Research Article
BibTex RIS Cite

Değişen Yıldız Fotometrisinde STEREO Uydu Verilerinin Güvenilirliği

Year 2022, Volume: 5 Issue: 2, 919 - 942, 18.07.2022
https://doi.org/10.47495/okufbed.1051697

Abstract

Son on yılda uzay teknolojisinin gelişmesiyle birlikte uzaya yollanan yüksek çözünürlüklü ve kesintisiz gözlem yapabilen teleskoplar sayesinde hem yakın çevremizdeki hem de Evren’in derinliklerindeki gökcisimleri daha ayrıntılı olarak incelenmeye başlanmıştır. Bu çalışmalar arasında galaktik ve galaksi dışı gözlemler, Güneş’in atmosferinin incelenmesi ve ötegezegen araştırmaları başı çekmektedir. Bu araştırmalar için kullanılabilen önemli teleskoplardan ikisi STEREO ve TESS’dir. STEREO’nun asıl görevi Güneş’teki madde atımlarını takip etmek ve TESS’in görevi ise yeni ötegezenler keşfetmektir. Ancak bunların yanı sıra, bu teleskoplar arka planda bulunan milyonlarca yıldızın ışık değişimlerini gözleme özelliğine de sahiptir. Bu sayede yıldız astrofiziğinde oldukça önemli gelişmeler yaşanmaktadır. Bununla birlikte, çok sayıda yıldızın aynı anda gözlenmesiyle büyük veri kümeleri elde edilmeye başlanmış ve bunun sonucu olarak da bilgisayar kodlarının kullanıldığı otomatik veri işleme süreçleri ortaya çıkmıştır. Ancak bu süreç birçok sorunu da beraberinde getirmektedir. Çok sayıda ve çeşitli türdeki yıldızların analiz edilmeye çalışılması veri indirgeme ve analiz kodlarının aynı hassasiyetle çalışmasına izin vermemekte ve insan kaynaklı hataların da işin içine girmesine neden olmaktadır. Bu duruma uzay aracından kaynaklanan sorunlar da eklendiğinde elde edilen veride ve analiz sonuçlarında ciddi problemler ortaya çıkabilmektedir. Bu bağlamda, STEREO uydusundan elde edilen 41 tane Be türü yıldızın ışık eğrileri analiz edilmiş ve verilerde yıldızlardan kaynaklanmayan bir problem ile karşılaşılmıştır. Daha net bilgiler elde edebilmek için bu 41 yıldızdan TESS ile gözlenmiş olanlar belirlenmiş ve iki uydudan alınan ışık eğrileri karşılaştırılmıştır. Elde edilen sonuçlara dayanarak STEREO verilerindeki problem irdelenmiştir.

