Research Article
BibTex RIS Cite

Ab initio Yöntemler ile Ni2ScAl Bileşiğinin Mekanik ve Termodinamik Özelliklerinin İncelenmesi

Year 2022, Volume: 5 Issue: 2, 861 - 870, 18.07.2022
https://doi.org/10.47495/okufbed.1006242

Abstract

Çalışmada Ni2ScAl full Heusler bileşiğinin mekanik ve termodinamik özellikleri araştırılmıştır. Bu amaçla, önce yapısal optimizasyon yapılmış akabinde elastik sabitler hesaplanmıştır. Hesaplanan elastik sabitlerin kararlılık kriterlerini sağladığından dolayı elastik modülü hesaplanmış ve anizotropisi incelenmiştir. Debye sıcaklığı, Gruneisen sabiti ve termal iletkenlikleri tahmin edilmiştir. Yapılan hesaplamalar sonucunda Ni2ScAl bileşiği sert olmayıp, anizotrop ve sünek özellik göstermesi beklenmektedir. Küçük minimum termal iletkenliğe sahip olmasından dolayı, ısıl yalıtkan olarak kullanılabilir.

References

  • Anderson, O. L. (1963). A simplified method for calculating the debye temperature from elastic constants. Journal of Physics and Chemistry of Solids, 24(7), 909–917. https://doi.org/10.1016/0022-3697(63)90067-2
  • Arab, F., Sahraoui, F. A., Haddadi, K., Bouhemadou, A., & Louail, L. (2016). Phase stability, mechanical and thermodynamic properties of orthorhombic and trigonal MgSiN 2 : an ab initio study. Phase Transitions, 89(5), 480–513. https://doi.org/10.1080/01411594.2015.1089574
  • Benndorf, C., Niehaus, O., Eckert, H., & Janka, O. (2015). 27Al and 45Sc NMR Spectroscopy on ScT2Al and Sc(T0.5T′0.5)2Al (T = T′ = Ni, Pd, Pt, Cu, Ag, Au) Heusler Phases and Superconductivity in Sc(Pd0.5Au0.5)2Al. Zeitschrift Für Anorganische Und Allgemeine Chemie, 641(2), 168–175. https://doi.org/10.1002/ZAAC.201400509
  • Benndorf, C., Niehaus, O., … H. E.-… für anorganische und, & 2015, undefined. (2015). 27Al and 45Sc NMR Spectroscopy on ScT2Al and Sc (T0. 5T′ 0.5) 2Al (T= T′= Ni, Pd, Pt, Cu, Ag, Au) Heusler Phases and Superconductivity in Sc (Pd0. 5Au0. 5). Wiley Online Library, 641(2), 168–175. https://doi.org/10.1002/zaac.201400509
  • Born, M. (1940). On the stability of crystal lattices. I. Mathematical Proceedings of the Cambridge Philosophical Society, 36(2), 160–172. https://doi.org/10.1017/S0305004100017138
  • Buessem, D. H., & Chung, W. R. (1968). Anisotropy in Single-Crystal Refractory Compounds (F. W. Vahldiek & S. A. Mersol, Eds.; 1st editio). Springer US. https://doi.org/10.1007/978-1-4899-5307-0
  • Cahill, D. G., Watson, S. K., & Pohl, R. O. (1992). Lower limit to the thermal conductivity of disordered crystals. Physical Review B, 46(10), 6131. https://doi.org/10.1103/PhysRevB.46.6131
  • Chen, X.-Q., Niu, H., Li, D., & Li, Y. (2011). Modeling hardness of polycrystalline materials and bulk metallic glasses. Intermetallics, 19(9), 1275–1281. https://doi.org/10.1016/j.intermet.2011.03.026
  • Clarke, D. R. (2003). Materials selections guidelines for low thermal conductivity thermal barrier coatings. Surface and Coatings Technology, 163–164, 67–74. https://doi.org/10.1016/S0257-8972(02)00593-5
