Research Article
BibTex RIS Cite

Küçük Kapasiteli, Yatay Eksenli ve Akış Hızlandırıcılı Rüzgar Türbinlerinin Performans Analizi

Year 2021, Volume: 4 Issue: 1, 17 - 26, 02.03.2021
https://doi.org/10.47495/okufbed.811615

Abstract

Kentsel ve kırsal alanlarda, konutların ve küçük işletmelerin kullanımına yönelik yenilenebilir enerji teknolojilerinden faydalanılarak elektrik enerjisi üretilmesi ülkelerin enerji ekonomisi ve stratejisi açısından oldukça önemlidir. Bu çalışmada, düşük rüzgâr hızlarında verimli çalışabilen, kentsel ve kırsal alanlarda konutların kullanımına yönelik küçük kapasiteli, yatay eksenli ve akış hızlandırıcılı (yayıcı) rüzgâr türbinlerinin tasarımı için analitik çözümleme ve modelleme yapılmıştır. Bunun için önce rotor çapı 1 m olan küçük bir rüzgar türbini seçilmiş, daha sonra bu rüzgar türbini akış hızlandırıcılı olarak modellenerek performans değerleri karşılaştırılmıştır. Elde edilen sonuçlara ve seçilen aerodinamik karakteristiklere göre, serbest akış rüzgar hızı 10 m/s iken açık akıştaki rüzgar türbini üzerinden elde edilen güç değeri 246,17 W iken, akış hızlandırıcılı rüzgar türbini üzerinde elde edilen güç değeri 333,2 W olarak hesaplanmıştır.

Supporting Institution

Çukurova Üniversitesi Bilimsel Araştırma Projeleri (BAP) Koordinasyon Birimi

Project Number

FBA-2017-8800

Thanks

Bu çalışma Çukurova Üniversitesi Bilimsel Araştırma Projeleri (BAP) Koordinasyon Biriminin FBA-2017-8800 numaralı projesi kapsamında desteklenmiştir.

References

  • [1] Bilgili M., Ozbek A., Sahin B., Kahraman A. An overview of renewable electric power capacity and progress in new technologies in the world, Renewable and Sustainable Energy Reviews 2015; 49: 323–334.
  • [2] Korompili A., Wu Q., Zhao H. Review of VSC HVDC connection for offshore wind power integration, Renewable and Sustainable Energy Reviews 2016; 59: 1405–1414.
  • [3] Emmanouil G., Galanis G., Kalogeri C., Zodiatis G., Kallos G. 10-year high resolution study of wind, sea waves and wave energy assessment in the Greek offshore areas. Renewable Energy 2016; 90: 399–419.
  • [4] Islam MR., Mekhilef S., Saidur R. Progress and recent trends of wind energy technology Renewable and Sustainable Energy Reviews 2013;21:456-468.
  • [5] Jones CR., Eiser JR. Understanding 'local' opposition to wind development in the UK: How big is a backyard? Energy Policy 2010;38:3106-3117.
  • [6] Kaldellis JK., Zafirakis D. The wind energy (r)evolution: A short review of a long history. Renewable Energy 2011;36:1887-1901.
  • [7] Kaplan YA. Overview of wind energy in the world and assessment of current wind energy policies in Turkey. Renewable and Sustainable Energy Reviews 2015;43:562-568.
  • [8] Karthikeyan N, Murugavel KK, Kumar SA, Rajakumar S. Review of aerodynamic developments on small horizontal axis wind turbine blade. Renewable and Sustainable Energy Reviews 2015;42:801-822.
  • [9] Söderholm P, Pettersson M. Offshore wind power policy and planning in Sweden.” Energy Policy 2011; 39: 518–525.
  • [10] IEA. Energy technology perspectives. International Energy Agency, https://www.iea.org (2010, accessed 14 July 2010).
  • [11] IEA. Technology roadmap, wind energy. International Energy Agency, https://www.iea.org (2013, accessed 7 June 2013). [12] IRENA. Renewable energy benefits: measuring the economics. International Renewable Energy Agency, http://www.irena.org (2016, accessed 6 November 2016).
  • [13] Wang S, Wang S. Impacts of wind energy on environment: A review, Renewable and Sustainable Energy Reviews 2015; 49: 437-443.
  • [14] Bilgili M, Sahin B. Electric power plants and electricity generation in Turkey. Energy Sources, Part B: Economics, Planning, and Policy 2010;5;81-92.
  • [15] EWEA, European Wind Energy Association, (2018). Wind energy in Europe in 2018. https://windeurope.org/about-wind/statistics/european/.
  • [16] GWEC, Global Wind Energy Council, Global wind report, 2018, http://www.gwec.net.
  • [17] WE, Wind Europe, (2018). Wind in power 2018, Annual combined onshore and offshore wind energy statistics. https://windeurope.org/.
  • [18] TETC, Turkish Electricity Transmission Corporation, Electricity statistics, 2019. https://www.teias.gov.tr/.
  • [19] Abadi PRM., Daneshmand SV., Sharific R. Development and economical evaluation for wind power plant in chabahar in Sistan and baluchestan province-Iran, Journal of Renewable Energy and Environment JREE, 2016; 3(1): 17-24.
  • [20] Abe K., Ohya Y. An investigation of flow fields around flanged diffusers using CFD. Journal of Wind Engineering and Industrial Aerodynamics, 2004 ;92: 315–30.
  • [21] Abe K., Nishida M., Sakurai A., Ohya Y., Kihara H., Wada E., Sato K. Experimental and numerical investigations of flow fields behind a small wind turbine with a flanged diffuser, Journal of Wind Engineering and Industrial Aerodynamics 2005; 93: 951-970.
  • [22] Abe K., Ohya Y. An investigation of flow fields around flanged diffusers using CFD, Journal of Wind Engineering and Industrial Aerodynamics, 2004; 92: 315-330.
  • [23] Adeel A., Zaidi M., Uddin N. Numerical investigations of subsonic flow through a convergent-divergent duct with varying flange heights at exit, Proceedings of International Conference on Energy and Sustainability, Ned University of Engineering & Technology, Karachi, Pakistan, 2013; 15-19.
  • [24] Allaei D., Andreopoulos Y. INVELOX: Description of a new concept in wind power and its performance evaluation, Energy 2014; 69: 336-344.
  • [25] Allaei D., Tarnowski D., Andreopoulos Y. INVELOX with multiple wind turbine generator systems, Energy 2015, 93: 1030-1040.
  • [26] Jamieson P. Innovation in wind turbine design. A John Wiley & Sons, Ltd., Publication, 2011.
Year 2021, Volume: 4 Issue: 1, 17 - 26, 02.03.2021
https://doi.org/10.47495/okufbed.811615

