Research Article
BibTex RIS Cite

3D Yazdırılabilir Betonlar için Nanoselülozik Katkı Maddelerinin Reolojik Parametreler Üzerindeki Etkisinin Karşılaştırılması

Year 2023, , 1796 - 1809, 04.12.2023
https://doi.org/10.47495/okufbed.1185819

Abstract

3D yazdırılabilir betonlarda pompalanabilirlik, çalışılabilirlik, inşa edilebilirlik gibi taze haldeki gereksinimler karışımın reolojik parametrelerinden etkilenmektedir. Yüksek akma gerilmesi ve yüksek viskozite, iletim hattında tıkanmalara neden olurken, düşük akma gerilmesi ve düşük viskozite ise karışımın gerekli şekil stabilitesini sağlayamamasına neden olmaktadır. Basılacak karışım uygun reolojik parametrelere sahip olsa dahi, bunu zamanla koruyabilmesi çalışılabilirlik süresi açısından oldukça önem arz etmektedir. Burada, 3D yazdırılabilir beton karışımlarda yeterli çalışılabilirlik süresini sağlamak, ayrıca başlangıçta tasarlanan reolojik özellikleri zamanla korunabilmesini sağlamak amacıyla, çimento pastası karışımlarında selüloz nano kristal ve selüloz nanolif kullanılmıştır. Çeşitli oranlarda selüloz nano kristal ve selüloz nano lif katkısı içeren karışımların reolojik parametreleri viskozimetre cihazı ile yapılan ölçümler sonucunda oluşturulan Bingham modeli ile belirlenmiştir. Çalışma sonucunda, referans numunesinin akma gerilmesi karışımın hazırlanması anından 45 dakika sonra %290 artarken, selüloz nano kristal kullanımında bu oranın %135’e, selüloz nano lif kullanımında ise %79’a kadar düştüğü tespit edilmiştir, viskoziteye bakıldığında ise referans numunesi 45 dakikalık süre sonunda % 205 artış gösterirken bu oran selüloz nanolif ile %37’ye selüloz nanokristal ile %68’e kadar düşmüştür. Farklı katkılar kıyaslandığında ise, viskozite ve akma gerilmesinin zamanla artışının kontrol edilmesinde, selüloz nano lifin selüloz nano kristale göre daha etkili olabileceği çıkarımına varılmıştır.

