Valsami, S., & Dimitroulis, D. (2019). Pharmacoepigenetics of Histone Deacetylase Inhibitors in Cancer. In Pharmacoepigenetics (pp. 501-521). Academic Press.
  • [17] Vilwanathan, R., Chidambaram, A., & Chidambaram, R. K. (2019). Pharmacoepigenetics: Novel Mechanistic Insights in Drug Discovery and Development Targeting Chromatin-Modifying Enzymes. In Pharmacoepigenetics (pp. 437-445). Academic Press.
  • [18] Tumer, T. B., Onder, F. C., Ipek, H., Gungor, T., Savranoglu, S., Tok, T. T., ... & Ay, M. (2017). Biological evaluation and molecular docking studies of nitro benzamide derivatives with respect to in vitro anti-inflammatory activity. International immunopharmacology, 43, 129-139.
  • [19] Martinez-Mayorga, K., Peppard, T. L., López-Vallejo, F., Yongye, A. B., & Medina-Franco, J. L. (2013). Systematic mining of generally recognized as safe (GRAS) flavor chemicals for bioactive compounds. Journal of agricultural and food chemistry, 61(31), 7507-7514.
  • [20] Shao, Y., Molnar, L. F., Jung, Y., Kussmann, J., Ochsenfeld, C., Brown, S. T., ... & DiStasio Jr, R. A. (2006). Advances in methods and algorithms in a modern quantum chemistry program package. Physical Chemistry Chemical Physics,8(27), 3172-3191.
  • [21] Devar, M.J.S.;Zoebisch, E.G.; Healy, E.F.; Stewart, J.J.P. (1985). AM1: A new General purposequantum mechanical molecular model. Journal of the American Chemical Society,107, 3902-3909.
  • [22] Jurcik, A.; Bednar, D.; Byska, J.; Marques, S.M.; Furmanova, K.; Daniel, L.;... Pavelka, A. (2018). CAVER Analyst 2.0: analysis and visualization of channels and tunnels in protein structures and molecular dynamics trajectories. Bioinformatics, 34, 3586-3588.
  • [23] Trott, O.; Olson, A.J. (2010). AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Journal of Computational Chemistry,31, 455-461.
  • [24] El-Hashash, M.A.E.M., Salem, M. S., & Al-Mabrook, S.A.M. (2018). Synthesis and anticancer activity of novel quinazolinone and benzamide derivatives. Research on Chemical Intermediates, 44(4), 2545-2559.
  • [25] Drew, H. R., Wing, R. M., Takano, T., Broka, C., Tanaka, S., Itakura, K., &Dickerson, R. E. (1981). Structure of a B-DNA dodecamer:Conformation and dynamics.Proceedings of the National Academy ofSciences,78(4), 2179–2183.
  • [26] Arif, R., Rana, M., Yasmeen, S., Khan, M. S., Abid, M., & Khan, M. S. (2020). Facile synthesis of chalcone derivatives as antibacterial agents: Synthesis, DNA binding, molecular docking, DFT and antioxidant studies. Journal of Molecular Structure, 1208, 127905.
