Research Article
PDF Zotero Mendeley EndNote BibTex Cite

Mullit Takviyeli Y2O3 Katkılı ZrO2 Seramiklerinin İmalatı ve Karakterizasyonu

Year 2021, Volume 6, Issue 2, 28 - 40, 31.12.2021

Abstract

Bu çalışmada, mullit (3Al2O3.2SiO2) ve %3 mol itriya katkılı zirkonya (%3 mol Y2O3 - %97 mol ZrO2) seramik tozları geleneksel seramik üretim yöntemi ile sentezlenmiştir. Tüm karışımlar, zirkonya bilyalı değirmende aseton ortamında mekanik alaşımlama yöntemiyle hazırlanmıştır. Mullit ve itriya katkılı zirkonya seramik tozları sırasıyla 1600 oC'de 3 saat ve 1300 oC'de 2 saat sentezlenmiştir. Seramik fazlar kırma, öğütme ve eleme işlemleri ile seramik - seramik kompozitleri oluşturmaya hazır hale getirilmiştir. Daha sonra ağırlıkça %0 ve %10 mullit takviyeli itriya katkılı zirkonya karışımları toz metalurjisi yöntemiyle hazırlanmıştır. Kurutulduktan sonra, tozlar tek eksenli presleme ile sıkıştırılmıştır. Devamında, yüksek sıcaklıklı bir fırında hava koşullarında 1500-1600 oC'de 1-5 saat sinterlenmiştir. Daha sonra kompozitler üzerinde mikroyapı (SEM), faz analizi (XRD), mekanik (sertlik, 3 nokta eğme ve aşınma) ve fiziksel özellikler (% küçülme, su emme, gözeneklilik ve yoğunluk) testleri yapılmıştır. Bu çalışmada, yüksek sinterleme sıcaklıklarında ZrO2 - Y2O3 karışımında faz değişimi olup olmadığı ve mullit katkı maddesinin bu karışımın özelliklerine etkisi araştırılmıştır. Elde edilen veriler grafik ve tablolar halinde sunulmuş ve yorumları yapılmıştır.

