Research Article
BibTex RIS Cite

Feasibility of a composite material formed with a waste granular rubber tire on racing vehicle aerodynamic wings

Year 2020, , 97 - 102, 15.12.2020
https://doi.org/10.47495/okufbed.756307

Abstract

In recent years, reducing the cost of vehicles, fuel consumption, and producing environmental-friendly vehicles by minimizing exhaust emissions are the main topics that the automotive industry and researchers emphasize. In this way, more environmental-friendly vehicles will be produced and harmful gasses will be released less into nature. The main subject of this study is to obtain a lighter race wing by using waste rubber granule material. Reducing the fuel consumption and exhaust emission emissions of vehicles is possible by producing vehicles directly from lighter materials. The light weighting studies in recent years are provided by the production of composite materials that have better mechanical properties and enable the production of much lighter parts. In this study, a finite element analysis method was used to compare the application of foam core body and waste rubber granule application to formula vehicle racing wings. The results of the analysis are presented in the figures as distribution of total deformation and Von-Mises stresses. As a result, it has been found that the waste rubber granule material has good mechanical properties and reasonable cost, and it can be used in racing vehicles. In particular, it has been found that the cost of parts used per kilogram is reduced by a tenth.

Supporting Institution

ÇUKUROVA ÜNİVERSİTESİ BİLİMSEL ARAŞTIRMA PROJELERİ

Project Number

FBA-2019-11936

Thanks

The authors would like to thank the Cukurova University Scientific Research Project Coordination (FBA-2019-11936) for financial support for this project.

References

  • S. Das, “Material Use in Automobiles,” Encycl. Energy, vol. 3, pp. 859–869, 2004, doi: 10.1016/b0-12-176480-x/00384-3.
  • G. Davies, “Future trends in automotive body materials,” in Materials for Automobile Bodies, 2007, pp. 252–269.
  • M. Ghosh, A. Ghosh, and A. Roy, Renewable and Sustainable Materials in Automotive Industry. Elsevier Ltd., 2019.
  • W. T. Freeman, “The use of composites in aircraft primary structure,” Compos. Eng., vol. 3, no. 7–8, pp. 767–775, 1993, doi: 10.1016/0961-9526(93)90095-2.
  • K. Kirwan and B. M. Wood, “Recycling of materials in automotive engineering,” in Advanced Materials in Automotive Engineering, Woodhead Publishing, 2012, pp. 299–314.
  • G. Savage, “Formula 1 Composites Engineering,” Eng. Fail. Anal., vol. 17, no. 1, pp. 92–115, Jan. 2010, doi: 10.1016/j.engfailanal.2009.04.014.
  • K. J. Narayana and R. Gupta Burela, “A review of recent research on multifunctional composite materials and structures with their applications,” in Materials Today: Proceedings, 2018, vol. 5, no. 2, pp. 5580–5590, doi: 10.1016/j.matpr.2017.12.149.
  • K. O’Leary, V. Pakrashi, and D. Kelliher, “Optimization of composite material tower for offshore wind turbine structures,” Renew. Energy, vol. 140, pp. 928–942, 2019, doi: 10.1016/j.renene.2019.03.101.
  • R. Vijayanandh, K. Naveen Kumar, M. Senthil Kumar, G. Raj Kumar, R. Naveen Kumar, and L. Ahilla Bharathy, “Material Optimization of High Speed Micro Aerial Vehicle using FSI Simulation,” Procedia Comput. Sci., vol. 133, pp. 2–9, 2018, doi: 10.1016/j.procs.2018.07.002.
  • E. A. Calado, M. Leite, and A. Silva, “Selecting composite materials considering cost and environmental impact in the early phases of aircraft structure design,” J. Clean. Prod., vol. 186, pp. 113–122, 2018, doi: 10.1016/j.jclepro.2018.02.048.
  • A. J. Brunner, “Fracture mechanics characterization of polymer composites for aerospace applications,” in Polymer Composites in the Aerospace Industry, Woodhead Publishing, 2015, pp. 191–230.
  • P. Balakrishnan, M. J. John, L. Pothen, M. S. Sreekala, and S. Thomas, “Natural fibre and polymer matrix composites and their applications in aerospace engineering,” in Advanced Composite Materials for Aerospace Engineering, Woodhead Publishing, 2016, pp. 365–383.
  • A. Mohajerani et al., “Recycling waste rubber tyres in construction materials and associated environmental considerations: A review,” Resour. Conserv. Recycl., vol. 155, no. December 2019, p. 104679, 2020, doi: 10.1016/j.resconrec.2020.104679.
  • S. Hetawal, M. Gophane, B. K. Ajay, and Y. Mukkamala, “Aerodynamic study of formula SAE car,” Procedia Eng., vol. 97, pp. 1198–1207, 2014, doi: 10.1016/j.proeng.2014.12.398.
  • K. Kurec, M. Remer, T. Mayer, S. Tudruj, and J. Piechna, “Flow control for a car-mounted rear wing,” Int. J. Mech. Sci., vol. 152, no. June 2018, pp. 384–399, 2019, doi: 10.1016/j.ijmecsci.2018.12.034.
  • Formula Student Germany, FS Rules 2020, vol. 1.0. 2019.

