Research Article
BibTex RIS Cite

Elevated Temperature Resistance of Mortars Including Ground Granulated Blast Furnace Slag, Fly ash and Silica Fume

Year 2022, , 143 - 153, 08.03.2022
https://doi.org/10.47495/okufbed.981513

Abstract

In the current study, elevated heat resistance of the mortars including 15% fly ash, ground granulated blast furnace slag and silica fume is investigated. Fly ash, ground granulated blast furnace slag and silica fume are replaced with cement past by weight in the prepared mortar samples. The prepared samples are kept in a furnace for 2 hours at 400 °C and 800 °C to find out effect of elevated temperature on compressive strength of the mortars. Compressive strength before and after heat exposure are measured in terms of evaluating elevated heat resistance. Control sample that does not contain any admixture, mortar including fly ash, mortar including ground granulated blast furnace slag and mortar including silica fume has 30.81 MPa, 33.62 MPa, 43.91 MPa and 51.83 MPa compressive strength before heat exposure, respectively. Compressive strength of the same samples after 400 °C and 800 °C heat exposure are 25.64 MPa and 8.12 MPa, 28.91 MPa and 11.56 MPa, 34.37 MPa and 15.21 MPa and 39.78 MPa and 21.85 MPa, respectively. The alteration of heat resistance of the mortars with fly ash, ground granulated blast furnace slag and silica fume is attributed to puzzoulanic behavior of the used materials. These materials react with Ca(OH)2 in cement and produce extra tobermorite gel (CSH phase) that provides extra durability to the composite.

