Research Article
BibTex RIS Cite

Peroksidaz Enzimi ile Asidik ve Reaktif Boyarmaddelerin Rensizleştirilmesinde 1-hidroksibenzotriazolün Etkisinin Araştırılması

Year 2023, Volume: 8 Issue: 2, 74 - 83, 21.12.2023
https://doi.org/10.56171/ojn.1364230

Abstract

Boyar içeren tekstil boyama atıksuları, renkleri ve tehlikeli veya kanserojen ara maddelerin üretimi nedeniyle nehirleri kirletmekte olup, bu atık suların akarsulara bırakılmadan önce uzaklaştırılması gerekmektedir. Ligninolitik enzimlerin, endüstriyel atık sulardan renklerin giderilmesi de dahil olmak üzere birçok kullanım alanı vardır. Bu çalışmada, Lignin Peroksidaz enzimi ile Naftol Blue Black ((NBB) ve Remazol Brillant Blue R (RBBR) boyarmaddeleri pH:5.0 ve 30 °C’de giderildi. Ayrıca, bir redoks mediatörü olan 1-hidroksibenzotriazol (HBT)’ün farklı konsantrasyonlarda boyaların giderilmesine etkisi incelendi. LiP enzimine bir redoks mediatörü eklendiğinde, giderilen RBBR boyasının yüzdesi 24 saat sonra %10'dan %26'ya yükseldi. HOBt'nin LiP enzimine eklenmesinden sonraki ilk günde, elimine edilen NBB boyasının yüzdesi %5'ten %89'a yükseldi. HOBt’nin etkisi NBB boyasında RBBR boyasına göre daha belirgin gözlendi. Redoks mediatörü katkılı Lignin Peroksidaz enzimi, NBB boyarmaddesini RBBR boyarmaddesine göre daha yüksek boya giderme değerleri ile giderdi.