Abstract

Project Number

FBA-2017-8800

References

  • [1] Bilgili M., Ozbek A., Sahin B., Kahraman A. An overview of renewable electric power capacity and progress in new technologies in the world, Renewable and Sustainable Energy Reviews 2015; 49: 323–334.
  • [2] Korompili A., Wu Q., Zhao H. Review of VSC HVDC connection for offshore wind power integration, Renewable and Sustainable Energy Reviews 2016; 59: 1405–1414.
  • [3] Emmanouil G., Galanis G., Kalogeri C., Zodiatis G., Kallos G. 10-year high resolution study of wind, sea waves and wave energy assessment in the Greek offshore areas. Renewable Energy 2016; 90: 399–419.
  • [4] Islam MR., Mekhilef S., Saidur R. Progress and recent trends of wind energy technology Renewable and Sustainable Energy Reviews 2013;21:456-468.
  • [5] Jones CR., Eiser JR. Understanding 'local' opposition to wind development in the UK: How big is a backyard? Energy Policy 2010;38:3106-3117.
  • [6] Kaldellis JK., Zafirakis D. The wind energy (r)evolution: A short review of a long history. Renewable Energy 2011;36:1887-1901.
  • [7] Kaplan YA. Overview of wind energy in the world and assessment of current wind energy policies in Turkey. Renewable and Sustainable Energy Reviews 2015;43:562-568.
  • [8] Karthikeyan N, Murugavel KK, Kumar SA, Rajakumar S. Review of aerodynamic developments on small horizontal axis wind turbine blade. Renewable and Sustainable Energy Reviews 2015;42:801-822.
  • [9] Söderholm P, Pettersson M. Offshore wind power policy and planning in Sweden.” Energy Policy 2011; 39: 518–525.
  • [10] IEA. Energy technology perspectives. International Energy Agency, https://www.iea.org (2010, accessed 14 July 2010).
  • [11] IEA. Technology roadmap, wind energy. International Energy Agency, https://www.iea.org (2013, accessed 7 June 2013). [12] IRENA. Renewable energy benefits: measuring the economics. International Renewable Energy Agency, http://www.irena.org (2016, accessed 6 November 2016).
  • [13] Wang S, Wang S. Impacts of wind energy on environment: A review, Renewable and Sustainable Energy Reviews 2015; 49: 437-443.
  • [14] Bilgili M, Sahin B. Electric power plants and electricity generation in Turkey. Energy Sources, Part B: Economics, Planning, and Policy 2010;5;81-92.
  • [15] EWEA, European Wind Energy Association, (2018). Wind energy in Europe in 2018. https://windeurope.org/about-wind/statistics/european/.
  • [16] GWEC, Global Wind Energy Council, Global wind report, 2018, http://www.gwec.net.
  • [17] WE, Wind Europe, (2018). Wind in power 2018, Annual combined onshore and offshore wind energy statistics. https://windeurope.org/.
  • [18] TETC, Turkish Electricity Transmission Corporation, Electricity statistics, 2019. https://www.teias.gov.tr/.
  • [19] Abadi PRM., Daneshmand SV., Sharific R. Development and economical evaluation for wind power plant in chabahar in Sistan and baluchestan province-Iran, Journal of Renewable Energy and Environment JREE, 2016; 3(1): 17-24.
  • [20] Abe K., Ohya Y. An investigation of flow fields around flanged diffusers using CFD. Journal of Wind Engineering and Industrial Aerodynamics, 2004 ;92: 315–30.
  • [21] Abe K., Nishida M., Sakurai A., Ohya Y., Kihara H., Wada E., Sato K. Experimental and numerical investigations of flow fields behind a small wind turbine with a flanged diffuser, Journal of Wind Engineering and Industrial Aerodynamics 2005; 93: 951-970.
  • [22] Abe K., Ohya Y. An investigation of flow fields around flanged diffusers using CFD, Journal of Wind Engineering and Industrial Aerodynamics, 2004; 92: 315-330.
  • [23] Adeel A., Zaidi M., Uddin N. Numerical investigations of subsonic flow through a convergent-divergent duct with varying flange heights at exit, Proceedings of International Conference on Energy and Sustainability, Ned University of Engineering & Technology, Karachi, Pakistan, 2013; 15-19.
  • [24] Allaei D., Andreopoulos Y. INVELOX: Description of a new concept in wind power and its performance evaluation, Energy 2014; 69: 336-344.
  • [25] Allaei D., Tarnowski D., Andreopoulos Y. INVELOX with multiple wind turbine generator systems, Energy 2015, 93: 1030-1040.
  • [26] Jamieson P. Innovation in wind turbine design. A John Wiley & Sons, Ltd., Publication, 2011.
There are 25 citations in total.