References

  • Cao Y., Zavaterri P., Youngblood J., Moon R., Weiss J. The influence of cellulose nanocrystal additions on the performance of cement paste. Cement and Concrete Composites 2015; 56, 73–83.
  • Cao Y., Zavattieri P., Youngblood J., Moon R., Weiss J. The relationship between cellulose nanocrystal dispersion and strength. Construction and Building Materials 2016; 119, 71–79.
  • Chen M., Liu B., Li L., Cao L., Huang Y., Wang S., Zhao P., Lu L., Cheng X. Rheological parameters, thixotropy and creep of 3D-printed calcium sulfoaluminate cement composites modified by bentonite. Composites Part B: Engineering 2020a; 186, 107821.
  • Chen M., Yang L., Zheng Y., Huang Y., Li L., Zhao P., Wang S., Lu, L., Cheng X. Yield stress and thixotropy control of 3D-printed calcium sulfoaluminate cement composites with metakaolin related to structural build-up. Construction and Building Materials 2020b; 252, 119090
  • Flores J., Kamali M., Ghahremaninezhad A. An Investigation into the Properties and Microstructure of Cement Mixtures Modified with Cellulose Nanocrystal. Materials 2017; 10(5): 498.
  • Gwon S., Shin M. Rheological properties of cement pastes with cellulose microfibers. Journal of Materials Research and Technology 2021; 10: 808–818.
  • Jiao D., de Schryver R., Shi C., de Schutter G. Thixotropic structural build-up of cement-based materials: A state-of-the-art review. Cement and Concrete Composites 2021; 122, 104152.
  • Kazemian A., Yuan X., Cochran E., Khoshnevis B. Cementitious materials for construction-scale 3D printing: Laboratory testing of fresh printing mixture. Construction and Building Materials 2017; 145: 639–647.
  • Kruger J., Zeranka S., Zijl G. An ab initio approach for thixotropy characterisation of (nanoparticle-infused) 3D printable concrete. Construction and Building Materials 2019; 224: 372–386.
  • Le TT., Austin SA., Lim S., Buswell RA., Gibb AGF., Thorpe T. Mix design and fresh properties for high-performance printing concrete. Materials and Structures/Materiaux et Constructions 2012; 45(8): 1221–1232.
  • Liang L., Zhang X., Liu Q., Li X., Shang X. Cellulose nanofibrils for the performance improvement of ultra-high ductility cementitious composites. Cellulose 2022; 29(3):1705–1725.
  • Liu C., Chen Y., Xiong Y., Jia L., Ma L., Wang X., Chen C., Banthia N., Zhang Y. Influence of HPMC and SF on buildability of 3D printing foam concrete: From water state and flocculation point of view. Composites Part B: Engineering 2022; 242, 110075.
  • Liu C., Wang X., Chen Y., Zhang C., Ma L., Deng Z., Chen C., Zhang Y., Pan J., Banthia N. Influence of hydroxypropyl methylcellulose and silica fume on stability, rheological properties, and printability of 3D printing foam concrete. Cement and Concrete Composites 2021; 122, 104158.
  • Long WJ., Tao JL., Lin C., Gu Y. Mei L., Duan HB., Xing F. Rheology and buildability of sustainable cement-based composites containing micro-crystalline cellulose for 3D-printing. Journal of Cleaner Production 2019; 239, 118054.
  • Mohan MK., Rahul AV., Tittelboom KV., de Schutter G. Rheological and pumping behaviour of 3D printable cementitious materials with varying aggregate content. Cement and Concrete Research 2021; 139, 106258.
  • Mostafa AM., Yahia A. New approach to assess build-up of cement-based suspensions. Cement and Concrete Research 2016; 85: 174–182.
  • Salman NM., Ma G., Ijaz N., Wang L. Importance and potential of cellulosic materials and derivatives in extrusion-based 3D concrete printing (3DCP): Prospects and challenges. Construction and Building Materials 2021; 291, 123281.
  • Muthukrishnan S., Ramakrishnan S., Sanjayan J. Technologies for improving buildability in 3D concrete printing. Cement and Concrete Composites 2021; 122, 104144.
  • Nassiri S., Chen Z., Jian G., Zhong T., Haider MM., Li H., Fernandez C., Sinclair M., Varga T., Fifield, LS., Wolcott M. Comparison of unique effects of two contrasting types of cellulose nanomaterials on setting time, rheology, and compressive strength of cement paste. Cement and Concrete Composites 2021; 123, 104201.
  • Panda B., Tan MJ. Experimental study on mix proportion and fresh properties of fly ash based geopolymer for 3D concrete printing. Ceramics International 2018, 44(9), 10258–10265.
  • Paul SC., Zijl GPAG., Gibson I. A review of 3D concrete printing systems and materials properties: current status and future research prospects. Rapid Prototyping Journal 2018; 24(4): 784–798.
  • Perrot A., Rangeard D., Pierre A. Structural built-up of cement-based materials used for 3D-printing extrusion techniques. Materials and Structures/Materiaux et Constructions 2016, 49(4), 1213–1220.
  • Qian Y., Kawashima S. Use of creep recovery protocol to measure static yield stress and structural rebuilding of fresh cement pastes. Cement and Concrete Research 2016; 90: 73–79.
  • Reiter L., Wangler T., Roussel N., Flatt RJ. The role of early age structural build-up in digital fabrication with concrete. Cement and Concrete Research 2018; 112: 86–95.
  • Shakor P., Nejadi S., Sutjipto S., Paul G., Gowripalan N. Effects of deposition velocity in the presence/absence of E6-glass fibre on extrusion-based 3D printed mortar. Additive Manufacturing 2020; 32, 101069.
  • Soltan DG., Li VC. A self-reinforced cementitious composite for building-scale 3D printing. Cement and Concrete Composites 2018; 90:1–13.
  • Souza MT., Ferreira IM., Guzi de Moraes E., Senff L., Novaes de Oliveira AP. 3D printed concrete for large-scale buildings: An overview of rheology, printing parameters, chemical admixtures, reinforcements, and economic and environmental prospects. Journal of Building Engineering 2020; 32, 101833.
  • Türk F., Kaya M., Saydan M., Keskin ÜS. Environmentally friendly viscosity-modifying agent for self-compacting mortar: Cladophora sp. cellulose nanofibres. European Journal of Environmental and Civil Engineering 2022; 1-16.
  • Yuan Q., Zhou D., Khayat KH., Feys D., Shi, C. On the measurement of evolution of structural build-up of cement paste with time by static yield stress test vs. small amplitude oscillatory shear test. Cement and Concrete Research 2017, 99, 183–189.
  • Zhang J., Wang J., Dong S., Yu X., Han B. A review of the current progress and application of 3D printed concrete. Composites Part A: Applied Science and Manufacturing 2019, 125, 105533.
  • Zhang JY., Pandya JK., McClements DJ., Lu J., Kinchla AJ. Advancements in 3D food printing: a comprehensive overview of properties and opportunities. Crit Rev Food Sci Nutr. 2022; 62(17): 4752-4768.