Yarış aracı aerodinamik kanatlarında atık granül kauçuk lastik ile oluşturulan kompozit malzemenin fizibilitesi

Year 2020, , 97 - 102, 15.12.2020
https://doi.org/10.47495/okufbed.756307

Abstract

Son yıllarda, araç maliyetini azaltmak, yakıt tüketimi ve egzoz emisyonlarını en aza indirerek çevre dostu araçlar üretmek otomotiv endüstrisinin ve araştırmacıların vurguladığı ana konular arasındadır. Bu şekilde çevre dostu olan araçlar üretilecek ve zararlı gazlar doğaya daha az salınacaktır. Bu çalışmanın ana konusu atık kauçuk granül malzemesi kullanarak daha hafif bir yarış kanadı elde etmektir. Doğrudan daha hafif malzemelerden araçlar üreterek araçların yakıt tüketimini ve egzoz emisyonlarını azaltmak mümkündür. Son yıllardaki hafiflik çalışmaları, daha iyi mekanik özelliklere sahip olan ve çok daha hafif parçaların üretilmesini sağlayan kompozit malzemelerin üretimi ile sağlanmaktadır. Bu çalışmada, köpük çekirdek gövdesi ve atık kauçuk granül uygulamasının Formula yarış aracı kanatlarına uygulanmasını karşılaştırmak için sonlu eleman analiz yöntemi kullanılmıştır. Analiz sonuçları şekillerde toplam deformasyon ve Von-Mises gerilmelerinin dağılımı olarak sunulmuştur. Sonuç olarak, atık kauçuk granül malzemesinin hem daha iyi mekanik özelliklere hem de makul maliyete sahip olduğu ve yarış araçlarında kullanılabileceği bulunmuştur. Özellikle, kilogram başına kullanılan parçaların maliyetinin onda bir oranında azaldığı görülmüştür.

Project Number

FBA-2019-11936

References

  • S. Das, “Material Use in Automobiles,” Encycl. Energy, vol. 3, pp. 859–869, 2004, doi: 10.1016/b0-12-176480-x/00384-3.
  • G. Davies, “Future trends in automotive body materials,” in Materials for Automobile Bodies, 2007, pp. 252–269.
  • M. Ghosh, A. Ghosh, and A. Roy, Renewable and Sustainable Materials in Automotive Industry. Elsevier Ltd., 2019.
  • W. T. Freeman, “The use of composites in aircraft primary structure,” Compos. Eng., vol. 3, no. 7–8, pp. 767–775, 1993, doi: 10.1016/0961-9526(93)90095-2.
  • K. Kirwan and B. M. Wood, “Recycling of materials in automotive engineering,” in Advanced Materials in Automotive Engineering, Woodhead Publishing, 2012, pp. 299–314.
  • G. Savage, “Formula 1 Composites Engineering,” Eng. Fail. Anal., vol. 17, no. 1, pp. 92–115, Jan. 2010, doi: 10.1016/j.engfailanal.2009.04.014.
  • K. J. Narayana and R. Gupta Burela, “A review of recent research on multifunctional composite materials and structures with their applications,” in Materials Today: Proceedings, 2018, vol. 5, no. 2, pp. 5580–5590, doi: 10.1016/j.matpr.2017.12.149.
  • K. O’Leary, V. Pakrashi, and D. Kelliher, “Optimization of composite material tower for offshore wind turbine structures,” Renew. Energy, vol. 140, pp. 928–942, 2019, doi: 10.1016/j.renene.2019.03.101.
  • R. Vijayanandh, K. Naveen Kumar, M. Senthil Kumar, G. Raj Kumar, R. Naveen Kumar, and L. Ahilla Bharathy, “Material Optimization of High Speed Micro Aerial Vehicle using FSI Simulation,” Procedia Comput. Sci., vol. 133, pp. 2–9, 2018, doi: 10.1016/j.procs.2018.07.002.
  • E. A. Calado, M. Leite, and A. Silva, “Selecting composite materials considering cost and environmental impact in the early phases of aircraft structure design,” J. Clean. Prod., vol. 186, pp. 113–122, 2018, doi: 10.1016/j.jclepro.2018.02.048.
  • A. J. Brunner, “Fracture mechanics characterization of polymer composites for aerospace applications,” in Polymer Composites in the Aerospace Industry, Woodhead Publishing, 2015, pp. 191–230.
  • P. Balakrishnan, M. J. John, L. Pothen, M. S. Sreekala, and S. Thomas, “Natural fibre and polymer matrix composites and their applications in aerospace engineering,” in Advanced Composite Materials for Aerospace Engineering, Woodhead Publishing, 2016, pp. 365–383.
  • A. Mohajerani et al., “Recycling waste rubber tyres in construction materials and associated environmental considerations: A review,” Resour. Conserv. Recycl., vol. 155, no. December 2019, p. 104679, 2020, doi: 10.1016/j.resconrec.2020.104679.
  • S. Hetawal, M. Gophane, B. K. Ajay, and Y. Mukkamala, “Aerodynamic study of formula SAE car,” Procedia Eng., vol. 97, pp. 1198–1207, 2014, doi: 10.1016/j.proeng.2014.12.398.
  • K. Kurec, M. Remer, T. Mayer, S. Tudruj, and J. Piechna, “Flow control for a car-mounted rear wing,” Int. J. Mech. Sci., vol. 152, no. June 2018, pp. 384–399, 2019, doi: 10.1016/j.ijmecsci.2018.12.034.
  • Formula Student Germany, FS Rules 2020, vol. 1.0. 2019.
There are 16 citations in total.

