Research Article
BibTex RIS Cite

İstifleme Sırasının Kompozit Katmanlı Basınçlı Kaplarının Yapısal Performansına Etkileri

Year 2022, Volume: 5 Issue: Özel Sayı, 117 - 134, 23.02.2022
https://doi.org/10.47495/okufbed.1037011

Abstract

Basınçlı kaplar hizmet ömürleri boyunca eksenel ve radyal yönlerde gerilmelere maruz kalmakta ve bu durum istenmeyen hasarlara neden olmaktadır. Bu sebepten dolayı kompozit katmanlı basınçlı kaplarda fiber yönlerinin her iki yönde oluşan yükleri taşıyabilecek şekilde tasarlanması oldukça önemlidir. Bu kapsamda 20 mm kutup ağzı yarıçapına sahip kompozit basınçlı kaplar tasarlanmış ve eliptik integral çözülerek jeodezik kubbe profili elde edilmiştir. Silindir yüzeyinde helisel ve çember sargı tabakaları bir arada kullanılmış ve istifleme sırasının yapısal performansa etkileri incelenmiştir. Bu çalışmada altı farklı istif sırasına sahip sayısal modeller tanımlanmış ve böylece gerilme, gerinim ve kırılma indeksleri belirlenmiştir. Ayrıca, tamamen helisel sarım katmanlardan oluşan sayısal model ile karşılaştırılarak, çember sarım tabakaların mekanik özellikler üzerindeki etkileri araştırılmıştır. Mevcut çalışma sonucunda, çember sarım tabakaların mekanik özellikler üzerinde olumlu etkileri olduğu sonucuna varılmıştır. Ayrıca çember sarım tabaka kullanımının tamamen helisel sarımdan oluşan sayısal modele kıyasla hasar indeksinde yaklaşık %28 iyileşme sağladığı gözlemlenmiştir. Ek olarak, çember sarım tabakalar için istifleme sırasının katmanlar arası kayma gerilmesi üzerinde oldukça etkili olduğu fakat gerilme/gerinim sonuçları ile hasar indeksleri üzerinde çok fazla etkili olmadığı gözlemlenmiştir.

References

  • Cai, Q., Pu, X., Dan, L., & Li, X. (2019, December). Comparative Study on Multi-type Domes of Filament-Wound Composite Pressure Vessels. In IOP Conference Series: Materials Science and Engineering (Vol. 677, No. 2, p. 022062). IOP Publishing.
  • Elmar, W., & Bernhard, J. (2015). Composites Market Report 2014. AVK, dostęp: www. beaware. org. uk.
  • Gemi, L. (2014). Düşük hızlı darbe hasarlı filaman sarım hibrid boruların iç basınç altında yorulma davranışı. Doktara Tezi, Selçuk Üniversitesi Fen Bilimleri Enstitiüsü, Konya.
  • Gemi, L. (2018). Investigation of the effect of stacking sequence on low velocity impact response and damage formation in hybrid composite pipes under internal pressure. A comparative study. Composites Part B: Engineering, 153, 217-232.
  • Gemi, L., Tarakçioğlu, N., Akdemir, A., & Şahin, Ö. S. (2009). Progressive fatigue failure behavior of glass/epoxy (±75) 2 filament-wound pipes under pure internal pressure. Materials & Design, 30(10), 4293-4298.
  • Hocine, A., Chapelle, D., Boubakar, M. L., Benamar, A., & Bezazi, A. (2009). Experimental and analytical investigation of the cylindrical part of a metallic vessel reinforced by filament winding while submitted to internal pressure. International journal of pressure vessels and piping, 86(10), 649-655.
  • Kabir, M. Z. (2000). Finite element analysis of composite pressure vessels with a load sharing metallic liner. Composite structures, 49(3), 247-255.
  • Kumar, S. S., & Kumari, A. S. (2012). Design and Failure analysis of Geodesic Dome of a Composite Pressure vessel. International Journal of Engineering Research and Technology, 1(2270-0181).
  • Nebe, M., Asijee, T. J., Braun, C., van Campen, J. M. J. F., & Walther, F. (2020). Experimental and analytical analysis on the stacking sequence of composite pressure vessels. Composite Structures, 247, 112429.
  • Oromiehie, E., Prusty, B. G., Compston, P., & Rajan, G. (2019). Automated fibre placement based composite structures: Review on the defects, impacts and inspections techniques. Composite Structures, 224, 110987.
  • Özbek, Ö., Bozkurt, Ö. Y., & Erkliğ, A. (2019). An experimental study on intraply fiber hybridization of filament wound composite pipes subjected to quasi-static compression loading. Polymer Testing, 79, 106082.
  • Park, Y. H., & Sakai, J. (2020). Optimum design of composite pressure vessel structure based on 3-dimensional failure criteria. International Journal of Material Forming, 13(6), 957-965.
  • Prabhakar, M. M., Rajini, N., Ayrilmis, N., Mayandi, K., Siengchin, S., Senthilkumar, K., ... & Ismail, S. O. (2019). An overview of burst, buckling, durability and corrosion analysis of lightweight FRP composite pipes and their applicability. Composite Structures, 230, 111419.
  • Takeichi, N., Senoh, H., Yokota, T., Tsuruta, H., Hamada, K., Takeshita, H. T., ... & Kuriyama, N. (2003). “Hybrid hydrogen storage vessel”, a novel high-pressure hydrogen storage vessel combined with hydrogen storage material. International Journal of Hydrogen Energy, 28(10), 1121-1129.
  • Taşyürek, M., & Tarakçioğlu, N. (2017). Enhanced fatigue behavior under internal pressure of CNT reinforced filament wound cracked pipes. Composites Part B: Engineering, 124, 23-30.
  • Yao, S. S., Jin, F. L., Rhee, K. Y., Hui, D., & Park, S. J. (2018). Recent advances in carbon-fiber-reinforced thermoplastic composites: A review. Composites Part B: Engineering, 142, 241-250.
  • Züttel, A. (2003). Materials for hydrogen storage. Materials today, 6(9), 24-33.
  • Zwillinger, D. (1998). Handbook of differential equations (Vol. 1). Gulf Professional Publishing.