Comparison of the Effect of Nano Cellulosic Additives on Rheological Parameters for 3D Printable Concretes

Year 2023, , 1796 - 1809, 04.12.2023
https://doi.org/10.47495/okufbed.1185819

Abstract

In 3D printable concretes, fresh requirements such as pumpability, workability, constructability are affected by the rheological properties of the mixture. High yield stress and high viscosity cause blockages in the transmission line, while low yield stress and low viscosity cause the mixture to not provide the required shape stability. Even if the mixture to be printed has suitable rheological parameters, it is very important in terms of workability that it can be preserved over time. Here, cellulose nanocrystals and cellulose nanofibers were used in cement paste mixtures in order to ensure sufficient workability time in 3D printable concrete mixtures, and also to ensure that the originally designed rheological properties can be maintained over time. The Bingham model, which was created as a result of the measurements made with the viscometer device, was used to evaluate the rheological parameters of the mixes containing cellulose nanocrystal and cellulose nanofiber additions in varied amounts. As a result of the study, it was determined that the yield stress of the reference sample increased by 290% 45 minutes after the preparation of the mixture, while this rate decreased to 135% in the use of cellulose nanocrystals and to 79% in the use of cellulose nanofibers. While it increased by 205% at the end, this rate decreased to 37% with cellulose nanofibers and to 68% with cellulose nanocrystals. When the different additives are compared, it was concluded that cellulose nanofiber may be more effective than cellulose nanocrystal in controlling the increase in viscosity and yield stress over time.