  • de Jong, M., Chen, W., Angsten, T., Jain, A., Notestine, R., Gamst, A., Sluiter, M., Ande, C. K., van der Zwaag, S., Plata, J. J., Toher, C., Curtarolo, S., Ceder, G., Persson, K. A., & Asta, M. (2015). Charting the complete elastic properties of inorganic crystalline compounds. Scientific Data, 2. https://doi.org/10.1038/SDATA.2015.9
  • Dwight, A. E., & Kimball, C. W. (1987). ScT2X and LnT2X compounds with the MnCu2al-type structure. Journal of the Less Common Metals, 127(C), 179–182. https://doi.org/10.1016/0022-5088(87)90376-6
  • Everhart, W., & Newkirk, J. (2019). Mechanical properties of Heusler alloys. Heliyon, 5(5), e01578. https://doi.org/10.1016/j.heliyon.2019.e01578
  • Every, A. G. (1980). General closed-form expressions for acoustic waves in elastically anisotropic solids. Physical Review B, 22(4), 1746. https://doi.org/10.1103/PhysRevB.22.1746
  • Fine, M. E., Brown, L. D., & Marcus, H. L. (1984). Elastic constants versus melting temperature in metals. Scripta Metallurgica, 18(9), 951–956. https://doi.org/10.1016/0036-9748(84)90267-9
  • Gaillac, R., Pullumbi, P., & Coudert, F.-X. (2016). ELATE: an open-source online application for analysis and visualization of elastic tensors. Journal of Physics: Condensed Matter, 28(27), 275201. https://doi.org/10.1088/0953-8984/28/27/275201
  • Gencer, A., & Surucu, G. (2019). Investigation of structural, electronic and lattice dynamical properties of XNiH (X = Li, Na and K) perovskite type hydrides and their hydrogen storage applications. International Journal of Hydrogen Energy, 44(29), 15173–15182. https://doi.org/10.1016/j.ijhydene.2019.04.097
  • Hill, R. (1952). The Elastic Behaviour of a Crystalline Aggregate. Proceedings of the Physical Society. Section A, 65(5), 349–354. https://doi.org/10.1088/0370-1298/65/5/307
  • Kou, J., Zhou, Y., Li, K.-L., & Gan, L.-H. (2020). The stability, electronic, mechanical and thermal properties of three novel superhard carbon crystals. Computational Materials Science, 182, 109758. https://doi.org/10.1016/j.commatsci.2020.109758
  • Liu, W., Niu, Y., & Li, W. (2020). Theoretical prediction of the physical characteristic of Na3MO4 (M=Np and Pu): The first-principles calculations. Ceramics International, 46(16), 25359–25365. https://doi.org/10.1016/j.ceramint.2020.07.003
  • Long, J., Shu, C., Yang, L., & Yang, M. (2015). Predicting crystal structures and physical properties of novel superhard p-BN under pressure via first-principles investigation. Journal of Alloys and Compounds, 644, 638–644. https://doi.org/10.1016/J.JALLCOM.2015.04.229
  • Mouhat, F., & Coudert, F.-X. (2014). Necessary and sufficient elastic stability conditions in various crystal systems. Physical Review B, 90(22), 224104. https://doi.org/10.1103/PhysRevB.90.224104
  • Nye, J. (1985). Physical properties of crystals: their representation by tensors and matrices. Oxford University Press.
  • Okoye, C. M. I. (2014). Structural, elastic and electronic structure of LiCu 2 Si, LiCu 2 Ge and LiAg 2 Sn intermetallic compounds. Computational Materials Science, 92, 141–148. https://doi.org/10.1016/j.commatsci.2014.05.016