References

  • [1] O. Bechiri, M. Abbessi, and M. E. H. Samar, “Decolorization of organic dye (NBB) using Fe(III)P2W12Mo5/H2O2 system,” Desalination Water Treat, vol. 51, no. 31–33, 2013, doi: 10.1080/19443994.2013.766648.
  • [2] A. Raees et al., “Adsorption Potential of Schizophyllum commune White Rot Fungus for Degradation of Reactive Dye and Condition Optimization: A Thermodynamic and Kinetic Study,” Adsorption Science and Technology, vol. 2023, 2023, doi: 10.1155/2023/4725710.
  • [3] M. Celebi, M. Altikatoglu, Z. M. Akdeste, and H. Yildirim, “Determination of decolorization properties of Reactive Blue 19 dye using Horseradish Peroxidase enzyme,” Turkish Journal of Biochemistry, vol. 38, no. 2, pp. 200–206, 2013, doi: 10.5505/tjb.2013.96636.
  • [4] G. Crini and E. Lichtfouse, “Green adsorbents for pollutant removal: fundamentals and design,” Springer Nature, 2018.
  • [5] E. Akdogan, “Investigation of the Effects of Unidirectional Compression on the Hardness of High-Density Polyethylene Materials,” Open Journal of Nano, vol. 7, no. 2, 2022, doi: 10.56171/ojn.1110326. [6] M. Uluskan, “Decreasing Defects in Plastic Injection Molding and Vibration Welding Processes Through Statistical Process Control,” 2021.
  • [7] R. M. El Khaldi et al., “Fabrication of high-performance nanofiber-based FO membrane,” Desalination Water Treat, vol. 147, pp. 56–72, 2019, doi: 10.5004/dwt.2019.23699.
  • [8] S. Das, A. Gole, A. Chakraborty, S. Mal, S. Rudra, and D. Ghosh, “Lignocellulolytic Microbial Systems and its Importance in Dye Decolourization: A Review,” J Pure Appl Microbiol, vol. 17, no. 2, 2023, doi: 10.22207/jpam.17.2.19.
  • [9] W. J. Guo et al., “Design and engineering of an efficient peroxidase using myoglobin for dye decolorization and lignin bioconversion,” Int J Mol Sci, vol. 23, no. 1, 2022, doi: 10.3390/ijms23010413.
  • [10] M. Çelebi and İ. Karagöz, “Biyobozunur Polimerler Ve Özellikleri; Nişasta, Poli(Glikolik Asit), Poli(Laktik Asit) Ve Poli(Ɛ Kaprolakton),” Gece Akademi Yayıncılık, Mühendislik Alanında Yeni Ufuklar, Chapter 11, pp. 249–266, 2019.
  • [11] G. M. Cooper, “The Central Role of Enzymes as Biological Catalysts,” The Cell: A Molecular Approach, 2000.
  • [12] T. Angelin Swetha, K. Mohanrasu, A. Bora, V. Ananthi, and A. Arun, “Enzymes incorporated nanotechnology for wastewater treatment,” in Handbook of Microbial Nanotechnology, 2022. doi: 10.1016/B978-0-12-823426-6.00021-8.
  • [13] V. S. Ferreira-Leitao, M. E. A. de Carvalho, and E. P. S. Bon, “Lignin peroxidase efficiency for methylene blue decolouration: Comparison to reported methods,” Dyes and Pigments, vol. 74, no. 1, pp. 230–236, 2006, doi: 10.1016/j.dyepig.2006.02.002.
  • [14] M. Celebi, M. Arif, M. Altikatoglu, and H. Yildirim, “Removal of cationic dye from textile industry wastewater with using enzyme , fungus and polymer,” The Online Journal of Science and Technology, vol. 3, no. 2, pp. 39–45, 2013, [Online]. Available: http://www.tojsat.net/index.php/tojsat/article/view/107/111.
  • [15] M. Çelebi, Z. Ö. Özdemir, and M. Topuzoğullari, “Microwave-assisted rapid conjugation of horseradish peroxidase-dextran aldehyde with Schiff base reaction and decolorization of Reactive Blue 19,” Turk J Chem, vol. 46, no. 3, 2022, doi: 10.55730/1300-0527.3378.
  • [16] M. Altikatoglu and Y. Basaran, “Additive effect of dextrans on the stability of horseradish peroxidase,” Protein Journal, vol. 30, no. 2, pp. 84–90, 2011, doi: 10.1007/s10930-011-9306-4.
  • [17] U. Kalsoom et al., “Biocatalytic degradation of reactive blue 221 and direct blue 297 dyes by horseradish peroxidase immobilized on iron oxide nanoparticles with improved kinetic and thermodynamic characteristics,” Chemosphere, vol. 312, 2023, doi: 10.1016/j.chemosphere.2022.137095.
  • [18] P. Xie et al., “Phenoxyl mediators improve enzymatic degradation of organic pollutants: Effect and mechanism,” Int J Biol Macromol, vol. 215, 2022, doi: 10.1016/j.ijbiomac.2022.06.124.
  • [19] R. Shaheen, M. Asgher, F. Hussain, and H. N. Bhatti, “Immobilized lignin peroxidase from Ganoderma lucidum IBL-05 with improved dye decolorization and cytotoxicity reduction properties,” Int J Biol Macromol, vol. 103, 2017, doi: 10.1016/j.ijbiomac.2017.04.040.
  • [20] V. D. Giap et al., “Purification and characterization of lignin peroxidase from white-rot fungi Pleurotus pulmonarius CPG6 and its application in decolorization of synthetic textile dyes,” Journal of General and Applied Microbiology, vol. 68, no. 6, 2022, doi: 10.2323/jgam.2022.05.005.
  • [21] R. Ten Have, R. G. De Thouars, H. J. Swarts, and J. A. Field, “Veratryl alcohol-mediated oxidation of isoeugenyl acetate by lignin peroxidase,” Eur J Biochem, vol. 265, no. 3, 1999, doi: 10.1046/j.1432-1327.1999.00808.x.
  • [22] H. Rekik et al., “Physical and enzymatic properties of a new manganese peroxidase from the white-rot fungus Trametes pubescens strain i8 for lignin biodegradation and textile-dyes biodecolorization,” Int J Biol Macromol, vol. 125, 2019, doi: 10.1016/j.ijbiomac.2018.12.053.
  • [23] Y. Chang, D. Yang, R. Li, T. Wang, and Y. Zhu, “Textile dye biodecolorization by manganese peroxidase: A review,” Molecules, vol. 26, no. 15. 2021. doi: 10.3390/molecules26154403.
  • [24] B. M. Altahir et al., “Soybean peroxidase catalyzed decoloration of acid azo dyes,” J Health Pollut, vol. 10, no. 25, 2020, doi: 10.5696/2156-9614-10.25.200307.