  • [27] Celik, S., Yilmaz, G., Ozel, A. E., & Akyuz, S. (2020). Structural and spectral analysis of anticancer active cyclo (Ala–His) dipeptide. Journal of Biomolecular Structure and Dynamics, 1-13.
  • [28] Akalin, E., Celik, S., & Akyuz, S. (2020). Molecular Modeling, Dimer Calculations, Vibrational Spectra, and Molecular Docking Studies of 5-Chlorouracil. Journal of Applied Spectroscopy, 86(6), 975-985.
  • [29] Xia, W., & Springer, T. A. (2014). Metal ion and ligand binding of integrin α5β1. Proceedings of the National Academy of Sciences, 111(50), 17863-17868.
  • [30] Gasymov, O. K., Celik, S., Agaeva, G., Akyuz, S., Kecel-Gunduz, S., Qocayev, N. M., ... & Aliyev, J. A. (2021). Evaluation of anti-cancer and anti-covid-19 properties of cationic pentapeptide Glu-Gln-Arg-Pro-Arg, from rice bran protein and its d-isomer analogs through molecular docking simulations. Journal of Molecular Graphics and Modelling, 108, 107999.
  • [31] Wang, Z., Wang, X., Li, Y., Lei, T., Wang, E., Li, D., ... & Hou, T. (2019). farPPI: a webserver for accurate prediction of protein-ligand binding structures for small-molecule PPI inhibitors by MM/PB (GB) SA methods. Bioinformatics, 35(10), 1777-1779.
  • [32] Hao, G. F., Jiang, W., Ye, Y. N., Wu, F. X., Zhu, X. L., Guo, F. B., & Yang, G. F. (2016). ACFIS: a web server for fragment-based drug discovery. Nucleic acids research, 44(W1), W550-W556.
  • [33] Hao, G. F., Wang, F., Li, H., Zhu, X. L., Yang, W. C., Huang, L. S., ... & Yang, G. F. (2012). Computational discovery of picomolar Q o site inhibitors of cytochrome bc 1 complex. Journal of the American Chemical Society, 134(27), 11168-11176.
  • [34] Yang, J. F., Wang, F., Jiang, W., Zhou, G. Y., Li, C. Z., Zhu, X. L., ... & Yang, G. F. (2018). PADFrag: a database built for the exploration of bioactive fragment space for drug discovery. Journal of chemical information and modeling, 58(9), 1725-1730.
  • [35] Cheron, N., Jasty, N., & Shakhnovich, E. I. (2016). OpenGrowth: an automated and rational algorithm for finding new protein ligands. Journal of medicinal chemistry, 59(9), 4171-4188.
  • [36] Wang, E., Sun, H., Wang, J., Wang, Z., Liu, H., Zhang, J. Z., & Hou, T. (2019). End-point binding free energy calculation with MM/PBSA and MM/GBSA: strategies and applications in drug design. Chemical reviews, 119(16), 9478-9508.