References

  • [1] Boyraz, T., 2008. “An investigation on physical and electrical properties of CaO/MgO-stabilized zirconia ceramics formed with different methods,” Ph.D. dissertation, Metallurg. Eng., Istanbul Technical Univ., Istanbul.
  • [2] Pekdemir, A. D., 2018. “Preparation and characterization of boron carbide at low-temperature from boric acid and polyols,” Ph.D. dissertation, Dept. Chem., Ankara Univ., Ankara.
  • [3] Ceylan, A., 2006. “The production of functionally graded SiAlON ceramics by tape casting method,” Ph.D. dissertation, Dept. Cer. Eng., Anadolu Univ., Eskişehir.
  • [4] Abi, C. B., 2009. “An investigation on fracture toughness of traditional and technical ceramics,” Ph.D. dissertation, Dept. Metallurg. Eng., Afyon Kocatepe Univ., Afyon.
  • [5] Hafızoğlu, M. A., Boyraz , T. and Akkuş, A., 2021. “Fabrication, characterization and wear properties of mullite reinforced silica-doped zirconia ceramic composites,” in Proc. IMSMATEC'21, p. 175 – 180.
  • [6] Hafızoğlu, M. A., Akkuş, A. and Boyraz, T., 2021. “Fabrication, characterization and wear properties of mullite reinforced Al2O3-doped ZrO2 ceramic composites,” in Proc. GLOBCER’21, p. 673 – 686.
  • [7] Hafızoğlu, M. A., Boyraz , T. and Akkuş, A., 2021. “Fabrication and characterization of mullite reinforced TiO2 added ZrO2 ceramics,” International Joint Science Congress of Materials and Polymers (ISCMP’21).
  • [8] Cutler, R. A., Reynolds, J. R. and Jones, A., 1992. “Sintering and characterization of polycrystalline monoclinic, tetragonal, and cubic zirconia,” Journal of the American Ceramic Society, 75(8), pp. 2173-2183.
  • [9] Boyacıoğlu, T., 2007. “Improvement of room temperature mechanical properties of various amount of metal oxide doping cubic zirconia (c-ZrO2) used as electrolyte material for solid oxide fuel cells,” Master thesis, Dept. Metallurg. Eng., Gazi Univ., Ankara.
  • [10] Boyraz, T., 1998. “Dental porcelain powders,” Master thesis, Dept. Metallurg. Eng., Sakarya Univ., Sakarya.
  • [11] Liu, P. F., Li, Z., Xiao, P., Luo, H. and Jiang, T. H., 2018. “Microstructure and mechanical properties of in-situ grown mullite toughened 3Y-TZP zirconia ceramics fabricated by gelcasting,” Ceramics International, 44(2), pp. 1394-1403.
  • [12] Eichler, J., Rödel, J., Eisele, U. and Hoffman, M., 2007. “Effect of grain size on mechanical properties of submicrometer 3Y‐TZP: fracture strength and hydrothermal degradation,” Journal of the American Ceramic Society, 90(9), pp. 2830-2836.
  • [13] Sun, J., Gao, L., Iwasa, M., Nakayama, T. and Niihara, K., 2005. “Failure investigation of carbon nanotube/3Y-TZP nanocomposites,” Ceramics International, 31(8), pp. 1131-1134.
  • [14] El Ouatib, R., Guillemet, S., Durand, B., Samdi, A., Rakho, L. E. and Moussa, R., 2005. “Reactivity of aluminum sulfate and silica in molten alkali-metal sulfates in order to prepare mullite,” Journal of the European Ceramic Society, 25(1), pp. 73-80.
  • [15] Kucuk, I. and Boyraz, T., 2019. “Structural and mechanical characterization of mullite and aluminium titanate reinforced yttria stabilized zirconia ceramic composites,” Journal of Ceramic Processing Research, 20(1), pp. 73-79.
  • [16] Kumar, P., Nath, M., Ghosh, A. and Tripathi, H. S., 2015. “Enhancement of thermal shock resistance of reaction sintered mullite–zirconia composites in the presence of lanthanum oxide,” Materials Characterization, 101, pp. 34-39.
  • [17] Roy, J., Das, S. and Maitra, S., 2015. “Solgel‐processed mullite coating—a review. International Journal of Applied Ceramic Technology, 12, pp. E71-E77.
  • [18] Denry, I. and Kelly, J. R., 2008. “State of the art of zirconia for dental applications,” Dental materials, 24(3), pp. 299-307.
  • [19] Çitak, E. and Boyraz, T., 2014. “Microstructural characterization and thermal properties of aluminium titanate/YSZ Ceramics,” Acta Physica Polonica A, 125(2), pp. 465-468.
  • [20] Önen, U. and Boyraz, T., 2014. “Microstructural characterization and thermal properties of aluminium titanate/spinel ceramic matrix composites,” Acta Phys. Pol. A, 125(2), pp. 488-490.
  • [21] Sacli, M., Onen, U. and Boyraz, T., 2015. “Microstructural characterization and thermal properties of aluminium titanate/porcelain ceramic matrix composites,” Acta Physica Polonica A, 127(4), pp. 1133-1135.
  • [22] Boyraz, T. and Akkuş, A., 2021. “Investigation of wear properties of mullite and aluminium titanate added porcelain ceramics,” Journal of Ceramic Processing Research. Vol. 22, No. 2, pp. 226-231.
  • [23] Akkus, A. and Boyraz, T., 2018. “Investigation of wear properties of CaO, MgO added stabilized zirconia ceramics produced by different pressing methods,” J. Ceram. Proc. Res., Vol. 19, pp. 249-252.
  • [24] Kucuk, I., Boyraz, T., Gökçe, H. and Öveçoğlu, M. L., 2018. “Thermomechanical properties of aluminium titanate (Al2TiO5)-reinforced forsterite (Mg2SiO4) ceramic composites,” Ceramics International, 44(7), pp. 8277-8282.
  • [25] Stawarczyk, B., Özcan, M., Hallmann, L., Ender, A., Mehl, A. and Hämmerlet, C. H., 2013. “The effect of zirconia sintering temperature on flexural strength, grain size, and contrast ratio,” Clinical oral investigations, 17(1), 269-274.
  • [26] Talay Çevlik, E., 2015. “Low thermal degradation of three yttria-stabilized tetragonal zirconia polycrystalline and effect of low thermal degradation on flexural strength,” Ph.D. dissertation, Dept. Dent., Selçuk Univ., Konya.
  • [27] Huang, Y. Q., Liu, P. F., Li, Z. and Xiao, P., 2018. “Effects of the content of insitu grown mullite on the microstructure and mechanical properties of 3Y-TZP ceramics fabricated by gel-casting,” Ceramics International, 44(17), pp. 21882- 21892.
  • [28] Liu, P. F., Li, Z., Xiao, P., Luo, H. and Jiang, T. H., 2018. “Microstructure and mechanical properties of in-situ grown mullite toughened 3Y-TZP zirconia ceramics fabricated by gelcasting,” Ceramics International, 44(2), pp. 1394-1403.