Effects Of Stacking Sequence on the Structural Performance of Composite Overwrapped Pressure Vessels

Year 2022, Volume: 5 Issue: Özel Sayı, 117 - 134, 23.02.2022
https://doi.org/10.47495/okufbed.1037011

Abstract

Pressure vessels are subjected to stresses in axial and radial directions during their service life, which causes undesirable damages. For that reason, it is highly important to design the fiber directions in composite overwrapped pressure vessels in such a way that can carry the loads occurring in both directions. In this context, composite pressure vessels with 20 mm polar opening radii were designed and the geodesic dome profile was obtained by solving the elliptic integral. Helical and hoop winding layers were used together on the cylinder surface and the effect of stacking sequence on the structural performance was examined. In the current study, numerical models with six different stacking sequences were defined and thus stress, strain and failure indexes were determined. Furthermore, the effects of hoop winding layers on the mechanical properties were investigated by comparing with the numerical model consisting of completely helical winding layers. As a result of the current study, it has been concluded that the hoop winding layers have favorable effects on mechanical properties. It has also been observed that the utilization of the hoop winding layers provides an improvement of approximately 28% in the failure index compared to the numerical model consisting of completely helical winding. Additionally, it was observed that although the stacking sequence for the hoop winding was highly effective on the interlaminar shear stress, it did not have much effect on the stress/strain results and the failure indexes.

References

  • Cai, Q., Pu, X., Dan, L., & Li, X. (2019, December). Comparative Study on Multi-type Domes of Filament-Wound Composite Pressure Vessels. In IOP Conference Series: Materials Science and Engineering (Vol. 677, No. 2, p. 022062). IOP Publishing.
  • Elmar, W., & Bernhard, J. (2015). Composites Market Report 2014. AVK, dostęp: www. beaware. org. uk.
  • Gemi, L. (2014). Düşük hızlı darbe hasarlı filaman sarım hibrid boruların iç basınç altında yorulma davranışı. Doktara Tezi, Selçuk Üniversitesi Fen Bilimleri Enstitiüsü, Konya.
  • Gemi, L. (2018). Investigation of the effect of stacking sequence on low velocity impact response and damage formation in hybrid composite pipes under internal pressure. A comparative study. Composites Part B: Engineering, 153, 217-232.
  • Gemi, L., Tarakçioğlu, N., Akdemir, A., & Şahin, Ö. S. (2009). Progressive fatigue failure behavior of glass/epoxy (±75) 2 filament-wound pipes under pure internal pressure. Materials & Design, 30(10), 4293-4298.
  • Hocine, A., Chapelle, D., Boubakar, M. L., Benamar, A., & Bezazi, A. (2009). Experimental and analytical investigation of the cylindrical part of a metallic vessel reinforced by filament winding while submitted to internal pressure. International journal of pressure vessels and piping, 86(10), 649-655.
  • Kabir, M. Z. (2000). Finite element analysis of composite pressure vessels with a load sharing metallic liner. Composite structures, 49(3), 247-255.
  • Kumar, S. S., & Kumari, A. S. (2012). Design and Failure analysis of Geodesic Dome of a Composite Pressure vessel. International Journal of Engineering Research and Technology, 1(2270-0181).
  • Nebe, M., Asijee, T. J., Braun, C., van Campen, J. M. J. F., & Walther, F. (2020). Experimental and analytical analysis on the stacking sequence of composite pressure vessels. Composite Structures, 247, 112429.
  • Oromiehie, E., Prusty, B. G., Compston, P., & Rajan, G. (2019). Automated fibre placement based composite structures: Review on the defects, impacts and inspections techniques. Composite Structures, 224, 110987.
  • Özbek, Ö., Bozkurt, Ö. Y., & Erkliğ, A. (2019). An experimental study on intraply fiber hybridization of filament wound composite pipes subjected to quasi-static compression loading. Polymer Testing, 79, 106082.
  • Park, Y. H., & Sakai, J. (2020). Optimum design of composite pressure vessel structure based on 3-dimensional failure criteria. International Journal of Material Forming, 13(6), 957-965.
  • Prabhakar, M. M., Rajini, N., Ayrilmis, N., Mayandi, K., Siengchin, S., Senthilkumar, K., ... & Ismail, S. O. (2019). An overview of burst, buckling, durability and corrosion analysis of lightweight FRP composite pipes and their applicability. Composite Structures, 230, 111419.
  • Takeichi, N., Senoh, H., Yokota, T., Tsuruta, H., Hamada, K., Takeshita, H. T., ... & Kuriyama, N. (2003). “Hybrid hydrogen storage vessel”, a novel high-pressure hydrogen storage vessel combined with hydrogen storage material. International Journal of Hydrogen Energy, 28(10), 1121-1129.
  • Taşyürek, M., & Tarakçioğlu, N. (2017). Enhanced fatigue behavior under internal pressure of CNT reinforced filament wound cracked pipes. Composites Part B: Engineering, 124, 23-30.
  • Yao, S. S., Jin, F. L., Rhee, K. Y., Hui, D., & Park, S. J. (2018). Recent advances in carbon-fiber-reinforced thermoplastic composites: A review. Composites Part B: Engineering, 142, 241-250.
  • Züttel, A. (2003). Materials for hydrogen storage. Materials today, 6(9), 24-33.
  • Zwillinger, D. (1998). Handbook of differential equations (Vol. 1). Gulf Professional Publishing.
There are 18 citations in total.