References

  • [1] Erşan YÇ., Van Tittelboom K., Boon N., De Belie N. Nitrite producing bacteria inhibit reinforcement bar corrosion in cementitious materials. Sci Reports 2018;8:1–10.https://doi.org/10.1038/s41598-018-32463-6.
  • [2] Zhou J., Lu D., Yang Y., Gong Y., Ma X., Yu B., et al. Physical and Mechanical Properties of High-Strength Concrete Modified with Supplementary Cementitious Materials after Exposure to Elevated Temperature up to 1000 °C. Mater 2020; Vol 13, Page 532 2020;13:532. https://doi.org/10.3390/MA13030532.
  • [3] Setayesh Gar P., Suresh N., Bindiganavile V. Sugar cane bagasse ash as a pozzolanic admixture in concrete for resistance to sustained elevated temperatures. Constr Build Mater 2017;153:929–36.https://doi.org/10.1016/J.CONBUILDMAT.2017.07.107.
  • [4] Husem M. The effects of high temperature on compressive and flexural strengths of ordinary and high-performance concrete. Fire Saf J 2006;41:155–63. https://doi.org/10.1016/J.FIRESAF.2005.12.002.
  • [5] Liu M., Zhao Y., Xiao Y., Yu Z. Performance of cement pastes containing sewage sludge ash at elevated temperatures. Constr Build Mater 2019;211:785–95. https://doi.org/10.1016/J.CONBUILDMAT.2019.03.290.
  • [6] Akbar A., Liew KM. Influence of elevated temperature on the microstructure and mechanical performance of cement composites reinforced with recycled carbon fibers. Compos Part B Eng 2020;198.https://doi.org/10.1016/j.compositesb.2020.108245.
  • [7] Zemri C., Bachir Bouiadjra M. Comparison between physical–mechanical properties of mortar made with Portland cement (CEMI) and slag cement (CEMIII) subjected to elevated temperature. Case Stud Constr Mater 2020;12:e00339.https://doi.org/10.1016/j.cscm.2020.e00339.
  • [8] Ming X., Cao M., Yin H. Microstructural and mechanical evolutions of sustainable cement blends containing fly ash and calcium carbonate whiskers induced by high temperature. Constr Build Mater 2020;263:120615. https://doi.org/10.1016/j.conbuildmat.2020.120615.
  • [9] Benli A., Karatas M., Anil Toprak H. Mechanical characteristics of self-compacting mortars with raw and expanded vermiculite as partial cement replacement at elevated temperatures. Constr Build Mater 2020;239:117895. https://doi.org/10.1016/j.conbuildmat.2019.117895.
  • [10] AzariJafari H., Taheri Amiri MJ., Ashrafian A., Rasekh H., Barforooshi MJ., Berenjian J. Ternary blended cement: An eco-friendly alternative to improve resistivity of high-performance self-consolidating concrete against elevated temperature. J Clean Prod 2019;223:575–86. https://doi.org/10.1016/j.jclepro.2019.03.054.
  • [11] Lublóy É., Kopecskó K., Balázs GL., Restás Á., Szilágyi IM. Improved fire resistance by using Portland-pozzolana or Portland-fly ash cements. J Therm Anal Calorim 2017;129:925–36. https://doi.org/10.1007/s10973-017-6245-0.
  • [12] Qu F., Li W., Tao Z., Castel A., Wang K. High temperature resistance of fly ash/GGBFS-based geopolymer mortar with load-induced damage. Mater Struct Constr 2020;53:1–21. https://doi.org/10.1617/s11527-020-01544-2.
  • [13] Poon CS., Azhar S., Anson M., Wong YL. Strength and durability recovery of fire-damaged concrete after post-fire-curing. Cem Concr Res 2001;31:1307–18. https://doi.org/10.1016/S0008-8846(01)00582-8.
  • [14] Poon CS., Azhar S., Anson M., Wong YL. Comparison of the strength and durability performance of normal- and high-strength pozzolanic concretes at elevated temperatures. Cem Concr Res 2001;31:1291–300. https://doi.org/10.1016/S0008-8846(01)00580-4.
  • [15] Cree D., Green M., Noumowé A. Residual strength of concrete containing recycled materials after exposure to fire: A review. Constr Build Mater 2013;45:208–23. https://doi.org/10.1016/j.conbuildmat.2013.04.005.
  • [16] Khaliq W., Khan HA. High temperature material properties of calcium aluminate cement concrete. Constr Build Mater 2015;94:475–87. https://doi.org/10.1016/j.conbuildmat.2015.07.023.
  • [17] Khaliq W., Taimur. Mechanical and physical response of recycled aggregates high-strength concrete at elevated temperatures. Fire Saf J 2018;96:203–14. https://doi.org/10.1016/j.firesaf.2018.01.009.
  • [18] Aydin S., Baradan B. Effect of pumice and fly ash incorporation on high temperature resistance of cement based mortars. Cem Concr Res 2007;37:988–95. https://doi.org/10.1016/j.cemconres.2007.02.005.
  • [19] Hager I. Behaviour of cement concrete at high temperature. Bull Polish Acad Sci Tech Sci 2013;61:145–54. https://doi.org/10.2478/bpasts-2013-0013.