Fabrication and Characterization of Mullite Reinforced Y2O3 Added ZrO2 Ceramics

Year 2021, Volume 6, Issue 2, 28 - 40, 31.12.2021

Abstract

Mullite (3Al2O3.2SiO2) and 3 mol% yttria added zirconia (3 mol% Y2O3 - 97 mol% ZrO2) ceramic powders were synthesized by conventional ceramic processing route. All mixtures were prepared by mechanical alloying method in acetone environment with zirconia ball mill. Mullite and yttria added zirconia ceramic powders were synthesized by reaction sintering in air at 1600oC for 3h and 1300oC for 2h, respectively. The ceramic phases formed were made ready to form ceramic - ceramic composites by crushing, grinding and sieving processes. Then, 0 and 10% by weight mullite added yttria doped zirconia mixtures were prepared by powder metallurgy method. After drying, the powders were compacted by uniaxial pressing. The green compacts were sintered at 1500-1600oC for 1-5 h in air conditions in a high temperature furnace. Then, microstructure (SEM), phase analysis (XRD), mechanical (hardness, 3-point bending and wear) and physical properties (%shrinkage, water absorption, porosity and density) tests were performed on the composites. In this study, whether there is a phase change in the ZrO2-Y2O3 mixture at high sintering temperatures and the effect of mullite additive on the properties of this mixture was investigated. The data obtained were presented in graphs and tables and their comments were made.