  • [25] E. A. M. Ali, S. Abd Ellatif, and E. S. Abdel Razik, “Production, purification, characterization and immobilization of laccase from Phoma betae and its application in synthetic dyes decolorization,” Egyptian Journal of Botany, vol. 60, no. 1, 2020, doi: 10.21608/ejbo.2019.19226.1381.
  • [26] N. Šekuljica et al., “Decolorization of anthraquinonic dyes from textile effluent using horseradish peroxidase: Optimization and kinetic study,” Scientific World Journal, vol. 2015, 2015, doi: 10.1155/2015/371625.
  • [27] M. Altikatoglu and M. Celebi, “Enhanced stability and decolorization of Coomassie Brilliant Blue R-250 by dextran aldehyde-modified horseradish peroxidase.,” Artif Cells Blood Substit Immobil Biotechnol, vol. 39, no. 3, pp. 185–90, 2011.
  • [28] M. Celebi, M. A. Kaya, M. Altikatoglu, and H. Yildirim, “Enzymatic decolorization of anthraquinone and diazo dyes using horseradish peroxidase enzyme immobilized onto various polysulfone supports,” Appl Biochem Biotechnol, vol. 171, no. 3, pp. 716–730, 2013.
  • [29] T. K. Kirk and D. Cullen, Enzymology and molecular genetics of wood degradation by white-rot fungi. 1998.
  • [30] P. Chowdhary, N. More, A. Yadav, and R. N. Bharagava, “Ligninolytic enzymes: An introduction and applications in the food industry,” in Enzymes in Food Biotechnology: Production, Applications, and Future Prospects, 2018. doi: 10.1016/B978-0-12-813280-7.00012-8.
  • [31] T. K. Kirk and R. L. Farrell, “Enzymatic ‘combustion’: the microbial degradation of lignin.,” Annual review of microbiology, vol. 41. 1987. doi: 10.1146/annurev.mi.41.100187.002341.
  • [32] H. Wariishi and M. H. Gold, “Lignin peroxidase compound III. Mechanism of formation and decomposition,” Journal of Biological Chemistry, vol. 265, no. 4, 1990, doi: 10.1016/s0021-9258(19)39941-7.
  • [33] M. Husain and Q. Husain, “Applications of redox mediators in the treatment of organic pollutants by using oxidoreductive enzymes: A review,” Critical Reviews in Environmental Science and Technology, vol. 38, no. 1. 2008. doi: 10.1080/10643380701501213.
  • [34] O. Faix, “Book Review: Biopolymers. Biology, Chemistry, Biotechnology, Applications. Vol. 1: Lignin, Humic Substances and Coal. Edited by Alexander Steinbüchel and Martin Hofrichter,” Angewandte Chemie International Edition, vol. 41, no. 11, 2002, doi: 10.1002/1521-3773(20020603)41:11<1963::aid-anie1963>3.0.co;2-f.
  • [35] F. Jamal, P. K. Pandey, and T. Qidwai, “Potential of peroxidase enzyme from Trichosanthes diocia to mediate disperse dye decolorization in conjunction with redox mediators,” J Mol Catal B Enzym, vol. 66, no. 1–2, pp. 177–181, 2010, doi: 10.1016/j.molcatb.2010.05.005.
  • [36] Q. Husain, “Potential Applications of the Oxidoreductive Enzymes in the Decolorization and Detoxification of Textile and Other Synthetic Dyes from Polluted Water: A Review,” Crit Rev Biotechnol, vol. 26, no. 4, pp. 201–221, 2006, doi: 10.1080/07388550600969936.
  • [37] L. N. Nguyen et al., “The effects of mediator and granular activated carbon addition on degradation of trace organic contaminants by an enzymatic membrane reactor,” Bioresour Technol, vol. 167, 2014, doi: 10.1016/j.biortech.2014.05.125.
  • [38] H. Hirai, H. Shibata, S. Kawai, and T. Nishida, “Role of 1-hydroxybenzotriazole in oxidation by laccase from Trametes versicolor. Kinetic analysis of the laccase-1-hydroxybenzotriazole couple,” FEMS Microbiol Lett, vol. 265, no. 1, 2006, doi: 10.1111/j.1574-6968.2006.00474.x.
  • [39] D. C. Goodwin, S. D. Aust, and T. A. Grover, “Evidence for Veratryl Alcohol as a Redox Mediator in Lignin Peroxidase-Catalyzed Oxidation,” Biochemistry, vol. 34, no. 15, 1995, doi: 10.1021/bi00015a017.
  • [40] M. Matto and Q. Husain, “Decolorization of direct dyes by salt fractionated turnip proteins enhanced in the presence of hydrogen peroxide and redox mediators,” Chemosphere, vol. 69, no. 2, 2007, doi: 10.1016/j.chemosphere.2007.03.069.
  • [41] S. Hariharan and P. Nambisan, “Optimization of lignin peroxidase, manganese peroxidase, and lac production from Ganoderma lucidum under solid state fermentation of pineapple leaf,” Bioresources, vol. 8, no. 1, 2013, doi: 10.15376/biores.8.1.250-271.
  • [42] E. Keyhani, J. Keyhani, S. Saeidian, F. Attar, and S. Oveissi, “Identification of enzymatic properties in Crocus sativus roots,” in Acta Horticulturae, 2007. doi: 10.17660/ActaHortic.2007.739.29.
  • [43] H. Claus, G. Faber, and H. König, “Redox-mediated decolorization of synthetic dyes by fungal laccases,” Appl Microbiol Biotechnol, vol. 59, no. 6, 2002, doi: 10.1007/s00253-002-1047-z.
  • [44] M. Bilal and H. M. N. Iqbal, “Lignin peroxidase immobilization on Ca-alginate beads and its dye degradation performance in a packed bed reactor system,” Biocatal Agric Biotechnol, vol. 20, 2019, doi: 10.1016/j.bcab.2019.101205.
  • [45] E. P. Chagas and L. R. Durrant, “Decolorization of azo dyes by Phanerochaete chrysosporium and Pleurotus sajorcaju,” Enzyme Microb Technol, vol. 29, no. 8–9, 2001, doi: 10.1016/S0141-0229(01)00405-7.
  • [46] F. Jamal, “Functional Suitability of Soluble Peroxidases from Easily Available Plant Sources in Decolorization of Synthetic Dyes,” in Advances in Treating Textile Effluent, 2011. doi: 10.5772/20370.
  • [47] S. Onder, M. Celebi, M. Altikatoglu, A. Hatipoglu, and H. Kuzu, “Decolorization of naphthol blue black using the horseradish peroxidase,” Appl Biochem Biotechnol, vol. 163, no. 3, pp. 433–443, 2011.