  • Özer, T. (2020a). Study of first principles on anisotropy and elastic constants of yal<inf>3</inf> compound. Canadian Journal of Physics, 98(4). https://doi.org/10.1139/cjp-2018-0448
  • Özer, T. (2020b). Yüksek Basınç Altında SbSeI’nin Elektronik Özelliklerin İlk İlk Hesaplamalar İle İncelenmesi. International Journal of Advances in Engineering and Pure Sciences, 2021(1), 64–72. https://doi.org/10.7240/jeps.717399
  • Özer, T. (2018). Determination of melting temperature (H. Demirkaya, M. Canbulat, A. Pulur, M. Eraslan, & B. Direkci, Eds.; pp. 87–99). 4 th International Congress on Multidisciplinary Studies.
  • Özer, T., & Öztürk, A. İ. (2019). Theoretical Investigation of The Effect of Pressure on Structural Parameters of Ferroelectric SbSI Crystal. In B. Kurt, C. Çarboğa, Z. B. Öztürk, & N. Küçükdeveci (Eds.), IMSTEC 2019 (pp. 176–179).
  • Perdew, J. P., Burke, K., & Ernzerhof, M. (1996). Generalized Gradient Approximation Made Simple. Physical Review Letters, 77(18), 3865. https://doi.org/10.1103/PhysRevLett.77.3865
  • Pugh, S. F. (1954). XCII. Relations between the elastic moduli and the plastic properties of polycrystalline pure metals. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 45(367), 823–843. https://doi.org/10.1080/14786440808520496
  • Ranganathan, S. I., & Ostoja-Starzewski, M. (2008). Universal Elastic Anisotropy Index. APS, 101(5). https://doi.org/10.1103/PhysRevLett.101.055504
  • Reuss, A. (1929). Berechnung der Fließgrenze von Mischkristallen auf Grund der Plastizitätsbedingung für Einkristalle . ZAMM - Zeitschrift Für Angewandte Mathematik Und Mechanik, 9(1), 49–58. https://doi.org/10.1002/zamm.19290090104
  • Schreiber, E. (1973). Elastic constants and their measurement. McGraw-Hill Book Company. http://181.176.223.4/opac_css/index.php?lvl=notice_display&id=6480
  • Surucu, G. (2018). Investigation of structural, electronic, anisotropic elastic, and lattice dynamical properties of MAX phases borides: An Ab-initio study on hypothetical M2AB (M = Ti, Zr, Hf; A = Al, Ga, In) compounds. Materials Chemistry and Physics, 203, 106–117. https://doi.org/10.1016/J.MATCHEMPHYS.2017.09.050
  • Voigt, W. (1966). Lehrbuch der Kristallphysik. In Lehrbuch der Kristallphysik. Vieweg+Teubner Verlag. https://doi.org/10.1007/978-3-663-15884-4
  • Wen, Z., Zhao, Y., Hou, H., Wang, B., & Han, P. (2017). The mechanical and thermodynamic properties of Heusler compounds Ni2XAl (X = Sc, Ti, V) under pressure and temperature: A first-principles study. Materials & Design, 114, 398–403. https://doi.org/10.1016/J.MATDES.2016.11.005
  • William D. Callister, Jr. , & Rethwisch, D. G. (2011). Materials Science and Engineering (8th edn). Wiley.
  • Yousef, E. S., El-Adawy, A., & El-KheshKhany, N. (2006). Effect of rare earth (Pr2O3, Nd2O3, Sm2O3, Eu2O3, Gd2O3 and Er2O3 ) on the acoustic properties of glass belonging to bismuth–borate system. Solid State Communications, 139(3), 108–113. https://doi.org/10.1016/J.SSC.2006.05.022