References

  • [1] Boyraz, T., 2008. “An investigation on physical and electrical properties of CaO/MgO-stabilized zirconia ceramics formed with different methods,” Ph.D. dissertation, Metallurg. Eng., Istanbul Technical Univ., Istanbul.
  • [2] Pekdemir, A. D., 2018. “Preparation and characterization of boron carbide at low-temperature from boric acid and polyols,” Ph.D. dissertation, Dept. Chem., Ankara Univ., Ankara.
  • [3] Ceylan, A., 2006. “The production of functionally graded SiAlON ceramics by tape casting method,” Ph.D. dissertation, Dept. Cer. Eng., Anadolu Univ., Eskişehir.
  • [4] Abi, C. B., 2009. “An investigation on fracture toughness of traditional and technical ceramics,” Ph.D. dissertation, Dept. Metallurg. Eng., Afyon Kocatepe Univ., Afyon.
  • [5] Hafızoğlu, M. A., Boyraz , T. and Akkuş, A., 2021. “Fabrication, characterization and wear properties of mullite reinforced silica-doped zirconia ceramic composites,” in Proc. IMSMATEC'21, p. 175 – 180.
  • [6] Hafızoğlu, M. A., Akkuş, A. and Boyraz, T., 2021. “Fabrication, characterization and wear properties of mullite reinforced Al2O3-doped ZrO2 ceramic composites,” in Proc. GLOBCER’21, p. 673 – 686.
  • [7] Hafızoğlu, M. A., Boyraz , T. and Akkuş, A., 2021. “Fabrication and characterization of mullite reinforced TiO2 added ZrO2 ceramics,” International Joint Science Congress of Materials and Polymers (ISCMP’21).
  • [8] Cutler, R. A., Reynolds, J. R. and Jones, A., 1992. “Sintering and characterization of polycrystalline monoclinic, tetragonal, and cubic zirconia,” Journal of the American Ceramic Society, 75(8), pp. 2173-2183.
  • [9] Boyacıoğlu, T., 2007. “Improvement of room temperature mechanical properties of various amount of metal oxide doping cubic zirconia (c-ZrO2) used as electrolyte material for solid oxide fuel cells,” Master thesis, Dept. Metallurg. Eng., Gazi Univ., Ankara.
  • [10] Boyraz, T., 1998. “Dental porcelain powders,” Master thesis, Dept. Metallurg. Eng., Sakarya Univ., Sakarya.
  • [11] Liu, P. F., Li, Z., Xiao, P., Luo, H. and Jiang, T. H., 2018. “Microstructure and mechanical properties of in-situ grown mullite toughened 3Y-TZP zirconia ceramics fabricated by gelcasting,” Ceramics International, 44(2), pp. 1394-1403.
  • [12] Eichler, J., Rödel, J., Eisele, U. and Hoffman, M., 2007. “Effect of grain size on mechanical properties of submicrometer 3Y‐TZP: fracture strength and hydrothermal degradation,” Journal of the American Ceramic Society, 90(9), pp. 2830-2836.
  • [13] Sun, J., Gao, L., Iwasa, M., Nakayama, T. and Niihara, K., 2005. “Failure investigation of carbon nanotube/3Y-TZP nanocomposites,” Ceramics International, 31(8), pp. 1131-1134.
  • [14] El Ouatib, R., Guillemet, S., Durand, B., Samdi, A., Rakho, L. E. and Moussa, R., 2005. “Reactivity of aluminum sulfate and silica in molten alkali-metal sulfates in order to prepare mullite,” Journal of the European Ceramic Society, 25(1), pp. 73-80.
  • [15] Kucuk, I. and Boyraz, T., 2019. “Structural and mechanical characterization of mullite and aluminium titanate reinforced yttria stabilized zirconia ceramic composites,” Journal of Ceramic Processing Research, 20(1), pp. 73-79.
  • [16] Kumar, P., Nath, M., Ghosh, A. and Tripathi, H. S., 2015. “Enhancement of thermal shock resistance of reaction sintered mullite–zirconia composites in the presence of lanthanum oxide,” Materials Characterization, 101, pp. 34-39.
  • [17] Roy, J., Das, S. and Maitra, S., 2015. “Solgel‐processed mullite coating—a review. International Journal of Applied Ceramic Technology, 12, pp. E71-E77.
  • [18] Denry, I. and Kelly, J. R., 2008. “State of the art of zirconia for dental applications,” Dental materials, 24(3), pp. 299-307.
  • [19] Çitak, E. and Boyraz, T., 2014. “Microstructural characterization and thermal properties of aluminium titanate/YSZ Ceramics,” Acta Physica Polonica A, 125(2), pp. 465-468.
  • [20] Önen, U. and Boyraz, T., 2014. “Microstructural characterization and thermal properties of aluminium titanate/spinel ceramic matrix composites,” Acta Phys. Pol. A, 125(2), pp. 488-490.
  • [21] Sacli, M., Onen, U. and Boyraz, T., 2015. “Microstructural characterization and thermal properties of aluminium titanate/porcelain ceramic matrix composites,” Acta Physica Polonica A, 127(4), pp. 1133-1135.
  • [22] Boyraz, T. and Akkuş, A., 2021. “Investigation of wear properties of mullite and aluminium titanate added porcelain ceramics,” Journal of Ceramic Processing Research. Vol. 22, No. 2, pp. 226-231.
  • [23] Akkus, A. and Boyraz, T., 2018. “Investigation of wear properties of CaO, MgO added stabilized zirconia ceramics produced by different pressing methods,” J. Ceram. Proc. Res., Vol. 19, pp. 249-252.
  • [24] Kucuk, I., Boyraz, T., Gökçe, H. and Öveçoğlu, M. L., 2018. “Thermomechanical properties of aluminium titanate (Al2TiO5)-reinforced forsterite (Mg2SiO4) ceramic composites,” Ceramics International, 44(7), pp. 8277-8282.
  • [25] Stawarczyk, B., Özcan, M., Hallmann, L., Ender, A., Mehl, A. and Hämmerlet, C. H., 2013. “The effect of zirconia sintering temperature on flexural strength, grain size, and contrast ratio,” Clinical oral investigations, 17(1), 269-274.
  • [26] Talay Çevlik, E., 2015. “Low thermal degradation of three yttria-stabilized tetragonal zirconia polycrystalline and effect of low thermal degradation on flexural strength,” Ph.D. dissertation, Dept. Dent., Selçuk Univ., Konya.
  • [27] Huang, Y. Q., Liu, P. F., Li, Z. and Xiao, P., 2018. “Effects of the content of insitu grown mullite on the microstructure and mechanical properties of 3Y-TZP ceramics fabricated by gel-casting,” Ceramics International, 44(17), pp. 21882- 21892.
  • [28] Liu, P. F., Li, Z., Xiao, P., Luo, H. and Jiang, T. H., 2018. “Microstructure and mechanical properties of in-situ grown mullite toughened 3Y-TZP zirconia ceramics fabricated by gelcasting,” Ceramics International, 44(2), pp. 1394-1403.