The Effect of 1-hydroxybenzotriazole on the Decolorization of Anthraquinone and Diazo Dyes Using Peroxidase Enzyme

Year 2023, Volume: 8 Issue: 2, 74 - 83, 21.12.2023
https://doi.org/10.56171/ojn.1364230

Abstract

Textile dyeing wastewater involving resistant dyestuffs contaminate rivers because of their color and the production of hazardous or carcinogenic intermediates, which must be removed before being released into streams. The ligninolytic enzymes have many uses, including the elimination of dyestuffs from industrial wastewater. In this study, the Lignin Peroxidase enzyme was used to eliminate synthetic solutions of Naphthol Blue Black (NBB) and Remazol Brilliant Blue R (RBBR) dyestuffs at pH 5.0 and 30 °C. In addition, the effect of 1-hydroxybenzotriazole (HOBt), a redox mediator, on dye removal at different concentrations was investigated. Once a redox mediator was added to the LiP enzyme, the percentage of RBBR dye eliminated increased from 10% to 26% after 24 hours. On the first day after adding HOBt to the LiP enzyme, the percentage of NBB dye eliminated increased from 5% to 89%. The effect of HOBt was significantly greater in the NBB than in the RBBR. The redox mediator-added Lignin Peroxidase enzyme decolorized the NBB dye more efficiently than the RBBR dye.