Molecular Docking Analysis Of N-[2-(3-Methylthio(1,2,4-Thiadiazol-5-Ylthio))Acetyl] Benzamide Molecule With Integrin And DNA

Year 2021, Volume 6, Issue 2, 19 - 27, 31.12.2021

Abstract

The most stable structure of the N-[2-(3-Methylthio(1,2,4-thiadiazol-5-ylthio))acetyl] benzamide molecule (C12H11N3O2S3) have been determined by conformational analyses using semi-experimental AM1 calculations. The obtained most stable conformation has been used as the initial data of N-[2-(3-Methylthio(1,2,4-thiadiazol-5-ylthio))acetyl] benzamide in molecular docking analysis. Molecular docking studies of the title molecule with DNA and target protein α5β1 integrin revealed the binding affinities as ΔG = -7.4 and -7.7 kcal/mol, respectively. The binding sites of the target protein integrin and DNA and the interactions of the ligand-integrin and ligand-DNA complexes have been determined, which play an important role in anticancer studies. The 3D docked structures of the investigated molecule in target molecules and the interacted groups of ligand receptor complexes were calculated and shown in figures.

References

  • [1] Dikshith, T. S. S. (2013). Hazardous chemicals: safety management and global regulations. CRC press.
  • [2] Vincoli, J. W. (1996). Risk management for hazardous chemicals (Vol. 1). CRC Press.
  • [3] Penfold, B. R., & White, J. C. (1959). The crystal and molecular structure of benzamide. Acta Crystallographica, 12(2), 130-135.
  • [4] Huc, I. (2004). Aromatic oligoamide foldamers. European Journal of Organic Chemistry, 2004(1), 17-29.
  • [5] Kwolek, S. L., Morgan, P. W., Schaefgen, J. R., & Gulrich, L. W. (1977). Synthesis, anisotropic solutions, and fibers of poly (1, 4-benzamide). Macromolecules, 10(6), 1390-1396.
  • [6] Abe, Y. (2012). Polymer Science: A Comprehensive Reference, Lyotropic Polycondensation including Fibers, 469–495. doi:10.1016/B978-0-444-53349-4.00150-3.
  • [7] Asif, M. (2016). Pharmacological potential of benzamide analogues and their uses in medicinal chemistry. Modern Chemistry & Applications, 4(4), 1000194.
  • [8] Kreinin, A., Novitski, D., & Weizman, A. (2006). Amisulpride treatment of clozapine-induced hypersalivation in schizophrenia patients: a randomized, double-blind, placebo-controlled cross-over study. International clinical psychopharmacology, 21(2), 99-103.
  • [9] Ovdiichuk, O. (2016). New Variety of Pyridine and Pyrazine-Based Arginine Mimics: Synthesis, Structural Study and Preliminary Biological Evaluation (Doctoral dissertation, Université de Lorraine).
  • [10] Rouanet, J., Quintana, M., Auzeloux, P., Cachin, F., & Degoul, F. (2021). Benzamide derivative radiotracers targeting melanin for melanoma imaging and therapy: Preclinical/clinical development and combination with other treatments. Pharmacology & Therapeutics, 107829.
  • [11] Ren, G., Miao, Z., Liu, H., Jiang, L., Limpa-Amara, N., Mahmood, A & Cheng, Z. (2009). Melanin-targeted preclinical PET imaging of melanoma metastasis. Journal of Nuclear Medicine, 50(10), 1692-1699.
  • [12] Yilmaz, S., Ataei, S., & Yildiz, İ. (2020). Molecular docking studies on some benzamide derivatives as topoisomerase inhibitors. Journal of Faculty of Pharmacy of Ankara University, 44(3), 470-480.
  • [13] Bishayee, A., & Bhatia, D. (Eds.). (2018). Epigenetics of cancer prevention (Vol. 8). Academic Press.
  • [14] Gerson, S. L., Caimi, P. F., William, B. M., & Creger, R. J. (2018). Pharmacology and molecular mechanisms of antineoplastic agents for hematologic malignancies. In Hematology (pp. 849-912). Elsevier.
  • [15] Mottamal, M., Zheng, S., Huang, T. L., & Wang, G. (2015). Histone deacetylase inhibitors in clinical studies as templates for new anticancer agents. Molecules, 20(3), 3898-3941.
  • [16] Garmpis, N., Damaskos, C., Garmpi, A., Valsami, S., & Dimitroulis, D. (2019). Pharmacoepigenetics of Histone Deacetylase Inhibitors in Cancer. In Pharmacoepigenetics (pp. 501-521). Academic Press.
  • [17] Vilwanathan, R., Chidambaram, A., & Chidambaram, R. K. (2019). Pharmacoepigenetics: Novel Mechanistic Insights in Drug Discovery and Development Targeting Chromatin-Modifying Enzymes. In Pharmacoepigenetics (pp. 437-445). Academic Press.
