T-Birleşimli Borusal Kaynaklı Çelik Yapının Yorulma Analizi
Year 2022,
Volume: 5 Issue: Özel Sayı, 1 - 14, 23.02.2022
Gökhan Yücel
,
Tuğrul Talaslıoğlu
Abstract
Servis ömürleri içerisinde tekrarlı yüklere maruz kalan çelik birleşimlerde yorulma hasarları meydana gelmektedir. Çelik iskeletli yapıları oluşturan kafes boru şeklinde yapıların tasarımı belirli yönetmeliklere göre gerçekleştirilse de bu yapılardaki en kritik yorulma hasarının belirlenmesine yönelik değerlendirmeler kısıtlıdır. Dahası, kafes yapıların ayrık geometrik konfigürasyonları yorulma hasarının doğru bir şekilde tahmin edilmesini zorlaştırmaktadır. Bu çalışmada düzlemsel T-birleşim örneği üzerinde iki farklı yöntemle ve farklı sınır ve yükleme koşullarında yorulma analizleri gerçekleştirilmiştir. Üç boyutlu sonlu elemanlar modelleri ve üç boyutlu kaynaklı birleşim detayı daha gerçekçi analizler gerçekleştirmek için oluşturulmuştur. Sonuç olarak sabit tipli mesnetlemenin rijitlik artışı sebebiyle yorulma ömrünü artırdığı tespit edilmiştir.
References
- ABAQUS, 2019. Dassault Systemes Simulia Corp. Jonhston, RI, USA.
- American Welding Society. 2015. AWS D1.1/D1.1M:2015 An American National Standard Structural Welding Code — Steel.
- Aygul M., Fatigue Evaluation of Welded Details- Using the Finite Element Method. Doctoral dissertation, Chalmers
University of Technology, 2013 Gothenburg, Sweden.
- BSI. 1993. “BS 7608:1993 Code of Practice for Fatigue Design and Assessment of Steel Structures.” British Standards Institution.
- Cui, W., A State-of-the-Art Review on Fatigue Life Prediction Methods for Metal Structures.” Journal of Marine Science and Technology 2002; 7(1):43–56.
- Dong P., A Structural Stress Definition and Numerical Implementation for Fatigue Analysis of Welded Joints. International Journal of Fatigue 2001; 23(10):865–76.
- Dong P. and Hong J. K., Analysis of Hot Spot Stress and Alternative Structural Stress Methods. in Proceedings of the International Conference on Offshore Mechanics and Arctic Engineering – OMAE 2003; Pp. 213–24.
- Fuštar B., Lukačević I., and Dujmović D. Review of fatigue assessment methods for welded steel structures. Advances in Civil Engineering 2018.
- Hobbacher A. F., Erratum to: Recommendations for Fatigue Design of Welded Joints and Components. Springer, Cham 2019.
- Japanese Society of Steel Construction (JSSC). 2012. “Fatigue Design Recommendations for Steel Structures.” Fatigue Design Recommendations for Steel Structures.
- Jia L. J. and Hanbin G., Ultra-Low-Cycle Fatigue Failure of Aluminum. in Ultra-low-Cycle Fatigue Failure of Metal Structures under Strong Earthquakes 2019; Pp. 177–96.
- Kajolli R., A New Approach for Estimating Fatigue Life in Offshore Steel Structures. Master’s thesis, University of Stavanger, 2013 Norway.
- Lee Y.L., Mark B. and Hong T.K. 2011. Metal Fatigue Analysis Handbook. Elsevier.
- Maheswaran J., Fatigue Life Estimation of Tubular Joints in Offshore Jacket According to the SCFs in DNV-RP-C203, with Comparison of the SCFs in ABAQUS/CAE. Master’s thesis, University of Stavanger, 2014 mNorway.
- Mann J. Y., Bibliography on the Fatigue of Materials, Components and Structures. 1st ed. 1970 Pergamon.
- Pinto H., Álvaro P. and Ignacio A., Exponential Model for Damage Accumulation in Closed Cell Aluminum Foams. Revista de La Construccion 2015; 14(2):80–85.
- Radaj D., Sonsino C. M. and Fricke W., Fatigue Assessment of Welded Joints by Local Approaches: Second Edition. 2006 Woodhead Publishing.
- UNI EN. 2005. “BS EN 1993-1-9:2005- Eurocode 3: Design of Steel Structures-Part 1-9: Fatigue.” in Eurocode 3.