  • [20] Kong DLY., Sanjayan JG. Effect of elevated temperatures on geopolymer paste, mortar and concrete. Cem Concr Res 2010;40:334–9. https://doi.org/10.1016/j.cemconres.2009.10.017.
  • [21] Ahn YB., Jang JG., Lee HK. Mechanical properties of lightweight concrete made with coal ashes after exposure to elevated temperatures. Cem Concr Compos 2016;72:27–38. https://doi.org/10.1016/j.cemconcomp.2016.05.028.
  • [22] Demirel B., Keleştemur O. Effect of elevated temperature on the mechanical properties of concrete produced with finely ground pumice and silica fume. Fire Saf J 2010;45:385–91. https://doi.org/10.1016/j.firesaf.2010.08.002.
  • [23] Poon CS., Azhar S., Anson M., Wong YL. Performance of metakaolin concrete at elevated temperatures. Cem Concr Compos 2003;25:83–9. https://doi.org/10.1016/S0958-9465(01)00061-0.
  • [24] Ma Q., Guo R., Zhao Z., Lin Z., He K. Mechanical properties of concrete at high temperature-A review. Constr Build Mater 2015;93:371–83. https://doi.org/10.1016/j.conbuildmat.2015.05.131.
  • [25] Khaliq W., Kodur V. Behavior of high strength fly ash concrete columns under fire conditions. Mater Struct Constr 2013;46:857–67. https://doi.org/10.1617/s11527-012-9938-7.
  • [26] Nadeem A., Memon SA., Lo TY. The performance of Fly ash and Metakaolin concrete at elevated temperatures. Constr Build Mater 2014;62:67–76. https://doi.org/10.1016/j.conbuildmat.2014.02.073.
  • [27] Nadeem A., Memon SA., Lo TY.Qualitative and quantitative analysis and identification of flaws in the microstructure of fly ash and metakaolin blended high performance concrete after exposure to elevated temperatures. Constr Build Mater 2013;38:731–41. https://doi.org/10.1016/j.conbuildmat.2012.09.062.
  • [28] Memon SA., Shah SFA., Khushnood RA., Baloch WL. Durability of sustainable concrete subjected to elevated temperature – A review. Constr Build Mater 2019;199:435–55. https://doi.org/10.1016/j.conbuildmat.2018.12.040.
  • [29] Biolzi L., Cattaneo S., Rosati G. Evaluating residual properties of thermally damaged concrete. Cem Concr Compos 2008;30:907–16. https://doi.org/10.1016/j.cemconcomp.2008.09.005.
  • [30] Kodur VKR., Sultan MA. Effect of Temperature on Thermal Properties of High-Strength Concrete. J Mater Civ Eng 2003;15:101–7.https://doi.org/10.1061/(asce)0899-1561(2003)15:2(101)
  • [31] ASTM C348-20. Standard Test Method for Flexural Strength of Hydraulic-Cement Mortars. Annu B ASTM Stand 1999.
  • [32] ASTM Standard. ASTM C349-18: Standard Test Method for Compressive Strength of Hydraulic-Cement Mortars (Using Portions of Prisms Broken in Flexure). Annu B ASTM Stand 2018.
  • [33] Zhao Z., Qu X., Li F., Wei J. Effects of steel slag and silica fume additions on compressive strength and thermal properties of lime-fly ash pastes. Constr Build Mater 2018;183:439–50. https://doi.org/10.1016/J.CONBUILDMAT.2018.05.220.
  • [34] Nedunuri SSSA., Sertse SG., Muhammad S. Microstructural study of Portland cement partially replaced with fly ash, ground granulated blast furnace slag and silica fume as determined by pozzolanic activity. Constr Build Mater 2020;238:117561. https://doi.org/10.1016/J.CONBUILDMAT.2019.117561.
  • [35] Guo Z., Jiang T., Zhang J., Kong X., Chen C., Lehman DE. Mechanical and durability properties of sustainable self-compacting concrete with recycled concrete aggregate and fly ash, slag and silica fume. Constr Build Mater 2020;231:117115. https://doi.org/10.1016/J.CONBUILDMAT.2019.117115.
  • [36] Cuesta A., Santacruz I., De la Torre AG., Dapiaggi M., Zea-Garcia JD., Aranda MAG. Local structure and Ca/Si ratio in C-S-H gels from hydration of blends of tricalcium silicate and silica fume. Cem Concr Res 2021;143:106405. https://doi.org/10.1016/J.CEMCONRES.2021.106405.
  • [37] Jia Z., Chen C., Shi J., Zhang Y., Sun Z., Zhang P. The microstructural change of C-S-H at elevated temperature in Portland cement/GGBFS blended system. Cem Concr Res 2019;123:105773. https://doi.org/10.1016/J.CEMCONRES.2019.05.018.
  • [38] Wang L., Guo F., Lin Y., Yang H., Tang SW. Comparison between the effects of phosphorous slag and fly ash on the C-S-H structure, long-term hydration heat and volume deformation of cementbased materials. Constr Build Mater 2020;250:118807. https://doi.org/10.1016/J.CONBUILDMAT.2020.118807.
  • [39] Saad M., Abo-El-Eneinf SA., Hanna GB., Kotkata MF. Effect of temperature on physical and mechanical properties of concrete containing silica fume. Cem Concr Res 1996;26:669–75. https://doi.org/10.1016/S0008-8846(96)85002-2.