References

  • [1] O. Bechiri, M. Abbessi, and M. E. H. Samar, “Decolorization of organic dye (NBB) using Fe(III)P2W12Mo5/H2O2 system,” Desalination Water Treat, vol. 51, no. 31–33, 2013, doi: 10.1080/19443994.2013.766648.
  • [2] A. Raees et al., “Adsorption Potential of Schizophyllum commune White Rot Fungus for Degradation of Reactive Dye and Condition Optimization: A Thermodynamic and Kinetic Study,” Adsorption Science and Technology, vol. 2023, 2023, doi: 10.1155/2023/4725710.
  • [3] M. Celebi, M. Altikatoglu, Z. M. Akdeste, and H. Yildirim, “Determination of decolorization properties of Reactive Blue 19 dye using Horseradish Peroxidase enzyme,” Turkish Journal of Biochemistry, vol. 38, no. 2, pp. 200–206, 2013, doi: 10.5505/tjb.2013.96636.
  • [4] G. Crini and E. Lichtfouse, “Green adsorbents for pollutant removal: fundamentals and design,” Springer Nature, 2018.
  • [5] E. Akdogan, “Investigation of the Effects of Unidirectional Compression on the Hardness of High-Density Polyethylene Materials,” Open Journal of Nano, vol. 7, no. 2, 2022, doi: 10.56171/ojn.1110326. [6] M. Uluskan, “Decreasing Defects in Plastic Injection Molding and Vibration Welding Processes Through Statistical Process Control,” 2021.
  • [7] R. M. El Khaldi et al., “Fabrication of high-performance nanofiber-based FO membrane,” Desalination Water Treat, vol. 147, pp. 56–72, 2019, doi: 10.5004/dwt.2019.23699.
  • [8] S. Das, A. Gole, A. Chakraborty, S. Mal, S. Rudra, and D. Ghosh, “Lignocellulolytic Microbial Systems and its Importance in Dye Decolourization: A Review,” J Pure Appl Microbiol, vol. 17, no. 2, 2023, doi: 10.22207/jpam.17.2.19.
  • [9] W. J. Guo et al., “Design and engineering of an efficient peroxidase using myoglobin for dye decolorization and lignin bioconversion,” Int J Mol Sci, vol. 23, no. 1, 2022, doi: 10.3390/ijms23010413.
  • [10] M. Çelebi and İ. Karagöz, “Biyobozunur Polimerler Ve Özellikleri; Nişasta, Poli(Glikolik Asit), Poli(Laktik Asit) Ve Poli(Ɛ Kaprolakton),” Gece Akademi Yayıncılık, Mühendislik Alanında Yeni Ufuklar, Chapter 11, pp. 249–266, 2019.
  • [11] G. M. Cooper, “The Central Role of Enzymes as Biological Catalysts,” The Cell: A Molecular Approach, 2000.
  • [12] T. Angelin Swetha, K. Mohanrasu, A. Bora, V. Ananthi, and A. Arun, “Enzymes incorporated nanotechnology for wastewater treatment,” in Handbook of Microbial Nanotechnology, 2022. doi: 10.1016/B978-0-12-823426-6.00021-8.
  • [13] V. S. Ferreira-Leitao, M. E. A. de Carvalho, and E. P. S. Bon, “Lignin peroxidase efficiency for methylene blue decolouration: Comparison to reported methods,” Dyes and Pigments, vol. 74, no. 1, pp. 230–236, 2006, doi: 10.1016/j.dyepig.2006.02.002.
  • [14] M. Celebi, M. Arif, M. Altikatoglu, and H. Yildirim, “Removal of cationic dye from textile industry wastewater with using enzyme , fungus and polymer,” The Online Journal of Science and Technology, vol. 3, no. 2, pp. 39–45, 2013, [Online]. Available: http://www.tojsat.net/index.php/tojsat/article/view/107/111.
  • [15] M. Çelebi, Z. Ö. Özdemir, and M. Topuzoğullari, “Microwave-assisted rapid conjugation of horseradish peroxidase-dextran aldehyde with Schiff base reaction and decolorization of Reactive Blue 19,” Turk J Chem, vol. 46, no. 3, 2022, doi: 10.55730/1300-0527.3378.
  • [16] M. Altikatoglu and Y. Basaran, “Additive effect of dextrans on the stability of horseradish peroxidase,” Protein Journal, vol. 30, no. 2, pp. 84–90, 2011, doi: 10.1007/s10930-011-9306-4.
  • [17] U. Kalsoom et al., “Biocatalytic degradation of reactive blue 221 and direct blue 297 dyes by horseradish peroxidase immobilized on iron oxide nanoparticles with improved kinetic and thermodynamic characteristics,” Chemosphere, vol. 312, 2023, doi: 10.1016/j.chemosphere.2022.137095.