References

  • Cao Y., Zavaterri P., Youngblood J., Moon R., Weiss J. The influence of cellulose nanocrystal additions on the performance of cement paste. Cement and Concrete Composites 2015; 56, 73–83.
  • Cao Y., Zavattieri P., Youngblood J., Moon R., Weiss J. The relationship between cellulose nanocrystal dispersion and strength. Construction and Building Materials 2016; 119, 71–79.
  • Chen M., Liu B., Li L., Cao L., Huang Y., Wang S., Zhao P., Lu L., Cheng X. Rheological parameters, thixotropy and creep of 3D-printed calcium sulfoaluminate cement composites modified by bentonite. Composites Part B: Engineering 2020a; 186, 107821.
  • Chen M., Yang L., Zheng Y., Huang Y., Li L., Zhao P., Wang S., Lu, L., Cheng X. Yield stress and thixotropy control of 3D-printed calcium sulfoaluminate cement composites with metakaolin related to structural build-up. Construction and Building Materials 2020b; 252, 119090
  • Flores J., Kamali M., Ghahremaninezhad A. An Investigation into the Properties and Microstructure of Cement Mixtures Modified with Cellulose Nanocrystal. Materials 2017; 10(5): 498.
  • Gwon S., Shin M. Rheological properties of cement pastes with cellulose microfibers. Journal of Materials Research and Technology 2021; 10: 808–818.
  • Jiao D., de Schryver R., Shi C., de Schutter G. Thixotropic structural build-up of cement-based materials: A state-of-the-art review. Cement and Concrete Composites 2021; 122, 104152.
  • Kazemian A., Yuan X., Cochran E., Khoshnevis B. Cementitious materials for construction-scale 3D printing: Laboratory testing of fresh printing mixture. Construction and Building Materials 2017; 145: 639–647.
  • Kruger J., Zeranka S., Zijl G. An ab initio approach for thixotropy characterisation of (nanoparticle-infused) 3D printable concrete. Construction and Building Materials 2019; 224: 372–386.
  • Le TT., Austin SA., Lim S., Buswell RA., Gibb AGF., Thorpe T. Mix design and fresh properties for high-performance printing concrete. Materials and Structures/Materiaux et Constructions 2012; 45(8): 1221–1232.
  • Liang L., Zhang X., Liu Q., Li X., Shang X. Cellulose nanofibrils for the performance improvement of ultra-high ductility cementitious composites. Cellulose 2022; 29(3):1705–1725.
  • Liu C., Chen Y., Xiong Y., Jia L., Ma L., Wang X., Chen C., Banthia N., Zhang Y. Influence of HPMC and SF on buildability of 3D printing foam concrete: From water state and flocculation point of view. Composites Part B: Engineering 2022; 242, 110075.
  • Liu C., Wang X., Chen Y., Zhang C., Ma L., Deng Z., Chen C., Zhang Y., Pan J., Banthia N. Influence of hydroxypropyl methylcellulose and silica fume on stability, rheological properties, and printability of 3D printing foam concrete. Cement and Concrete Composites 2021; 122, 104158.
  • Long WJ., Tao JL., Lin C., Gu Y. Mei L., Duan HB., Xing F. Rheology and buildability of sustainable cement-based composites containing micro-crystalline cellulose for 3D-printing. Journal of Cleaner Production 2019; 239, 118054.
  • Mohan MK., Rahul AV., Tittelboom KV., de Schutter G. Rheological and pumping behaviour of 3D printable cementitious materials with varying aggregate content. Cement and Concrete Research 2021; 139, 106258.
  • Mostafa AM., Yahia A. New approach to assess build-up of cement-based suspensions. Cement and Concrete Research 2016; 85: 174–182.
  • Salman NM., Ma G., Ijaz N., Wang L. Importance and potential of cellulosic materials and derivatives in extrusion-based 3D concrete printing (3DCP): Prospects and challenges. Construction and Building Materials 2021; 291, 123281.
  • Muthukrishnan S., Ramakrishnan S., Sanjayan J. Technologies for improving buildability in 3D concrete printing. Cement and Concrete Composites 2021; 122, 104144.
  • Nassiri S., Chen Z., Jian G., Zhong T., Haider MM., Li H., Fernandez C., Sinclair M., Varga T., Fifield, LS., Wolcott M. Comparison of unique effects of two contrasting types of cellulose nanomaterials on setting time, rheology, and compressive strength of cement paste. Cement and Concrete Composites 2021; 123, 104201.
  • Panda B., Tan MJ. Experimental study on mix proportion and fresh properties of fly ash based geopolymer for 3D concrete printing. Ceramics International 2018, 44(9), 10258–10265.
  • Paul SC., Zijl GPAG., Gibson I. A review of 3D concrete printing systems and materials properties: current status and future research prospects. Rapid Prototyping Journal 2018; 24(4): 784–798.
  • Perrot A., Rangeard D., Pierre A. Structural built-up of cement-based materials used for 3D-printing extrusion techniques. Materials and Structures/Materiaux et Constructions 2016, 49(4), 1213–1220.
  • Qian Y., Kawashima S. Use of creep recovery protocol to measure static yield stress and structural rebuilding of fresh cement pastes. Cement and Concrete Research 2016; 90: 73–79.
  • Reiter L., Wangler T., Roussel N., Flatt RJ. The role of early age structural build-up in digital fabrication with concrete. Cement and Concrete Research 2018; 112: 86–95.
  • Shakor P., Nejadi S., Sutjipto S., Paul G., Gowripalan N. Effects of deposition velocity in the presence/absence of E6-glass fibre on extrusion-based 3D printed mortar. Additive Manufacturing 2020; 32, 101069.
  • Soltan DG., Li VC. A self-reinforced cementitious composite for building-scale 3D printing. Cement and Concrete Composites 2018; 90:1–13.
  • Souza MT., Ferreira IM., Guzi de Moraes E., Senff L., Novaes de Oliveira AP. 3D printed concrete for large-scale buildings: An overview of rheology, printing parameters, chemical admixtures, reinforcements, and economic and environmental prospects. Journal of Building Engineering 2020; 32, 101833.
  • Türk F., Kaya M., Saydan M., Keskin ÜS. Environmentally friendly viscosity-modifying agent for self-compacting mortar: Cladophora sp. cellulose nanofibres. European Journal of Environmental and Civil Engineering 2022; 1-16.
  • Yuan Q., Zhou D., Khayat KH., Feys D., Shi, C. On the measurement of evolution of structural build-up of cement paste with time by static yield stress test vs. small amplitude oscillatory shear test. Cement and Concrete Research 2017, 99, 183–189.
  • Zhang J., Wang J., Dong S., Yu X., Han B. A review of the current progress and application of 3D printed concrete. Composites Part A: Applied Science and Manufacturing 2019, 125, 105533.
  • Zhang JY., Pandya JK., McClements DJ., Lu J., Kinchla AJ. Advancements in 3D food printing: a comprehensive overview of properties and opportunities. Crit Rev Food Sci Nutr. 2022; 62(17): 4752-4768.
There are 31 citations in total.