Öğütülmüş Yüksek Fırın Cürufu, Uçucu Kül ve Silika Dumanı İçeren Harçların Yüksek Sıcaklık Direnci

Year 2022, , 143 - 153, 08.03.2022
https://doi.org/10.47495/okufbed.981513

Abstract

Bu çalışmada, %15 oranda uçucu kül, öğütülmüş yüksek fırın cürufu ve silis dumanı içeren harçların yüksek sıcaklığa karşı dirençleri araştırılmıştır. Hazırlanan harç numunelerinde uçucu kül, öğütülmüş yüksek fırın cürufu ve silis dumanı ağırlıkça çimento ile yer değiştirilmiştir. Yüksek sıcaklıkların harç basınç dayanımlarına etkisini bulmak için ürerilen numuneler 400 °C ve 800 °C'de 2 saat süreyle etüvde tutulmuştur. Harç numunelerinin yüksek sıcaklıklara maruz kalmadan önceki ve sonraki basınç dayanımları, harçların yüksek sıcaklık direnclerinin değerlendirilmesi için ölçülmüştür. Herhangi bir katkı maddesi içermeyen harç, uçucu kül içeren harç, öğütülmüş yüksek fırın cürufu içeren harç ve silis dumanı içeren harç, ısıya maruz kalmadan önce sırasıyla 30.81 MPa, 33.62 MPa, 43.91 MPa ve 51.83 MPa basınç dayanımlarına sahiptirler. Aynı numunelerin 400 °C ve 800 °C sıcaklığa maruz kaldıktan sonraki basınç dayanımları sırasıyla 25.64 MPa ve 8.12 MPa, 28.91 MPa ve 11.56 MPa, 34.37 MPa ve 15.21 MPa ve 39.78 MPa ve 21.85 MPa'dır. Uçucu kül, öğütülmüş yüksek fırın cürufu ve silis dumanı içeren harçların ısıl direncinin değişmesi, kullanılan malzemelerin puzzulanik davranışına bağlanmaktadır. Bu malzemeler çimentoda Ca(OH)2 ile reaksiyona girer ve kompozite ekstra dayanıklılık sağlayan ekstra tobermorit jeli (CSH fazı) üretir.