  • [18] P. Xie et al., “Phenoxyl mediators improve enzymatic degradation of organic pollutants: Effect and mechanism,” Int J Biol Macromol, vol. 215, 2022, doi: 10.1016/j.ijbiomac.2022.06.124.
  • [19] R. Shaheen, M. Asgher, F. Hussain, and H. N. Bhatti, “Immobilized lignin peroxidase from Ganoderma lucidum IBL-05 with improved dye decolorization and cytotoxicity reduction properties,” Int J Biol Macromol, vol. 103, 2017, doi: 10.1016/j.ijbiomac.2017.04.040.
  • [20] V. D. Giap et al., “Purification and characterization of lignin peroxidase from white-rot fungi Pleurotus pulmonarius CPG6 and its application in decolorization of synthetic textile dyes,” Journal of General and Applied Microbiology, vol. 68, no. 6, 2022, doi: 10.2323/jgam.2022.05.005.
  • [21] R. Ten Have, R. G. De Thouars, H. J. Swarts, and J. A. Field, “Veratryl alcohol-mediated oxidation of isoeugenyl acetate by lignin peroxidase,” Eur J Biochem, vol. 265, no. 3, 1999, doi: 10.1046/j.1432-1327.1999.00808.x.
  • [22] H. Rekik et al., “Physical and enzymatic properties of a new manganese peroxidase from the white-rot fungus Trametes pubescens strain i8 for lignin biodegradation and textile-dyes biodecolorization,” Int J Biol Macromol, vol. 125, 2019, doi: 10.1016/j.ijbiomac.2018.12.053.
  • [23] Y. Chang, D. Yang, R. Li, T. Wang, and Y. Zhu, “Textile dye biodecolorization by manganese peroxidase: A review,” Molecules, vol. 26, no. 15. 2021. doi: 10.3390/molecules26154403.
  • [24] B. M. Altahir et al., “Soybean peroxidase catalyzed decoloration of acid azo dyes,” J Health Pollut, vol. 10, no. 25, 2020, doi: 10.5696/2156-9614-10.25.200307.
  • [25] E. A. M. Ali, S. Abd Ellatif, and E. S. Abdel Razik, “Production, purification, characterization and immobilization of laccase from Phoma betae and its application in synthetic dyes decolorization,” Egyptian Journal of Botany, vol. 60, no. 1, 2020, doi: 10.21608/ejbo.2019.19226.1381.
  • [26] N. Šekuljica et al., “Decolorization of anthraquinonic dyes from textile effluent using horseradish peroxidase: Optimization and kinetic study,” Scientific World Journal, vol. 2015, 2015, doi: 10.1155/2015/371625.
  • [27] M. Altikatoglu and M. Celebi, “Enhanced stability and decolorization of Coomassie Brilliant Blue R-250 by dextran aldehyde-modified horseradish peroxidase.,” Artif Cells Blood Substit Immobil Biotechnol, vol. 39, no. 3, pp. 185–90, 2011.
  • [28] M. Celebi, M. A. Kaya, M. Altikatoglu, and H. Yildirim, “Enzymatic decolorization of anthraquinone and diazo dyes using horseradish peroxidase enzyme immobilized onto various polysulfone supports,” Appl Biochem Biotechnol, vol. 171, no. 3, pp. 716–730, 2013.
  • [29] T. K. Kirk and D. Cullen, Enzymology and molecular genetics of wood degradation by white-rot fungi. 1998.
  • [30] P. Chowdhary, N. More, A. Yadav, and R. N. Bharagava, “Ligninolytic enzymes: An introduction and applications in the food industry,” in Enzymes in Food Biotechnology: Production, Applications, and Future Prospects, 2018. doi: 10.1016/B978-0-12-813280-7.00012-8.
  • [31] T. K. Kirk and R. L. Farrell, “Enzymatic ‘combustion’: the microbial degradation of lignin.,” Annual review of microbiology, vol. 41. 1987. doi: 10.1146/annurev.mi.41.100187.002341.
  • [32] H. Wariishi and M. H. Gold, “Lignin peroxidase compound III. Mechanism of formation and decomposition,” Journal of Biological Chemistry, vol. 265, no. 4, 1990, doi: 10.1016/s0021-9258(19)39941-7.
