Research Article
BibTex RIS Cite

Bazı Graf Sınıflarında 1-Düzenli ve 2-Düzenli Ayrıt Bağlantılılık

Year 2023, , 415 - 425, 20.12.2023
https://doi.org/10.47495/okufbed.1211664

Abstract

Düzenli ayrıt bağlantılılık yeni bir koşullu bağlantılılık türü olup, bu kavram bağlantısız yapılan her parça grafın düzenli olması esasına dayanır. Bu çalışmada, hiperküp graflarında ve bir tam grafın yol, çevre ve bir tam grafla kartezyen çarpımından elde edilen graflarda 1-düzenli ve 2-düzenli ayrıt bağlantılılık incelenmiştir.

References

  • Balbuena C., Marcote X. The p-restricted edge-connectivity of Kneser graphs. Applied Mathematics and Computation 2019; 343: 258-267.
  • Deo N. Graph Theory with applications to engineering and computer science. Courier Dover Publications; 2017. Diestel R. Grapht theory. Springer Science & Business Media. 2005.
  • Ediz S., Çiftçi İ. On k-regular edge connectivity of chemical graphs. Main Group Metal Chemistry 2022; 45(1): 106-110.
  • Fabrega J., Fiol MA. On the extraconnectivity of graphs. Discrete Mathematics 1996; 155: 49–57.
  • Guo L., Zhang M., Zhai S., Xu L. Relation of extra edge connectivity and component edge connectivity for regular Networks. International Journal of Foundations of Computer Science 2021; 32(2): 137–149.
  • Hao RX., Tian ZX., Xu JM. Relationship between conditional diagnosability and 2-extra connectivity of symmetric graphs. Theoretical Computer Science 2016; 627: 36-53.
  • Harary F. Conditional connectivity. Networks 1983; 13(3): 347–357.
  • Latifi S., Hegde M., Naraghipour M. Conditional connectivity measures for large multiprocessor systems. IEEE Transactions on Computers 1994; 43: 218–222.
  • Li H., Yang W. Bounding the size of the subgraph induced by m vertices and extra edge-connectivity of hypercubes. Discrete Applied Mathematics 2013; 161(16-17): 2753-2757.
  • Li P., Xu M. Fault-tolerant strong Menger (edge) connectivity and 3-extra edge-connectivity of balanced hypercubes. Theoretical Computer Science 2018; 707: 56-68.
  • Li X., Lin CK., Fan J., Jia X., Cheng B., Zhou J. Relationship between extra connectivity and component connectivity ın networks. The Computer Journal 2021; 64(1): 38–53.
  • Lin L., Huang Y., Wang X., Xu L. Restricted connectivity and good-neighbor diagnosability of split-star networks. Theoretical Computer Science 2020; 824: 81-91.
  • Liu X., Meng J. The k-restricted edge-connectivity of the data center network DCell. Applied Mathematics and Computation 2021; 396: 125941.
  • Lü H. On extra connectivity and extra edge-connectivity of balanced hypercubes. International Journal of Computer Mathematics 2017; 94(4): 813-820.

On 1-Regular and 2- Regular Edge Connectivity in Some Graph Classes

Year 2023, , 415 - 425, 20.12.2023
https://doi.org/10.47495/okufbed.1211664

Abstract

Regular edge connectivity is a new type of conditional connectivity, and this concept is based on the regularity of every disconnected component graphs. In this study, 1-regular and 2-regular edge connectivity were investigated in hypercube graphs and graphs obtained from path, cycle and complete graphs with Cartesian product a complete graph.

References

  • Balbuena C., Marcote X. The p-restricted edge-connectivity of Kneser graphs. Applied Mathematics and Computation 2019; 343: 258-267.
  • Deo N. Graph Theory with applications to engineering and computer science. Courier Dover Publications; 2017. Diestel R. Grapht theory. Springer Science & Business Media. 2005.
  • Ediz S., Çiftçi İ. On k-regular edge connectivity of chemical graphs. Main Group Metal Chemistry 2022; 45(1): 106-110.
  • Fabrega J., Fiol MA. On the extraconnectivity of graphs. Discrete Mathematics 1996; 155: 49–57.
  • Guo L., Zhang M., Zhai S., Xu L. Relation of extra edge connectivity and component edge connectivity for regular Networks. International Journal of Foundations of Computer Science 2021; 32(2): 137–149.
  • Hao RX., Tian ZX., Xu JM. Relationship between conditional diagnosability and 2-extra connectivity of symmetric graphs. Theoretical Computer Science 2016; 627: 36-53.
  • Harary F. Conditional connectivity. Networks 1983; 13(3): 347–357.
  • Latifi S., Hegde M., Naraghipour M. Conditional connectivity measures for large multiprocessor systems. IEEE Transactions on Computers 1994; 43: 218–222.
  • Li H., Yang W. Bounding the size of the subgraph induced by m vertices and extra edge-connectivity of hypercubes. Discrete Applied Mathematics 2013; 161(16-17): 2753-2757.
  • Li P., Xu M. Fault-tolerant strong Menger (edge) connectivity and 3-extra edge-connectivity of balanced hypercubes. Theoretical Computer Science 2018; 707: 56-68.
  • Li X., Lin CK., Fan J., Jia X., Cheng B., Zhou J. Relationship between extra connectivity and component connectivity ın networks. The Computer Journal 2021; 64(1): 38–53.
  • Lin L., Huang Y., Wang X., Xu L. Restricted connectivity and good-neighbor diagnosability of split-star networks. Theoretical Computer Science 2020; 824: 81-91.
  • Liu X., Meng J. The k-restricted edge-connectivity of the data center network DCell. Applied Mathematics and Computation 2021; 396: 125941.
  • Lü H. On extra connectivity and extra edge-connectivity of balanced hypercubes. International Journal of Computer Mathematics 2017; 94(4): 813-820.
There are 14 citations in total.