Investigation of Mechanical and Thermodynamic Properties of Ni2ScAl Compound by Ab initio Methods

Year 2022, Volume: 5 Issue: 2, 861 - 870, 18.07.2022
https://doi.org/10.47495/okufbed.1006242

Abstract

In this study, the mechanical and thermodynamic properties of Ni2ScAl full Heusler compound were investigated. For this purpose, first structural optimization was made, and then elastic constants were calculated. Since the calculated elastic constants meet the stability criteria, the elastic modulus was calculated, and its anisotropy was examined. Debye temperature, Gruneisen constant and thermal conductivities were estimated. As a result of the calculations, it is expected that the Ni2ScAl compound is not hard but will show anisotropic and ductile properties. It can be used as a thermal insulator due to its small minimum thermal conductivity.

References

  • Anderson, O. L. (1963). A simplified method for calculating the debye temperature from elastic constants. Journal of Physics and Chemistry of Solids, 24(7), 909–917. https://doi.org/10.1016/0022-3697(63)90067-2
  • Arab, F., Sahraoui, F. A., Haddadi, K., Bouhemadou, A., & Louail, L. (2016). Phase stability, mechanical and thermodynamic properties of orthorhombic and trigonal MgSiN 2 : an ab initio study. Phase Transitions, 89(5), 480–513. https://doi.org/10.1080/01411594.2015.1089574
  • Benndorf, C., Niehaus, O., Eckert, H., & Janka, O. (2015). 27Al and 45Sc NMR Spectroscopy on ScT2Al and Sc(T0.5T′0.5)2Al (T = T′ = Ni, Pd, Pt, Cu, Ag, Au) Heusler Phases and Superconductivity in Sc(Pd0.5Au0.5)2Al. Zeitschrift Für Anorganische Und Allgemeine Chemie, 641(2), 168–175. https://doi.org/10.1002/ZAAC.201400509
  • Benndorf, C., Niehaus, O., … H. E.-… für anorganische und, & 2015, undefined. (2015). 27Al and 45Sc NMR Spectroscopy on ScT2Al and Sc (T0. 5T′ 0.5) 2Al (T= T′= Ni, Pd, Pt, Cu, Ag, Au) Heusler Phases and Superconductivity in Sc (Pd0. 5Au0. 5). Wiley Online Library, 641(2), 168–175. https://doi.org/10.1002/zaac.201400509
  • Born, M. (1940). On the stability of crystal lattices. I. Mathematical Proceedings of the Cambridge Philosophical Society, 36(2), 160–172. https://doi.org/10.1017/S0305004100017138
  • Buessem, D. H., & Chung, W. R. (1968). Anisotropy in Single-Crystal Refractory Compounds (F. W. Vahldiek & S. A. Mersol, Eds.; 1st editio). Springer US. https://doi.org/10.1007/978-1-4899-5307-0
  • Cahill, D. G., Watson, S. K., & Pohl, R. O. (1992). Lower limit to the thermal conductivity of disordered crystals. Physical Review B, 46(10), 6131. https://doi.org/10.1103/PhysRevB.46.6131
  • Chen, X.-Q., Niu, H., Li, D., & Li, Y. (2011). Modeling hardness of polycrystalline materials and bulk metallic glasses. Intermetallics, 19(9), 1275–1281. https://doi.org/10.1016/j.intermet.2011.03.026
  • Clarke, D. R. (2003). Materials selections guidelines for low thermal conductivity thermal barrier coatings. Surface and Coatings Technology, 163–164, 67–74. https://doi.org/10.1016/S0257-8972(02)00593-5
  • de Jong, M., Chen, W., Angsten, T., Jain, A., Notestine, R., Gamst, A., Sluiter, M., Ande, C. K., van der Zwaag, S., Plata, J. J., Toher, C., Curtarolo, S., Ceder, G., Persson, K. A., & Asta, M. (2015). Charting the complete elastic properties of inorganic crystalline compounds. Scientific Data, 2. https://doi.org/10.1038/SDATA.2015.9
  • Dwight, A. E., & Kimball, C. W. (1987). ScT2X and LnT2X compounds with the MnCu2al-type structure. Journal of the Less Common Metals, 127(C), 179–182. https://doi.org/10.1016/0022-5088(87)90376-6
  • Everhart, W., & Newkirk, J. (2019). Mechanical properties of Heusler alloys. Heliyon, 5(5), e01578. https://doi.org/10.1016/j.heliyon.2019.e01578
  • Every, A. G. (1980). General closed-form expressions for acoustic waves in elastically anisotropic solids. Physical Review B, 22(4), 1746. https://doi.org/10.1103/PhysRevB.22.1746
  • Fine, M. E., Brown, L. D., & Marcus, H. L. (1984). Elastic constants versus melting temperature in metals. Scripta Metallurgica, 18(9), 951–956. https://doi.org/10.1016/0036-9748(84)90267-9
  • Gaillac, R., Pullumbi, P., & Coudert, F.-X. (2016). ELATE: an open-source online application for analysis and visualization of elastic tensors. Journal of Physics: Condensed Matter, 28(27), 275201. https://doi.org/10.1088/0953-8984/28/27/275201
  • Gencer, A., & Surucu, G. (2019). Investigation of structural, electronic and lattice dynamical properties of XNiH (X = Li, Na and K) perovskite type hydrides and their hydrogen storage applications. International Journal of Hydrogen Energy, 44(29), 15173–15182. https://doi.org/10.1016/j.ijhydene.2019.04.097