References

  • [1] Erşan YÇ., Van Tittelboom K., Boon N., De Belie N. Nitrite producing bacteria inhibit reinforcement bar corrosion in cementitious materials. Sci Reports 2018;8:1–10.https://doi.org/10.1038/s41598-018-32463-6.
  • [2] Zhou J., Lu D., Yang Y., Gong Y., Ma X., Yu B., et al. Physical and Mechanical Properties of High-Strength Concrete Modified with Supplementary Cementitious Materials after Exposure to Elevated Temperature up to 1000 °C. Mater 2020; Vol 13, Page 532 2020;13:532. https://doi.org/10.3390/MA13030532.
  • [3] Setayesh Gar P., Suresh N., Bindiganavile V. Sugar cane bagasse ash as a pozzolanic admixture in concrete for resistance to sustained elevated temperatures. Constr Build Mater 2017;153:929–36.https://doi.org/10.1016/J.CONBUILDMAT.2017.07.107.
  • [4] Husem M. The effects of high temperature on compressive and flexural strengths of ordinary and high-performance concrete. Fire Saf J 2006;41:155–63. https://doi.org/10.1016/J.FIRESAF.2005.12.002.
  • [5] Liu M., Zhao Y., Xiao Y., Yu Z. Performance of cement pastes containing sewage sludge ash at elevated temperatures. Constr Build Mater 2019;211:785–95. https://doi.org/10.1016/J.CONBUILDMAT.2019.03.290.
  • [6] Akbar A., Liew KM. Influence of elevated temperature on the microstructure and mechanical performance of cement composites reinforced with recycled carbon fibers. Compos Part B Eng 2020;198.https://doi.org/10.1016/j.compositesb.2020.108245.
  • [7] Zemri C., Bachir Bouiadjra M. Comparison between physical–mechanical properties of mortar made with Portland cement (CEMI) and slag cement (CEMIII) subjected to elevated temperature. Case Stud Constr Mater 2020;12:e00339.https://doi.org/10.1016/j.cscm.2020.e00339.
  • [8] Ming X., Cao M., Yin H. Microstructural and mechanical evolutions of sustainable cement blends containing fly ash and calcium carbonate whiskers induced by high temperature. Constr Build Mater 2020;263:120615. https://doi.org/10.1016/j.conbuildmat.2020.120615.
  • [9] Benli A., Karatas M., Anil Toprak H. Mechanical characteristics of self-compacting mortars with raw and expanded vermiculite as partial cement replacement at elevated temperatures. Constr Build Mater 2020;239:117895. https://doi.org/10.1016/j.conbuildmat.2019.117895.
  • [10] AzariJafari H., Taheri Amiri MJ., Ashrafian A., Rasekh H., Barforooshi MJ., Berenjian J. Ternary blended cement: An eco-friendly alternative to improve resistivity of high-performance self-consolidating concrete against elevated temperature. J Clean Prod 2019;223:575–86. https://doi.org/10.1016/j.jclepro.2019.03.054.
  • [11] Lublóy É., Kopecskó K., Balázs GL., Restás Á., Szilágyi IM. Improved fire resistance by using Portland-pozzolana or Portland-fly ash cements. J Therm Anal Calorim 2017;129:925–36. https://doi.org/10.1007/s10973-017-6245-0.
  • [12] Qu F., Li W., Tao Z., Castel A., Wang K. High temperature resistance of fly ash/GGBFS-based geopolymer mortar with load-induced damage. Mater Struct Constr 2020;53:1–21. https://doi.org/10.1617/s11527-020-01544-2.
  • [13] Poon CS., Azhar S., Anson M., Wong YL. Strength and durability recovery of fire-damaged concrete after post-fire-curing. Cem Concr Res 2001;31:1307–18. https://doi.org/10.1016/S0008-8846(01)00582-8.
  • [14] Poon CS., Azhar S., Anson M., Wong YL. Comparison of the strength and durability performance of normal- and high-strength pozzolanic concretes at elevated temperatures. Cem Concr Res 2001;31:1291–300. https://doi.org/10.1016/S0008-8846(01)00580-4.
  • [15] Cree D., Green M., Noumowé A. Residual strength of concrete containing recycled materials after exposure to fire: A review. Constr Build Mater 2013;45:208–23. https://doi.org/10.1016/j.conbuildmat.2013.04.005.
  • [16] Khaliq W., Khan HA. High temperature material properties of calcium aluminate cement concrete. Constr Build Mater 2015;94:475–87. https://doi.org/10.1016/j.conbuildmat.2015.07.023.
  • [17] Khaliq W., Taimur. Mechanical and physical response of recycled aggregates high-strength concrete at elevated temperatures. Fire Saf J 2018;96:203–14. https://doi.org/10.1016/j.firesaf.2018.01.009.
  • [18] Aydin S., Baradan B. Effect of pumice and fly ash incorporation on high temperature resistance of cement based mortars. Cem Concr Res 2007;37:988–95. https://doi.org/10.1016/j.cemconres.2007.02.005.
  • [19] Hager I. Behaviour of cement concrete at high temperature. Bull Polish Acad Sci Tech Sci 2013;61:145–54. https://doi.org/10.2478/bpasts-2013-0013.