Details

Primary Language English
Subjects Mechanical Engineering
Journal Section RESEARCH ARTICLES
Authors

Taner Coşkun

Ömer Şahin 0000-0002-0999-7332

Publication Date February 23, 2022
Submission Date December 15, 2021
Acceptance Date January 18, 2022
Published in Issue Year 2022 Volume: 5 Issue: Özel Sayı

Cite

APA Coşkun, T., & Şahin, Ö. (2022). Effects Of Stacking Sequence on the Structural Performance of Composite Overwrapped Pressure Vessels. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 5(Özel Sayı), 117-134. https://doi.org/10.47495/okufbed.1037011
AMA Coşkun T, Şahin Ö. Effects Of Stacking Sequence on the Structural Performance of Composite Overwrapped Pressure Vessels. Osmaniye Korkut Ata University Journal of Natural and Applied Sciences. February 2022;5(Özel Sayı):117-134. doi:10.47495/okufbed.1037011
Chicago Coşkun, Taner, and Ömer Şahin. “Effects Of Stacking Sequence on the Structural Performance of Composite Overwrapped Pressure Vessels”. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi 5, no. Özel Sayı (February 2022): 117-34. https://doi.org/10.47495/okufbed.1037011.
EndNote Coşkun T, Şahin Ö (February 1, 2022) Effects Of Stacking Sequence on the Structural Performance of Composite Overwrapped Pressure Vessels. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi 5 Özel Sayı 117–134.
IEEE T. Coşkun and Ö. Şahin, “Effects Of Stacking Sequence on the Structural Performance of Composite Overwrapped Pressure Vessels”, Osmaniye Korkut Ata University Journal of Natural and Applied Sciences, vol. 5, no. Özel Sayı, pp. 117–134, 2022, doi: 10.47495/okufbed.1037011.
ISNAD Coşkun, Taner - Şahin, Ömer. “Effects Of Stacking Sequence on the Structural Performance of Composite Overwrapped Pressure Vessels”. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi 5/Özel Sayı (February 2022), 117-134. https://doi.org/10.47495/okufbed.1037011.
JAMA Coşkun T, Şahin Ö. Effects Of Stacking Sequence on the Structural Performance of Composite Overwrapped Pressure Vessels. Osmaniye Korkut Ata University Journal of Natural and Applied Sciences. 2022;5:117–134.
MLA Coşkun, Taner and Ömer Şahin. “Effects Of Stacking Sequence on the Structural Performance of Composite Overwrapped Pressure Vessels”. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi, vol. 5, no. Özel Sayı, 2022, pp. 117-34, doi:10.47495/okufbed.1037011.
Vancouver Coşkun T, Şahin Ö. Effects Of Stacking Sequence on the Structural Performance of Composite Overwrapped Pressure Vessels. Osmaniye Korkut Ata University Journal of Natural and Applied Sciences. 2022;5(Özel Sayı):117-34.

23487


196541947019414

19433194341943519436 1960219721 197842261021238 23877

*This journal is an international refereed journal 

*Our journal does not charge any article processing fees over publication process.

* This journal is online publishes 5 issues per year (January, March, June, September, December)

*This journal published in Turkish and English as open access. 

19450 This work is licensed under a Creative Commons Attribution 4.0 International License.