  • Hill, R. (1952). The Elastic Behaviour of a Crystalline Aggregate. Proceedings of the Physical Society. Section A, 65(5), 349–354. https://doi.org/10.1088/0370-1298/65/5/307
  • Kou, J., Zhou, Y., Li, K.-L., & Gan, L.-H. (2020). The stability, electronic, mechanical and thermal properties of three novel superhard carbon crystals. Computational Materials Science, 182, 109758. https://doi.org/10.1016/j.commatsci.2020.109758
  • Liu, W., Niu, Y., & Li, W. (2020). Theoretical prediction of the physical characteristic of Na3MO4 (M=Np and Pu): The first-principles calculations. Ceramics International, 46(16), 25359–25365. https://doi.org/10.1016/j.ceramint.2020.07.003
  • Long, J., Shu, C., Yang, L., & Yang, M. (2015). Predicting crystal structures and physical properties of novel superhard p-BN under pressure via first-principles investigation. Journal of Alloys and Compounds, 644, 638–644. https://doi.org/10.1016/J.JALLCOM.2015.04.229
  • Mouhat, F., & Coudert, F.-X. (2014). Necessary and sufficient elastic stability conditions in various crystal systems. Physical Review B, 90(22), 224104. https://doi.org/10.1103/PhysRevB.90.224104
  • Nye, J. (1985). Physical properties of crystals: their representation by tensors and matrices. Oxford University Press.
  • Okoye, C. M. I. (2014). Structural, elastic and electronic structure of LiCu 2 Si, LiCu 2 Ge and LiAg 2 Sn intermetallic compounds. Computational Materials Science, 92, 141–148. https://doi.org/10.1016/j.commatsci.2014.05.016
  • Özer, T. (2020a). Study of first principles on anisotropy and elastic constants of yal<inf>3</inf> compound. Canadian Journal of Physics, 98(4). https://doi.org/10.1139/cjp-2018-0448
  • Özer, T. (2020b). Yüksek Basınç Altında SbSeI’nin Elektronik Özelliklerin İlk İlk Hesaplamalar İle İncelenmesi. International Journal of Advances in Engineering and Pure Sciences, 2021(1), 64–72. https://doi.org/10.7240/jeps.717399
  • Özer, T. (2018). Determination of melting temperature (H. Demirkaya, M. Canbulat, A. Pulur, M. Eraslan, & B. Direkci, Eds.; pp. 87–99). 4 th International Congress on Multidisciplinary Studies.
  • Özer, T., & Öztürk, A. İ. (2019). Theoretical Investigation of The Effect of Pressure on Structural Parameters of Ferroelectric SbSI Crystal. In B. Kurt, C. Çarboğa, Z. B. Öztürk, & N. Küçükdeveci (Eds.), IMSTEC 2019 (pp. 176–179).
  • Perdew, J. P., Burke, K., & Ernzerhof, M. (1996). Generalized Gradient Approximation Made Simple. Physical Review Letters, 77(18), 3865. https://doi.org/10.1103/PhysRevLett.77.3865
  • Pugh, S. F. (1954). XCII. Relations between the elastic moduli and the plastic properties of polycrystalline pure metals. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 45(367), 823–843. https://doi.org/10.1080/14786440808520496
  • Ranganathan, S. I., & Ostoja-Starzewski, M. (2008). Universal Elastic Anisotropy Index. APS, 101(5). https://doi.org/10.1103/PhysRevLett.101.055504
  • Reuss, A. (1929). Berechnung der Fließgrenze von Mischkristallen auf Grund der Plastizitätsbedingung für Einkristalle . ZAMM - Zeitschrift Für Angewandte Mathematik Und Mechanik, 9(1), 49–58. https://doi.org/10.1002/zamm.19290090104
  • Schreiber, E. (1973). Elastic constants and their measurement. McGraw-Hill Book Company. http://181.176.223.4/opac_css/index.php?lvl=notice_display&id=6480
  • Surucu, G. (2018). Investigation of structural, electronic, anisotropic elastic, and lattice dynamical properties of MAX phases borides: An Ab-initio study on hypothetical M2AB (M = Ti, Zr, Hf; A = Al, Ga, In) compounds. Materials Chemistry and Physics, 203, 106–117. https://doi.org/10.1016/J.MATCHEMPHYS.2017.09.050
  • Voigt, W. (1966). Lehrbuch der Kristallphysik. In Lehrbuch der Kristallphysik. Vieweg+Teubner Verlag. https://doi.org/10.1007/978-3-663-15884-4
  • Wen, Z., Zhao, Y., Hou, H., Wang, B., & Han, P. (2017). The mechanical and thermodynamic properties of Heusler compounds Ni2XAl (X = Sc, Ti, V) under pressure and temperature: A first-principles study. Materials & Design, 114, 398–403. https://doi.org/10.1016/J.MATDES.2016.11.005
  • William D. Callister, Jr. , & Rethwisch, D. G. (2011). Materials Science and Engineering (8th edn). Wiley.
  • Yousef, E. S., El-Adawy, A., & El-KheshKhany, N. (2006). Effect of rare earth (Pr2O3, Nd2O3, Sm2O3, Eu2O3, Gd2O3 and Er2O3 ) on the acoustic properties of glass belonging to bismuth–borate system. Solid State Communications, 139(3), 108–113. https://doi.org/10.1016/J.SSC.2006.05.022
There are 37 citations in total.