  • [20] Kong DLY., Sanjayan JG. Effect of elevated temperatures on geopolymer paste, mortar and concrete. Cem Concr Res 2010;40:334–9. https://doi.org/10.1016/j.cemconres.2009.10.017.
  • [21] Ahn YB., Jang JG., Lee HK. Mechanical properties of lightweight concrete made with coal ashes after exposure to elevated temperatures. Cem Concr Compos 2016;72:27–38. https://doi.org/10.1016/j.cemconcomp.2016.05.028.
  • [22] Demirel B., Keleştemur O. Effect of elevated temperature on the mechanical properties of concrete produced with finely ground pumice and silica fume. Fire Saf J 2010;45:385–91. https://doi.org/10.1016/j.firesaf.2010.08.002.
  • [23] Poon CS., Azhar S., Anson M., Wong YL. Performance of metakaolin concrete at elevated temperatures. Cem Concr Compos 2003;25:83–9. https://doi.org/10.1016/S0958-9465(01)00061-0.
  • [24] Ma Q., Guo R., Zhao Z., Lin Z., He K. Mechanical properties of concrete at high temperature-A review. Constr Build Mater 2015;93:371–83. https://doi.org/10.1016/j.conbuildmat.2015.05.131.
  • [25] Khaliq W., Kodur V. Behavior of high strength fly ash concrete columns under fire conditions. Mater Struct Constr 2013;46:857–67. https://doi.org/10.1617/s11527-012-9938-7.
  • [26] Nadeem A., Memon SA., Lo TY. The performance of Fly ash and Metakaolin concrete at elevated temperatures. Constr Build Mater 2014;62:67–76. https://doi.org/10.1016/j.conbuildmat.2014.02.073.
  • [27] Nadeem A., Memon SA., Lo TY.Qualitative and quantitative analysis and identification of flaws in the microstructure of fly ash and metakaolin blended high performance concrete after exposure to elevated temperatures. Constr Build Mater 2013;38:731–41. https://doi.org/10.1016/j.conbuildmat.2012.09.062.
  • [28] Memon SA., Shah SFA., Khushnood RA., Baloch WL. Durability of sustainable concrete subjected to elevated temperature – A review. Constr Build Mater 2019;199:435–55. https://doi.org/10.1016/j.conbuildmat.2018.12.040.
  • [29] Biolzi L., Cattaneo S., Rosati G. Evaluating residual properties of thermally damaged concrete. Cem Concr Compos 2008;30:907–16. https://doi.org/10.1016/j.cemconcomp.2008.09.005.
  • [30] Kodur VKR., Sultan MA. Effect of Temperature on Thermal Properties of High-Strength Concrete. J Mater Civ Eng 2003;15:101–7.https://doi.org/10.1061/(asce)0899-1561(2003)15:2(101)
  • [31] ASTM C348-20. Standard Test Method for Flexural Strength of Hydraulic-Cement Mortars. Annu B ASTM Stand 1999.
  • [32] ASTM Standard. ASTM C349-18: Standard Test Method for Compressive Strength of Hydraulic-Cement Mortars (Using Portions of Prisms Broken in Flexure). Annu B ASTM Stand 2018.
  • [33] Zhao Z., Qu X., Li F., Wei J. Effects of steel slag and silica fume additions on compressive strength and thermal properties of lime-fly ash pastes. Constr Build Mater 2018;183:439–50. https://doi.org/10.1016/J.CONBUILDMAT.2018.05.220.
  • [34] Nedunuri SSSA., Sertse SG., Muhammad S. Microstructural study of Portland cement partially replaced with fly ash, ground granulated blast furnace slag and silica fume as determined by pozzolanic activity. Constr Build Mater 2020;238:117561. https://doi.org/10.1016/J.CONBUILDMAT.2019.117561.
  • [35] Guo Z., Jiang T., Zhang J., Kong X., Chen C., Lehman DE. Mechanical and durability properties of sustainable self-compacting concrete with recycled concrete aggregate and fly ash, slag and silica fume. Constr Build Mater 2020;231:117115. https://doi.org/10.1016/J.CONBUILDMAT.2019.117115.
  • [36] Cuesta A., Santacruz I., De la Torre AG., Dapiaggi M., Zea-Garcia JD., Aranda MAG. Local structure and Ca/Si ratio in C-S-H gels from hydration of blends of tricalcium silicate and silica fume. Cem Concr Res 2021;143:106405. https://doi.org/10.1016/J.CEMCONRES.2021.106405.
  • [37] Jia Z., Chen C., Shi J., Zhang Y., Sun Z., Zhang P. The microstructural change of C-S-H at elevated temperature in Portland cement/GGBFS blended system. Cem Concr Res 2019;123:105773. https://doi.org/10.1016/J.CEMCONRES.2019.05.018.
  • [38] Wang L., Guo F., Lin Y., Yang H., Tang SW. Comparison between the effects of phosphorous slag and fly ash on the C-S-H structure, long-term hydration heat and volume deformation of cementbased materials. Constr Build Mater 2020;250:118807. https://doi.org/10.1016/J.CONBUILDMAT.2020.118807.
  • [39] Saad M., Abo-El-Eneinf SA., Hanna GB., Kotkata MF. Effect of temperature on physical and mechanical properties of concrete containing silica fume. Cem Concr Res 1996;26:669–75. https://doi.org/10.1016/S0008-8846(96)85002-2.
There are 39 citations in total.