Details

Primary Language Turkish
Subjects Mathematical Sciences
Journal Section RESEARCH ARTICLES
Authors

İdris Çiftçi

Publication Date December 20, 2023
Submission Date November 29, 2022
Acceptance Date May 23, 2023
Published in Issue Year 2023

Cite

APA Çiftçi, İ. (2023). Bazı Graf Sınıflarında 1-Düzenli ve 2-Düzenli Ayrıt Bağlantılılık. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 6(Ek Sayı), 415-425. https://doi.org/10.47495/okufbed.1211664
AMA Çiftçi İ. Bazı Graf Sınıflarında 1-Düzenli ve 2-Düzenli Ayrıt Bağlantılılık. Osmaniye Korkut Ata University Journal of The Institute of Science and Techno. December 2023;6(Ek Sayı):415-425. doi:10.47495/okufbed.1211664
Chicago Çiftçi, İdris. “Bazı Graf Sınıflarında 1-Düzenli Ve 2-Düzenli Ayrıt Bağlantılılık”. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi 6, no. Ek Sayı (December 2023): 415-25. https://doi.org/10.47495/okufbed.1211664.
EndNote Çiftçi İ (December 1, 2023) Bazı Graf Sınıflarında 1-Düzenli ve 2-Düzenli Ayrıt Bağlantılılık. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi 6 Ek Sayı 415–425.
IEEE İ. Çiftçi, “Bazı Graf Sınıflarında 1-Düzenli ve 2-Düzenli Ayrıt Bağlantılılık”, Osmaniye Korkut Ata University Journal of The Institute of Science and Techno, vol. 6, no. Ek Sayı, pp. 415–425, 2023, doi: 10.47495/okufbed.1211664.
ISNAD Çiftçi, İdris. “Bazı Graf Sınıflarında 1-Düzenli Ve 2-Düzenli Ayrıt Bağlantılılık”. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi 6/Ek Sayı (December 2023), 415-425. https://doi.org/10.47495/okufbed.1211664.
JAMA Çiftçi İ. Bazı Graf Sınıflarında 1-Düzenli ve 2-Düzenli Ayrıt Bağlantılılık. Osmaniye Korkut Ata University Journal of The Institute of Science and Techno. 2023;6:415–425.
MLA Çiftçi, İdris. “Bazı Graf Sınıflarında 1-Düzenli Ve 2-Düzenli Ayrıt Bağlantılılık”. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi, vol. 6, no. Ek Sayı, 2023, pp. 415-2, doi:10.47495/okufbed.1211664.
Vancouver Çiftçi İ. Bazı Graf Sınıflarında 1-Düzenli ve 2-Düzenli Ayrıt Bağlantılılık. Osmaniye Korkut Ata University Journal of The Institute of Science and Techno. 2023;6(Ek Sayı):415-2.

23487




196541947019414  

1943319434 19435194361960219721 19784  2123822610 23877

* Uluslararası Hakemli Dergi (International Peer Reviewed Journal)

* Yazar/yazarlardan hiçbir şekilde MAKALE BASIM ÜCRETİ vb. şeyler istenmemektedir (Free submission and publication).

* Yılda Ocak, Mart, Haziran, Eylül ve Aralık'ta olmak üzere 5 sayı yayınlanmaktadır (Published 5 times a year)

* Dergide, Türkçe ve İngilizce makaleler basılmaktadır.

*Dergi açık erişimli bir dergidir.

Creative Commons License

Bu web sitesi Creative Commons Atıf 4.0 Uluslararası Lisansı ile lisanslanmıştır.