  • [33] M. Husain and Q. Husain, “Applications of redox mediators in the treatment of organic pollutants by using oxidoreductive enzymes: A review,” Critical Reviews in Environmental Science and Technology, vol. 38, no. 1. 2008. doi: 10.1080/10643380701501213.
  • [34] O. Faix, “Book Review: Biopolymers. Biology, Chemistry, Biotechnology, Applications. Vol. 1: Lignin, Humic Substances and Coal. Edited by Alexander Steinbüchel and Martin Hofrichter,” Angewandte Chemie International Edition, vol. 41, no. 11, 2002, doi: 10.1002/1521-3773(20020603)41:11<1963::aid-anie1963>3.0.co;2-f.
  • [35] F. Jamal, P. K. Pandey, and T. Qidwai, “Potential of peroxidase enzyme from Trichosanthes diocia to mediate disperse dye decolorization in conjunction with redox mediators,” J Mol Catal B Enzym, vol. 66, no. 1–2, pp. 177–181, 2010, doi: 10.1016/j.molcatb.2010.05.005.
  • [36] Q. Husain, “Potential Applications of the Oxidoreductive Enzymes in the Decolorization and Detoxification of Textile and Other Synthetic Dyes from Polluted Water: A Review,” Crit Rev Biotechnol, vol. 26, no. 4, pp. 201–221, 2006, doi: 10.1080/07388550600969936.
  • [37] L. N. Nguyen et al., “The effects of mediator and granular activated carbon addition on degradation of trace organic contaminants by an enzymatic membrane reactor,” Bioresour Technol, vol. 167, 2014, doi: 10.1016/j.biortech.2014.05.125.
  • [38] H. Hirai, H. Shibata, S. Kawai, and T. Nishida, “Role of 1-hydroxybenzotriazole in oxidation by laccase from Trametes versicolor. Kinetic analysis of the laccase-1-hydroxybenzotriazole couple,” FEMS Microbiol Lett, vol. 265, no. 1, 2006, doi: 10.1111/j.1574-6968.2006.00474.x.
  • [39] D. C. Goodwin, S. D. Aust, and T. A. Grover, “Evidence for Veratryl Alcohol as a Redox Mediator in Lignin Peroxidase-Catalyzed Oxidation,” Biochemistry, vol. 34, no. 15, 1995, doi: 10.1021/bi00015a017.
  • [40] M. Matto and Q. Husain, “Decolorization of direct dyes by salt fractionated turnip proteins enhanced in the presence of hydrogen peroxide and redox mediators,” Chemosphere, vol. 69, no. 2, 2007, doi: 10.1016/j.chemosphere.2007.03.069.
  • [41] S. Hariharan and P. Nambisan, “Optimization of lignin peroxidase, manganese peroxidase, and lac production from Ganoderma lucidum under solid state fermentation of pineapple leaf,” Bioresources, vol. 8, no. 1, 2013, doi: 10.15376/biores.8.1.250-271.
  • [42] E. Keyhani, J. Keyhani, S. Saeidian, F. Attar, and S. Oveissi, “Identification of enzymatic properties in Crocus sativus roots,” in Acta Horticulturae, 2007. doi: 10.17660/ActaHortic.2007.739.29.
  • [43] H. Claus, G. Faber, and H. König, “Redox-mediated decolorization of synthetic dyes by fungal laccases,” Appl Microbiol Biotechnol, vol. 59, no. 6, 2002, doi: 10.1007/s00253-002-1047-z.
  • [44] M. Bilal and H. M. N. Iqbal, “Lignin peroxidase immobilization on Ca-alginate beads and its dye degradation performance in a packed bed reactor system,” Biocatal Agric Biotechnol, vol. 20, 2019, doi: 10.1016/j.bcab.2019.101205.
  • [45] E. P. Chagas and L. R. Durrant, “Decolorization of azo dyes by Phanerochaete chrysosporium and Pleurotus sajorcaju,” Enzyme Microb Technol, vol. 29, no. 8–9, 2001, doi: 10.1016/S0141-0229(01)00405-7.
  • [46] F. Jamal, “Functional Suitability of Soluble Peroxidases from Easily Available Plant Sources in Decolorization of Synthetic Dyes,” in Advances in Treating Textile Effluent, 2011. doi: 10.5772/20370.
  • [47] S. Onder, M. Celebi, M. Altikatoglu, A. Hatipoglu, and H. Kuzu, “Decolorization of naphthol blue black using the horseradish peroxidase,” Appl Biochem Biotechnol, vol. 163, no. 3, pp. 433–443, 2011.
There are 46 citations in total.