Details

Primary Language English
Subjects Civil Engineering
Journal Section RESEARCH ARTICLES
Authors

Murat Öztürk

Publication Date March 8, 2022
Submission Date August 11, 2021
Acceptance Date October 27, 2021
Published in Issue Year 2022

Cite

APA Öztürk, M. (2022). Elevated Temperature Resistance of Mortars Including Ground Granulated Blast Furnace Slag, Fly ash and Silica Fume. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 5(1), 143-153. https://doi.org/10.47495/okufbed.981513
AMA Öztürk M. Elevated Temperature Resistance of Mortars Including Ground Granulated Blast Furnace Slag, Fly ash and Silica Fume. Osmaniye Korkut Ata University Journal of The Institute of Science and Techno. March 2022;5(1):143-153. doi:10.47495/okufbed.981513
Chicago Öztürk, Murat. “Elevated Temperature Resistance of Mortars Including Ground Granulated Blast Furnace Slag, Fly Ash and Silica Fume”. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi 5, no. 1 (March 2022): 143-53. https://doi.org/10.47495/okufbed.981513.
EndNote Öztürk M (March 1, 2022) Elevated Temperature Resistance of Mortars Including Ground Granulated Blast Furnace Slag, Fly ash and Silica Fume. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi 5 1 143–153.
IEEE M. Öztürk, “Elevated Temperature Resistance of Mortars Including Ground Granulated Blast Furnace Slag, Fly ash and Silica Fume”, Osmaniye Korkut Ata University Journal of The Institute of Science and Techno, vol. 5, no. 1, pp. 143–153, 2022, doi: 10.47495/okufbed.981513.
ISNAD Öztürk, Murat. “Elevated Temperature Resistance of Mortars Including Ground Granulated Blast Furnace Slag, Fly Ash and Silica Fume”. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi 5/1 (March 2022), 143-153. https://doi.org/10.47495/okufbed.981513.
JAMA Öztürk M. Elevated Temperature Resistance of Mortars Including Ground Granulated Blast Furnace Slag, Fly ash and Silica Fume. Osmaniye Korkut Ata University Journal of The Institute of Science and Techno. 2022;5:143–153.
MLA Öztürk, Murat. “Elevated Temperature Resistance of Mortars Including Ground Granulated Blast Furnace Slag, Fly Ash and Silica Fume”. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi, vol. 5, no. 1, 2022, pp. 143-5, doi:10.47495/okufbed.981513.
Vancouver Öztürk M. Elevated Temperature Resistance of Mortars Including Ground Granulated Blast Furnace Slag, Fly ash and Silica Fume. Osmaniye Korkut Ata University Journal of The Institute of Science and Techno. 2022;5(1):143-5.

23487




196541947019414  

1943319434 19435194361960219721 19784  2123822610 23877

* Uluslararası Hakemli Dergi (International Peer Reviewed Journal)

* Yazar/yazarlardan hiçbir şekilde MAKALE BASIM ÜCRETİ vb. şeyler istenmemektedir (Free submission and publication).

* Yılda Ocak, Mart, Haziran, Eylül ve Aralık'ta olmak üzere 5 sayı yayınlanmaktadır (Published 5 times a year)

* Dergide, Türkçe ve İngilizce makaleler basılmaktadır.

*Dergi açık erişimli bir dergidir.

Creative Commons License

Bu web sitesi Creative Commons Atıf 4.0 Uluslararası Lisansı ile lisanslanmıştır.