  • [18] Tumer, T. B., Onder, F. C., Ipek, H., Gungor, T., Savranoglu, S., Tok, T. T., ... & Ay, M. (2017). Biological evaluation and molecular docking studies of nitro benzamide derivatives with respect to in vitro anti-inflammatory activity. International immunopharmacology, 43, 129-139.
  • [19] Martinez-Mayorga, K., Peppard, T. L., López-Vallejo, F., Yongye, A. B., & Medina-Franco, J. L. (2013). Systematic mining of generally recognized as safe (GRAS) flavor chemicals for bioactive compounds. Journal of agricultural and food chemistry, 61(31), 7507-7514.
  • [20] Shao, Y., Molnar, L. F., Jung, Y., Kussmann, J., Ochsenfeld, C., Brown, S. T., ... & DiStasio Jr, R. A. (2006). Advances in methods and algorithms in a modern quantum chemistry program package. Physical Chemistry Chemical Physics,8(27), 3172-3191.
  • [21] Devar, M.J.S.;Zoebisch, E.G.; Healy, E.F.; Stewart, J.J.P. (1985). AM1: A new General purposequantum mechanical molecular model. Journal of the American Chemical Society,107, 3902-3909.
  • [22] Jurcik, A.; Bednar, D.; Byska, J.; Marques, S.M.; Furmanova, K.; Daniel, L.;... Pavelka, A. (2018). CAVER Analyst 2.0: analysis and visualization of channels and tunnels in protein structures and molecular dynamics trajectories. Bioinformatics, 34, 3586-3588.
  • [23] Trott, O.; Olson, A.J. (2010). AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Journal of Computational Chemistry,31, 455-461.
  • [24] El-Hashash, M.A.E.M., Salem, M. S., & Al-Mabrook, S.A.M. (2018). Synthesis and anticancer activity of novel quinazolinone and benzamide derivatives. Research on Chemical Intermediates, 44(4), 2545-2559.
  • [25] Drew, H. R., Wing, R. M., Takano, T., Broka, C., Tanaka, S., Itakura, K., &Dickerson, R. E. (1981). Structure of a B-DNA dodecamer:Conformation and dynamics.Proceedings of the National Academy ofSciences,78(4), 2179–2183.
  • [26] Arif, R., Rana, M., Yasmeen, S., Khan, M. S., Abid, M., & Khan, M. S. (2020). Facile synthesis of chalcone derivatives as antibacterial agents: Synthesis, DNA binding, molecular docking, DFT and antioxidant studies. Journal of Molecular Structure, 1208, 127905.
  • [27] Celik, S., Yilmaz, G., Ozel, A. E., & Akyuz, S. (2020). Structural and spectral analysis of anticancer active cyclo (Ala–His) dipeptide. Journal of Biomolecular Structure and Dynamics, 1-13.
  • [28] Akalin, E., Celik, S., & Akyuz, S. (2020). Molecular Modeling, Dimer Calculations, Vibrational Spectra, and Molecular Docking Studies of 5-Chlorouracil. Journal of Applied Spectroscopy, 86(6), 975-985.
  • [29] Xia, W., & Springer, T. A. (2014). Metal ion and ligand binding of integrin α5β1. Proceedings of the National Academy of Sciences, 111(50), 17863-17868.
  • [30] Gasymov, O. K., Celik, S., Agaeva, G., Akyuz, S., Kecel-Gunduz, S., Qocayev, N. M., ... & Aliyev, J. A. (2021). Evaluation of anti-cancer and anti-covid-19 properties of cationic pentapeptide Glu-Gln-Arg-Pro-Arg, from rice bran protein and its d-isomer analogs through molecular docking simulations. Journal of Molecular Graphics and Modelling, 108, 107999.
  • [31] Wang, Z., Wang, X., Li, Y., Lei, T., Wang, E., Li, D., ... & Hou, T. (2019). farPPI: a webserver for accurate prediction of protein-ligand binding structures for small-molecule PPI inhibitors by MM/PB (GB) SA methods. Bioinformatics, 35(10), 1777-1779.
  • [32] Hao, G. F., Jiang, W., Ye, Y. N., Wu, F. X., Zhu, X. L., Guo, F. B., & Yang, G. F. (2016). ACFIS: a web server for fragment-based drug discovery. Nucleic acids research, 44(W1), W550-W556.
  • [33] Hao, G. F., Wang, F., Li, H., Zhu, X. L., Yang, W. C., Huang, L. S., ... & Yang, G. F. (2012). Computational discovery of picomolar Q o site inhibitors of cytochrome bc 1 complex. Journal of the American Chemical Society, 134(27), 11168-11176.
  • [34] Yang, J. F., Wang, F., Jiang, W., Zhou, G. Y., Li, C. Z., Zhu, X. L., ... & Yang, G. F. (2018). PADFrag: a database built for the exploration of bioactive fragment space for drug discovery. Journal of chemical information and modeling, 58(9), 1725-1730.
  • [35] Cheron, N., Jasty, N., & Shakhnovich, E. I. (2016). OpenGrowth: an automated and rational algorithm for finding new protein ligands. Journal of medicinal chemistry, 59(9), 4171-4188.
  • [36] Wang, E., Sun, H., Wang, J., Wang, Z., Liu, H., Zhang, J. Z., & Hou, T. (2019). End-point binding free energy calculation with MM/PBSA and MM/GBSA: strategies and applications in drug design. Chemical reviews, 119(16), 9478-9508.