Details

Primary Language English
Subjects Engineering
Journal Section Research Article
Authors

Mehmet Akif HAFIZOĞLU (Primary Author)
Dicle Üniversitesi
0000-0002-9689-3004
Türkiye


Tahsin BOYRAZ
SİVAS CUMHURİYET ÜNİVERSİTESİ
0000-0003-4404-6388
Türkiye


Ahmet AKKUŞ
SİVAS CUMHURİYET ÜNİVERSİTESİ
0000-0002-6881-9333
Türkiye

Supporting Institution Sivas Cumhuriyet Üniversitesi Bilimsel Araştırma Projeleri Destek Fonu
Project Number M-767
Thanks Yazarlar, Sivas Cumhuriyet Üniversitesi Bilimsel Araştırma Projeleri Destek Fonu'na teşekkür eder.
Publication Date December 31, 2021
Published in Issue Year 2021, Volume 6, Issue 2

Cite

Bibtex @research article { ojn1031368, journal = {Open Journal of Nano}, issn = {}, eissn = {2147-0081}, address = {Sakarya Üniversitesi Fatih Mah. Eşit Sok. No:7/A -11 54580 - Arifiye / SAKARYA}, publisher = {Mustafa CAN}, year = {2021}, volume = {6}, pages = {28 - 40}, doi = {}, title = {Fabrication and Characterization of Mullite Reinforced Y2O3 Added ZrO2 Ceramics}, key = {cite}, author = {Hafızoğlu, Mehmet Akif and Boyraz, Tahsin and Akkuş, Ahmet} }
APA Hafızoğlu, M. A. , Boyraz, T. & Akkuş, A. (2021). Fabrication and Characterization of Mullite Reinforced Y2O3 Added ZrO2 Ceramics . Open Journal of Nano , 6 (2) , 28-40 . Retrieved from https://dergipark.org.tr/en/pub/ojn/issue/65078/1031368
MLA Hafızoğlu, M. A. , Boyraz, T. , Akkuş, A. "Fabrication and Characterization of Mullite Reinforced Y2O3 Added ZrO2 Ceramics" . Open Journal of Nano 6 (2021 ): 28-40 <https://dergipark.org.tr/en/pub/ojn/issue/65078/1031368>
Chicago Hafızoğlu, M. A. , Boyraz, T. , Akkuş, A. "Fabrication and Characterization of Mullite Reinforced Y2O3 Added ZrO2 Ceramics". Open Journal of Nano 6 (2021 ): 28-40
RIS TY - JOUR T1 - Fabrication and Characterization of Mullite Reinforced Y2O3 Added ZrO2 Ceramics AU - Mehmet Akif Hafızoğlu , Tahsin Boyraz , Ahmet Akkuş Y1 - 2021 PY - 2021 N1 - DO - T2 - Open Journal of Nano JF - Journal JO - JOR SP - 28 EP - 40 VL - 6 IS - 2 SN - -2147-0081 M3 - UR - Y2 - 2021 ER -
EndNote %0 Open Journal of Nano Fabrication and Characterization of Mullite Reinforced Y2O3 Added ZrO2 Ceramics %A Mehmet Akif Hafızoğlu , Tahsin Boyraz , Ahmet Akkuş %T Fabrication and Characterization of Mullite Reinforced Y2O3 Added ZrO2 Ceramics %D 2021 %J Open Journal of Nano %P -2147-0081 %V 6 %N 2 %R %U
ISNAD Hafızoğlu, Mehmet Akif , Boyraz, Tahsin , Akkuş, Ahmet . "Fabrication and Characterization of Mullite Reinforced Y2O3 Added ZrO2 Ceramics". Open Journal of Nano 6 / 2 (December 2021): 28-40 .
AMA Hafızoğlu M. A. , Boyraz T. , Akkuş A. Fabrication and Characterization of Mullite Reinforced Y2O3 Added ZrO2 Ceramics. ojn. 2021; 6(2): 28-40.
Vancouver Hafızoğlu M. A. , Boyraz T. , Akkuş A. Fabrication and Characterization of Mullite Reinforced Y2O3 Added ZrO2 Ceramics. Open Journal of Nano. 2021; 6(2): 28-40.
IEEE M. A. Hafızoğlu , T. Boyraz and A. Akkuş , "Fabrication and Characterization of Mullite Reinforced Y2O3 Added ZrO2 Ceramics", Open Journal of Nano, vol. 6, no. 2, pp. 28-40, Dec. 2021

ISSN:2147-0081
The Open Journal of Nano is licensed under a Attribution-NonCommercial 3.0 Unported (CC BY-NC 3.0)