Details

Primary Language English
Subjects Mechanical Engineering
Journal Section RESEARCH ARTICLES
Authors

Berkay Karacor 0000-0001-5208-366X

Mustafa Atakan Atakan This is me 0000-0002-0192-0605

Mustafa Özcanlı 0000-0001-6088-2912

Hasan Serin 0000-0003-2679-3099

Oğuz Baş 0000-0003-2301-2306

Project Number FBA-2019-11936
Publication Date December 15, 2020
Submission Date June 24, 2020
Acceptance Date August 17, 2020
Published in Issue Year 2020

Cite

APA Karacor, B., Atakan, M. A., Özcanlı, M., Serin, H., et al. (2020). Feasibility of a composite material formed with a waste granular rubber tire on racing vehicle aerodynamic wings. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 3(2), 97-102. https://doi.org/10.47495/okufbed.756307
AMA Karacor B, Atakan MA, Özcanlı M, Serin H, Baş O. Feasibility of a composite material formed with a waste granular rubber tire on racing vehicle aerodynamic wings. OKÜ Fen Bil. Ens. Dergisi ((OKU Journal of Nat. & App. Sci). December 2020;3(2):97-102. doi:10.47495/okufbed.756307
Chicago Karacor, Berkay, Mustafa Atakan Atakan, Mustafa Özcanlı, Hasan Serin, and Oğuz Baş. “Feasibility of a Composite Material Formed With a Waste Granular Rubber Tire on Racing Vehicle Aerodynamic Wings”. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi 3, no. 2 (December 2020): 97-102. https://doi.org/10.47495/okufbed.756307.
EndNote Karacor B, Atakan MA, Özcanlı M, Serin H, Baş O (December 1, 2020) Feasibility of a composite material formed with a waste granular rubber tire on racing vehicle aerodynamic wings. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi 3 2 97–102.
IEEE B. Karacor, M. A. Atakan, M. Özcanlı, H. Serin, and O. Baş, “Feasibility of a composite material formed with a waste granular rubber tire on racing vehicle aerodynamic wings”, OKÜ Fen Bil. Ens. Dergisi ((OKU Journal of Nat. & App. Sci), vol. 3, no. 2, pp. 97–102, 2020, doi: 10.47495/okufbed.756307.
ISNAD Karacor, Berkay et al. “Feasibility of a Composite Material Formed With a Waste Granular Rubber Tire on Racing Vehicle Aerodynamic Wings”. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi 3/2 (December 2020), 97-102. https://doi.org/10.47495/okufbed.756307.
JAMA Karacor B, Atakan MA, Özcanlı M, Serin H, Baş O. Feasibility of a composite material formed with a waste granular rubber tire on racing vehicle aerodynamic wings. OKÜ Fen Bil. Ens. Dergisi ((OKU Journal of Nat. & App. Sci). 2020;3:97–102.
MLA Karacor, Berkay et al. “Feasibility of a Composite Material Formed With a Waste Granular Rubber Tire on Racing Vehicle Aerodynamic Wings”. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi, vol. 3, no. 2, 2020, pp. 97-102, doi:10.47495/okufbed.756307.
Vancouver Karacor B, Atakan MA, Özcanlı M, Serin H, Baş O. Feasibility of a composite material formed with a waste granular rubber tire on racing vehicle aerodynamic wings. OKÜ Fen Bil. Ens. Dergisi ((OKU Journal of Nat. & App. Sci). 2020;3(2):97-102.

23487




196541947019414  

1943319434 19435194361960219721 19784  2123822610 23877

* Uluslararası Hakemli Dergi (International Peer Reviewed Journal)

* Yazar/yazarlardan hiçbir şekilde MAKALE BASIM ÜCRETİ vb. şeyler istenmemektedir (Free submission and publication).

* Yılda Ocak, Mart, Haziran, Eylül ve Aralık'ta olmak üzere 5 sayı yayınlanmaktadır (Published 5 times a year)

* Dergide, Türkçe ve İngilizce makaleler basılmaktadır.

*Dergi açık erişimli bir dergidir.

Creative Commons License

Bu web sitesi Creative Commons Atıf 4.0 Uluslararası Lisansı ile lisanslanmıştır.