Details

Primary Language English
Subjects Engineering
Journal Section Research Article
Authors

A. Demet DEMİRAG (Primary Author)
YEDITEPE UNIVERSITY
0000-0002-9609-9150
Türkiye


Sefa ÇELİK
İSTANBUL ÜNİVERSİTESİ, FEN FAKÜLTESİ
0000-0001-6216-1297
Türkiye


Doğan ÖZEN This is me
YEDİTEPE ÜNİVERSİTESİ
0000-0003-3606-4770
Türkiye


Ayşen ÖZEL
İSTANBUL ÜNİVERSİTESİ, FEN FAKÜLTESİ
0000-0002-8680-8830
Türkiye


Sevim AKYÜZ
İSTANBUL KÜLTÜR ÜNİVERSİTESİ
0000-0003-3313-6927
Türkiye

Supporting Institution IOCENS Gümüşhane University International Online Conference on ENGINEERING and NATURAL SCIENCES
Publication Date December 31, 2021
Published in Issue Year 2021, Volume 6, Issue 2

Cite

Bibtex @research article { ojn1004472, journal = {Open Journal of Nano}, issn = {}, eissn = {2147-0081}, address = {Sakarya Üniversitesi Fatih Mah. Eşit Sok. No:7/A -11 54580 - Arifiye / SAKARYA}, publisher = {Mustafa CAN}, year = {2021}, volume = {6}, pages = {19 - 27}, doi = {}, title = {Molecular Docking Analysis Of N-[2-(3-Methylthio(1,2,4-Thiadiazol-5-Ylthio))Acetyl] Benzamide Molecule With Integrin And DNA}, key = {cite}, author = {Demirag, A. Demet and Çelik, Sefa and Özen, Doğan and Özel, Ayşen and Akyüz, Sevim} }
APA Demirag, A. D. , Çelik, S. , Özen, D. , Özel, A. & Akyüz, S. (2021). Molecular Docking Analysis Of N-[2-(3-Methylthio(1,2,4-Thiadiazol-5-Ylthio))Acetyl] Benzamide Molecule With Integrin And DNA . Open Journal of Nano , 6 (2) , 19-27 . Retrieved from https://dergipark.org.tr/en/pub/ojn/issue/65078/1004472
MLA Demirag, A. D. , Çelik, S. , Özen, D. , Özel, A. , Akyüz, S. "Molecular Docking Analysis Of N-[2-(3-Methylthio(1,2,4-Thiadiazol-5-Ylthio))Acetyl] Benzamide Molecule With Integrin And DNA" . Open Journal of Nano 6 (2021 ): 19-27 <https://dergipark.org.tr/en/pub/ojn/issue/65078/1004472>
Chicago Demirag, A. D. , Çelik, S. , Özen, D. , Özel, A. , Akyüz, S. "Molecular Docking Analysis Of N-[2-(3-Methylthio(1,2,4-Thiadiazol-5-Ylthio))Acetyl] Benzamide Molecule With Integrin And DNA". Open Journal of Nano 6 (2021 ): 19-27
RIS TY - JOUR T1 - Molecular Docking Analysis Of N-[2-(3-Methylthio(1,2,4-Thiadiazol-5-Ylthio))Acetyl] Benzamide Molecule With Integrin And DNA AU - A. Demet Demirag , Sefa Çelik , Doğan Özen , Ayşen Özel , Sevim Akyüz Y1 - 2021 PY - 2021 N1 - DO - T2 - Open Journal of Nano JF - Journal JO - JOR SP - 19 EP - 27 VL - 6 IS - 2 SN - -2147-0081 M3 - UR - Y2 - 2021 ER -
EndNote %0 Open Journal of Nano Molecular Docking Analysis Of N-[2-(3-Methylthio(1,2,4-Thiadiazol-5-Ylthio))Acetyl] Benzamide Molecule With Integrin And DNA %A A. Demet Demirag , Sefa Çelik , Doğan Özen , Ayşen Özel , Sevim Akyüz %T Molecular Docking Analysis Of N-[2-(3-Methylthio(1,2,4-Thiadiazol-5-Ylthio))Acetyl] Benzamide Molecule With Integrin And DNA %D 2021 %J Open Journal of Nano %P -2147-0081 %V 6 %N 2 %R %U
ISNAD Demirag, A. Demet , Çelik, Sefa , Özen, Doğan , Özel, Ayşen , Akyüz, Sevim . "Molecular Docking Analysis Of N-[2-(3-Methylthio(1,2,4-Thiadiazol-5-Ylthio))Acetyl] Benzamide Molecule With Integrin And DNA". Open Journal of Nano 6 / 2 (December 2021): 19-27 .
AMA Demirag A. D. , Çelik S. , Özen D. , Özel A. , Akyüz S. Molecular Docking Analysis Of N-[2-(3-Methylthio(1,2,4-Thiadiazol-5-Ylthio))Acetyl] Benzamide Molecule With Integrin And DNA. ojn. 2021; 6(2): 19-27.
Vancouver Demirag A. D. , Çelik S. , Özen D. , Özel A. , Akyüz S. Molecular Docking Analysis Of N-[2-(3-Methylthio(1,2,4-Thiadiazol-5-Ylthio))Acetyl] Benzamide Molecule With Integrin And DNA. Open Journal of Nano. 2021; 6(2): 19-27.
IEEE A. D. Demirag , S. Çelik , D. Özen , A. Özel and S. Akyüz , "Molecular Docking Analysis Of N-[2-(3-Methylthio(1,2,4-Thiadiazol-5-Ylthio))Acetyl] Benzamide Molecule With Integrin And DNA", Open Journal of Nano, vol. 6, no. 2, pp. 19-27, Dec. 2021

ISSN:2147-0081
The Open Journal of Nano is licensed under a Attribution-NonCommercial 3.0 Unported (CC BY-NC 3.0)