- Wei X., Zongyi W., Lin X. and Chentai W., Review of Fatigue Assessment Approaches for Tubular Joints in CFST Trusses. International Journal of Fatigue 2018; 113:43–53.
Fatigue Analysis of Welded Tubular Steel T-Joints
Year 2022,
Volume: 5 Issue: Özel Sayı, 1 - 14, 23.02.2022
Gökhan Yücel
,
Tuğrul Talaslıoğlu
Abstract
Fatigue damage occurs in steel joints exposed to repeated loads during their service life. Even if the design of lattice tubular structures that make up the steel skeletal structures is carried out according to certain regulations, the evaluations for determining the most critical fatigue damage in these structures are limited. Moreover, the discrete geometric configurations of trusses make it difficult to accurately predict fatigue damage. In this study, fatigue analyzes were performed on the planar T-joint sample with two different methods and under different boundary and loading conditions. Three-dimensional finite element models and three-dimensional welded joint detail were created to perform more accurate analysis. As a result, it has been determined that the fixed type support increases the fatigue life due to the increase in rigidity.
References
- ABAQUS, 2019. Dassault Systemes Simulia Corp. Jonhston, RI, USA.
- American Welding Society. 2015. AWS D1.1/D1.1M:2015 An American National Standard Structural Welding Code — Steel.
- Aygul M., Fatigue Evaluation of Welded Details- Using the Finite Element Method. Doctoral dissertation, Chalmers
University of Technology, 2013 Gothenburg, Sweden.
- BSI. 1993. “BS 7608:1993 Code of Practice for Fatigue Design and Assessment of Steel Structures.” British Standards Institution.
- Cui, W., A State-of-the-Art Review on Fatigue Life Prediction Methods for Metal Structures.” Journal of Marine Science and Technology 2002; 7(1):43–56.
- Dong P., A Structural Stress Definition and Numerical Implementation for Fatigue Analysis of Welded Joints. International Journal of Fatigue 2001; 23(10):865–76.
- Dong P. and Hong J. K., Analysis of Hot Spot Stress and Alternative Structural Stress Methods. in Proceedings of the International Conference on Offshore Mechanics and Arctic Engineering – OMAE 2003; Pp. 213–24.
- Fuštar B., Lukačević I., and Dujmović D. Review of fatigue assessment methods for welded steel structures. Advances in Civil Engineering 2018.
- Hobbacher A. F., Erratum to: Recommendations for Fatigue Design of Welded Joints and Components. Springer, Cham 2019.
- Japanese Society of Steel Construction (JSSC). 2012. “Fatigue Design Recommendations for Steel Structures.” Fatigue Design Recommendations for Steel Structures.
- Jia L. J. and Hanbin G., Ultra-Low-Cycle Fatigue Failure of Aluminum. in Ultra-low-Cycle Fatigue Failure of Metal Structures under Strong Earthquakes 2019; Pp. 177–96.
- Kajolli R., A New Approach for Estimating Fatigue Life in Offshore Steel Structures. Master’s thesis, University of Stavanger, 2013 Norway.
- Lee Y.L., Mark B. and Hong T.K. 2011. Metal Fatigue Analysis Handbook. Elsevier.
- Maheswaran J., Fatigue Life Estimation of Tubular Joints in Offshore Jacket According to the SCFs in DNV-RP-C203, with Comparison of the SCFs in ABAQUS/CAE. Master’s thesis, University of Stavanger, 2014 mNorway.
- Mann J. Y., Bibliography on the Fatigue of Materials, Components and Structures. 1st ed. 1970 Pergamon.
- Pinto H., Álvaro P. and Ignacio A., Exponential Model for Damage Accumulation in Closed Cell Aluminum Foams. Revista de La Construccion 2015; 14(2):80–85.
- Radaj D., Sonsino C. M. and Fricke W., Fatigue Assessment of Welded Joints by Local Approaches: Second Edition. 2006 Woodhead Publishing.
- UNI EN. 2005. “BS EN 1993-1-9:2005- Eurocode 3: Design of Steel Structures-Part 1-9: Fatigue.” in Eurocode 3.
- Wei X., Zongyi W., Lin X. and Chentai W., Review of Fatigue Assessment Approaches for Tubular Joints in CFST Trusses. International Journal of Fatigue 2018; 113:43–53.