Details

Primary Language English
Subjects Reaction Kinetics and Dynamics, Bioengineering (Other)
Journal Section Research Article
Authors

Mithat Çelebi 0000-0002-2013-5354

Melda Altıkatoğlu 0000-0002-0800-1249

Early Pub Date November 27, 2023
Publication Date December 21, 2023
Submission Date September 21, 2023
Published in Issue Year 2023 Volume: 8 Issue: 2

Cite

APA Çelebi, M., & Altıkatoğlu, M. (2023). The Effect of 1-hydroxybenzotriazole on the Decolorization of Anthraquinone and Diazo Dyes Using Peroxidase Enzyme. Open Journal of Nano, 8(2), 74-83. https://doi.org/10.56171/ojn.1364230
AMA Çelebi M, Altıkatoğlu M. The Effect of 1-hydroxybenzotriazole on the Decolorization of Anthraquinone and Diazo Dyes Using Peroxidase Enzyme. OJN. December 2023;8(2):74-83. doi:10.56171/ojn.1364230
Chicago Çelebi, Mithat, and Melda Altıkatoğlu. “The Effect of 1-Hydroxybenzotriazole on the Decolorization of Anthraquinone and Diazo Dyes Using Peroxidase Enzyme”. Open Journal of Nano 8, no. 2 (December 2023): 74-83. https://doi.org/10.56171/ojn.1364230.
EndNote Çelebi M, Altıkatoğlu M (December 1, 2023) The Effect of 1-hydroxybenzotriazole on the Decolorization of Anthraquinone and Diazo Dyes Using Peroxidase Enzyme. Open Journal of Nano 8 2 74–83.
IEEE M. Çelebi and M. Altıkatoğlu, “The Effect of 1-hydroxybenzotriazole on the Decolorization of Anthraquinone and Diazo Dyes Using Peroxidase Enzyme”, OJN, vol. 8, no. 2, pp. 74–83, 2023, doi: 10.56171/ojn.1364230.
ISNAD Çelebi, Mithat - Altıkatoğlu, Melda. “The Effect of 1-Hydroxybenzotriazole on the Decolorization of Anthraquinone and Diazo Dyes Using Peroxidase Enzyme”. Open Journal of Nano 8/2 (December 2023), 74-83. https://doi.org/10.56171/ojn.1364230.
JAMA Çelebi M, Altıkatoğlu M. The Effect of 1-hydroxybenzotriazole on the Decolorization of Anthraquinone and Diazo Dyes Using Peroxidase Enzyme. OJN. 2023;8:74–83.
MLA Çelebi, Mithat and Melda Altıkatoğlu. “The Effect of 1-Hydroxybenzotriazole on the Decolorization of Anthraquinone and Diazo Dyes Using Peroxidase Enzyme”. Open Journal of Nano, vol. 8, no. 2, 2023, pp. 74-83, doi:10.56171/ojn.1364230.
Vancouver Çelebi M, Altıkatoğlu M. The Effect of 1-hydroxybenzotriazole on the Decolorization of Anthraquinone and Diazo Dyes Using Peroxidase Enzyme. OJN. 2023;8(2):74-83.

23830

The Open Journal of Nano(OJN) deals with information related to (but not limited to) physical, chemical and biological phenomena and processes ranging from molecular to microscale structures.

All publications in The Open Journal of Nano are licensed under the Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) license.