Toplumların ekonomik durumlarını değerlendirme üzerine yapılan çalışmalar mevcut durumu tespit etmek, yaşam koşullarını iyileştirmek ve geleceğe dönük stratejiler geliştirmek açısından son derece önemlidir. Bu konuda farklı disiplinler çeşitli araştırma, analiz ve tahminleme çalışmaları gerçekleştirmektedir. Bu çalışmada farklı ülkelerden toplanmış olan sosyoekonomik verilerine bağlı olarak bireylerin ekonomik seviyeleri üzerine makine öğrenmesi temelli tahminlemeler gerçekleştirilmiştir. Kullanılan veri setinde bireylerin yaş, çalışma durumu, eğitim seviyesi, medeni durumu, mesleği, ırkı, cinsiyeti, haftalık çalışma süresi ve gelir seviyesini gösterir sınıf yer almaktadır. KNN, DVM, Rastgele Orman ve Naive Bayes algoritmaları kullanılarak elde edilen ölçümler farklı metrikler açısından değerlendirilmiş ve karşılaştırılmıştır. En iyi doğruluk değeri %97.36 olarak Naive Bayes algoritması ile elde edilmiştir. Bu çalışma sosyoekonomik tahminlemeler konusunda çalışacak olan araştırmacılar için makine öğrenmesi temelli başarılı bir model örneği sunmaktadır.
Studies on the evaluation of the economic situation of societies are extremely important in terms of determining the current situation, improving living conditions and developing strategies for the future. Different disciplines carry out various research, analysis and forecasting studies on this subject. In this study, machine learning-based predictions were made regarding the economic levels of individuals based on the socioeconomic data collected from different countries. The data set used includes the age, employment status, education level, marital status, occupation, race, gender, weekly working time, and income level of the individuals. On this data set, estimations were made on the income level of individuals by using different machine learning algorithms. The measurements obtained using KNN, SVM, Random Forest and Naive Bayes algorithms were evaluated and compared in terms of different metrics. The best accuracy value was obtained with the Naive Bayes algorithm as 97.36%. This study provides an example of a successful model based on machine learning for researchers who will work on socioeconomic forecasting.
Primary Language | Turkish |
---|---|
Subjects | Computer Software |
Journal Section | RESEARCH ARTICLES |
Authors | |
Publication Date | July 18, 2022 |
Submission Date | December 22, 2021 |
Acceptance Date | January 20, 2022 |
Published in Issue | Year 2022 Volume: 5 Issue: 2 |
*This journal is an international refereed journal
*Our journal does not charge any article processing fees over publication process.
* This journal is online publishes 5 issues per year (January, March, June, September, December)
*This journal published in Turkish and English as open access.
* This work is licensed under a Creative Commons Attribution 4.0 International License.