Details

Primary Language Turkish
Subjects Mechanical Engineering
Journal Section RESEARCH ARTICLES
Authors

Mehmet Bilgili 0000-0002-5339-6120

Project Number FBA-2017-8800
Publication Date March 2, 2021
Submission Date October 16, 2020
Acceptance Date December 4, 2020
Published in Issue Year 2021 Volume: 4 Issue: 1

Cite

APA Bilgili, M. (2021). Küçük Kapasiteli, Yatay Eksenli ve Akış Hızlandırıcılı Rüzgar Türbinlerinin Performans Analizi. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 4(1), 17-26. https://doi.org/10.47495/okufbed.811615
AMA Bilgili M. Küçük Kapasiteli, Yatay Eksenli ve Akış Hızlandırıcılı Rüzgar Türbinlerinin Performans Analizi. Osmaniye Korkut Ata University Journal of The Institute of Science and Techno. March 2021;4(1):17-26. doi:10.47495/okufbed.811615
Chicago Bilgili, Mehmet. “Küçük Kapasiteli, Yatay Eksenli Ve Akış Hızlandırıcılı Rüzgar Türbinlerinin Performans Analizi”. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi 4, no. 1 (March 2021): 17-26. https://doi.org/10.47495/okufbed.811615.
EndNote Bilgili M (March 1, 2021) Küçük Kapasiteli, Yatay Eksenli ve Akış Hızlandırıcılı Rüzgar Türbinlerinin Performans Analizi. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi 4 1 17–26.
IEEE M. Bilgili, “Küçük Kapasiteli, Yatay Eksenli ve Akış Hızlandırıcılı Rüzgar Türbinlerinin Performans Analizi”, Osmaniye Korkut Ata University Journal of The Institute of Science and Techno, vol. 4, no. 1, pp. 17–26, 2021, doi: 10.47495/okufbed.811615.
ISNAD Bilgili, Mehmet. “Küçük Kapasiteli, Yatay Eksenli Ve Akış Hızlandırıcılı Rüzgar Türbinlerinin Performans Analizi”. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi 4/1 (March 2021), 17-26. https://doi.org/10.47495/okufbed.811615.
JAMA Bilgili M. Küçük Kapasiteli, Yatay Eksenli ve Akış Hızlandırıcılı Rüzgar Türbinlerinin Performans Analizi. Osmaniye Korkut Ata University Journal of The Institute of Science and Techno. 2021;4:17–26.
MLA Bilgili, Mehmet. “Küçük Kapasiteli, Yatay Eksenli Ve Akış Hızlandırıcılı Rüzgar Türbinlerinin Performans Analizi”. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi, vol. 4, no. 1, 2021, pp. 17-26, doi:10.47495/okufbed.811615.
Vancouver Bilgili M. Küçük Kapasiteli, Yatay Eksenli ve Akış Hızlandırıcılı Rüzgar Türbinlerinin Performans Analizi. Osmaniye Korkut Ata University Journal of The Institute of Science and Techno. 2021;4(1):17-26.

23487


196541947019414

19433194341943519436 1960219721 197842261021238 23877

*This journal is an international refereed journal 

*Our journal does not charge any article processing fees over publication process.

* This journal is online publishes 5 issues per year (January, March, June, September, December)

*This journal published in Turkish and English as open access. 

19450 This work is licensed under a Creative Commons Attribution 4.0 International License.