Details

Primary Language English
Subjects Civil Engineering
Journal Section RESEARCH ARTICLES
Authors

Ayşe Karoğlu

Furkan Türk 0000-0002-8156-0354

Ülkü Sultan Keskin 0000-0002-9517-9116

Publication Date December 4, 2023
Submission Date October 7, 2022
Acceptance Date February 24, 2023
Published in Issue Year 2023

Cite

APA Karoğlu, A., Türk, F., & Keskin, Ü. S. (2023). Comparison of the Effect of Nano Cellulosic Additives on Rheological Parameters for 3D Printable Concretes. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 6(3), 1796-1809. https://doi.org/10.47495/okufbed.1185819
AMA Karoğlu A, Türk F, Keskin ÜS. Comparison of the Effect of Nano Cellulosic Additives on Rheological Parameters for 3D Printable Concretes. Osmaniye Korkut Ata University Journal of The Institute of Science and Techno. December 2023;6(3):1796-1809. doi:10.47495/okufbed.1185819
Chicago Karoğlu, Ayşe, Furkan Türk, and Ülkü Sultan Keskin. “Comparison of the Effect of Nano Cellulosic Additives on Rheological Parameters for 3D Printable Concretes”. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi 6, no. 3 (December 2023): 1796-1809. https://doi.org/10.47495/okufbed.1185819.
EndNote Karoğlu A, Türk F, Keskin ÜS (December 1, 2023) Comparison of the Effect of Nano Cellulosic Additives on Rheological Parameters for 3D Printable Concretes. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi 6 3 1796–1809.
IEEE A. Karoğlu, F. Türk, and Ü. S. Keskin, “Comparison of the Effect of Nano Cellulosic Additives on Rheological Parameters for 3D Printable Concretes”, Osmaniye Korkut Ata University Journal of The Institute of Science and Techno, vol. 6, no. 3, pp. 1796–1809, 2023, doi: 10.47495/okufbed.1185819.
ISNAD Karoğlu, Ayşe et al. “Comparison of the Effect of Nano Cellulosic Additives on Rheological Parameters for 3D Printable Concretes”. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi 6/3 (December 2023), 1796-1809. https://doi.org/10.47495/okufbed.1185819.
JAMA Karoğlu A, Türk F, Keskin ÜS. Comparison of the Effect of Nano Cellulosic Additives on Rheological Parameters for 3D Printable Concretes. Osmaniye Korkut Ata University Journal of The Institute of Science and Techno. 2023;6:1796–1809.
MLA Karoğlu, Ayşe et al. “Comparison of the Effect of Nano Cellulosic Additives on Rheological Parameters for 3D Printable Concretes”. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi, vol. 6, no. 3, 2023, pp. 1796-09, doi:10.47495/okufbed.1185819.
Vancouver Karoğlu A, Türk F, Keskin ÜS. Comparison of the Effect of Nano Cellulosic Additives on Rheological Parameters for 3D Printable Concretes. Osmaniye Korkut Ata University Journal of The Institute of Science and Techno. 2023;6(3):1796-809.

23487




196541947019414  

1943319434 19435194361960219721 19784  2123822610 23877

* Uluslararası Hakemli Dergi (International Peer Reviewed Journal)

* Yazar/yazarlardan hiçbir şekilde MAKALE BASIM ÜCRETİ vb. şeyler istenmemektedir (Free submission and publication).

* Yılda Ocak, Mart, Haziran, Eylül ve Aralık'ta olmak üzere 5 sayı yayınlanmaktadır (Published 5 times a year)

* Dergide, Türkçe ve İngilizce makaleler basılmaktadır.

*Dergi açık erişimli bir dergidir.

Creative Commons License

Bu web sitesi Creative Commons Atıf 4.0 Uluslararası Lisansı ile lisanslanmıştır.