Details

Primary Language Turkish
Subjects Metrology, Applied and Industrial Physics
Journal Section RESEARCH ARTICLES
Authors

Tahsin Özer 0000-0003-0344-7118

Nihat Arıkan This is me 0000-0001-8028-3132

Publication Date July 18, 2022
Submission Date October 8, 2021
Acceptance Date March 14, 2022
Published in Issue Year 2022 Volume: 5 Issue: 2

Cite

APA Özer, T., & Arıkan, N. (2022). Ab initio Yöntemler ile Ni2ScAl Bileşiğinin Mekanik ve Termodinamik Özelliklerinin İncelenmesi. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 5(2), 861-870. https://doi.org/10.47495/okufbed.1006242
AMA Özer T, Arıkan N. Ab initio Yöntemler ile Ni2ScAl Bileşiğinin Mekanik ve Termodinamik Özelliklerinin İncelenmesi. Osmaniye Korkut Ata University Journal of The Institute of Science and Techno. July 2022;5(2):861-870. doi:10.47495/okufbed.1006242
Chicago Özer, Tahsin, and Nihat Arıkan. “Ab Initio Yöntemler Ile Ni2ScAl Bileşiğinin Mekanik Ve Termodinamik Özelliklerinin İncelenmesi”. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi 5, no. 2 (July 2022): 861-70. https://doi.org/10.47495/okufbed.1006242.
EndNote Özer T, Arıkan N (July 1, 2022) Ab initio Yöntemler ile Ni2ScAl Bileşiğinin Mekanik ve Termodinamik Özelliklerinin İncelenmesi. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi 5 2 861–870.
IEEE T. Özer and N. Arıkan, “Ab initio Yöntemler ile Ni2ScAl Bileşiğinin Mekanik ve Termodinamik Özelliklerinin İncelenmesi”, Osmaniye Korkut Ata University Journal of The Institute of Science and Techno, vol. 5, no. 2, pp. 861–870, 2022, doi: 10.47495/okufbed.1006242.
ISNAD Özer, Tahsin - Arıkan, Nihat. “Ab Initio Yöntemler Ile Ni2ScAl Bileşiğinin Mekanik Ve Termodinamik Özelliklerinin İncelenmesi”. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi 5/2 (July 2022), 861-870. https://doi.org/10.47495/okufbed.1006242.
JAMA Özer T, Arıkan N. Ab initio Yöntemler ile Ni2ScAl Bileşiğinin Mekanik ve Termodinamik Özelliklerinin İncelenmesi. Osmaniye Korkut Ata University Journal of The Institute of Science and Techno. 2022;5:861–870.
MLA Özer, Tahsin and Nihat Arıkan. “Ab Initio Yöntemler Ile Ni2ScAl Bileşiğinin Mekanik Ve Termodinamik Özelliklerinin İncelenmesi”. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi, vol. 5, no. 2, 2022, pp. 861-70, doi:10.47495/okufbed.1006242.
Vancouver Özer T, Arıkan N. Ab initio Yöntemler ile Ni2ScAl Bileşiğinin Mekanik ve Termodinamik Özelliklerinin İncelenmesi. Osmaniye Korkut Ata University Journal of The Institute of Science and Techno. 2022;5(2):861-70.

23487


196541947019414

19433194341943519436 1960219721 197842261021238 23877

*This journal is an international refereed journal 

*Our journal does not charge any article processing fees over publication process.

* This journal is online publishes 5 issues per year (January, March, June, September, December)

*This journal published in Turkish and English as open access. 

19450 This work is licensed under a Creative Commons Attribution 4.0 International License.