References

  • Aerts C., Christensen-Dalsgaard J. and Kurtz D. W. Asteroseismology, Yayın evi: Springer, Berlin. 2010; 256-257.
  • Baglin A., Vauclair G. and COROT Team The Space Stellar Photometry Mission COROT: Asteroseismology and Search for Extrasolar Planets. Journal of Astrophysics and Astronomy 2000; 21:319. doi:10.1007/BF02702417.
  • Bakos G. A., Lazar J., Papp I., Sari P. and Green E. M. System Description and First Light Curves of the Hungarian Automated Telescope, an Autonomous Observatory for Variability Search. Publications of the Astronomical Society of the Pacific 2002; 114, 974–987. doi:10.1086/342382.
  • Balona L. A. and Ozuyar D. TESS Observations of Be Stars: General Characteristics and the Impulsive Magnetic Rotator Model. The Astrophysical Journal 2021; 921:5B. doi:10.3847/1538-4357/ac1a77.
  • Balona L. A., Guzik J. A., Uytterhoeven K., Smith J. C., Tenenbaum P. and Twicken J. D. The Kepler view of gamma Doradus stars. Monthly Notices of the Royal Astronomical Society 2011; 415:3531–3538. doi:10.1111/j.1365-2966.2011.18973.x.
  • Basri G. et al. Photometric Variability in Kepler Target Stars: The Sun Among Stars - a First Look. The Astrophysical Journal 2010; 713:L155–L159. doi:10.1088/2041-8205/713/2/L155.
  • Batalha N. M. et al. Kepler's First Rocky Planet: Kepler-10b. The Astrophysical Journal 2011;729:27. doi:10.1088/0004-637X/729/1/27.
  • Belcheva M., Markov H., Tsvetanov Z., Iliev, I. and Stateva I. Physical parameters of eclipsing binary components, discovered by STEREO. Bulgarian Astronomical Journal 2015; 22:28.
  • Bewsher D., Brown D. S. and Eyles C. J. Long-Term Evolution of the Photometric Calibration of the STEREO Heliospheric Imagers: I. HI-1. Solar Physics 2012; 276:491–499. doi:10.1007/s11207-011-9874-7.
  • Bewsher D., Brown D. S., Eyles C. J., Kellett B. J., White G. J. and Swinyard B. Determination of the Photometric Calibration and Large-Scale Flatfield of the STEREO Heliospheric Imagers: I. HI-1. Solar Physics 2010; 264:433–460. doi:10.1007/s11207-010-9582-8.
  • Blomme J. et al. Automated Classification of Variable Stars in the Asteroseismology Program of the Kepler Space Mission. The Astrophysical Journal 2010; 713:L204–L207. doi:10.1088/2041-8205/713/2/L204.
  • Borucki W. J. et al. Kepler Planet-Detection Mission: Introduction and First Results. Science 2010; 327:977. doi:10.1126/science.1185402.
  • Brown D. S., Bewsher D. and Eyles C. J. Calibrating the Pointing and Optical Parameters of the STEREO Heliospheric Imagers. Solar Physics 2009; 254:185–225. doi:10.1007/s11207-008-9277-6.
  • Bryson S. T. et al. Kepler Data Processing Handbook: Target and Aperture Definitions: Selecting Pixels for Kepler Downlink. Kepler Science Document KSCI-19081-003, id. 3. 2020. Editörler: Jon M. Jenkins.
  • Cameron C. et al. MOST Detects SPBe Pulsations in HD 127756 and HD 217543: Asteroseismic Rotation Rates Independent of vsini. The Astrophysical Journal 2008; 685:489–507. doi:10.1086/590369.
  • Chaturvedi P. et al. Determination of mass and orbital parameters of a low-mass star HD 213597B. Monthly Notices of the Royal Astronomical Society 2014; 442:3737–3744. doi:10.1093/mnras/stu1127.
  • Clarke B. D. et al. Kepler Data Processing Handbook: Pixel Level Calibrations. Kepler Science Document KSCI-19081-003, id. 5. 2020. Editörler: Jon M. Jenkins.
  • Eyles C. J. et al. The Heliospheric Imagers Onboard the STEREO Mission. Solar Physics 2009; 254:387–445. doi:10.1007/s11207-008-9299-0.
  • Holdsworth D. L. et al. STEREO/HI and optical observations of the classical nova V5583 Sagittarii. Monthly Notices of the Royal Astronomical Society 2014; 438:3483–3489. doi:10.1093/mnras/stt2455.
  • Howell S. B. et al. The K2 Mission: Characterization and Early Results. Publications of the Astronomical Society of the Pacific 2014; 126:398. doi:10.1086/676406.
  • Hubert A. M. and Floquet M. Investigation of the variability of bright Be stars using HIPPARCOS photometry. Astronomy and Astrophysics 1998; 335:565–572.
  • Jenkins J. M. et al. The TESS science processing operations center. Software and Cyber infrastructure for Astronomy IV, 9913. 2016. doi:10.1117/12.2233418.
  • Jenkins J. M. Kepler Data Processing Handbook: Overview of the Science Operations Center. Kepler Science Document KSCI-19081-002, 2017. id. 2, Editör: Jon M. Jenkins.
  • Kim D. W., Protopapas P., Alcock C., Byun Y. I. and Bianco F. B. Detrending time series for astronomical variability surveys. Monthly Notices of the Royal Astronomical Society 2009; 397:558–568. doi:10.1111/j.1365-2966.2009.14967.x.
  • Kovacs G., Bakos G. and Noyes R. W. A trend filtering algorithm for wide-field variability surveys. Monthly Notices of the Royal Astronomical Society 2005; 356:557–567. doi:10.1111/j.1365-2966.2004.08479.x.
  • Labadie-Bartz J. et al. Photometric Variability of the Be Star Population. The Astronomical Journal 2017; 153:252. doi:10.3847/1538-3881/aa6396.
  • Matthews J. M. et al. Ultraprecise Photometry from Space: The MOST Microsat Mission. IAU Colloq. 176: The Impact of Large-Scale Surveys on Pulsating Star Research 2000; 203:74–75.
  • Michel E., Auvergne M., Baglin A., Catala C. and COROT Team Stellar variability from space with COROT: pulsation and binarity. Tidal Evolution and Oscillations in Binary Stars 2005; 333:264.
  • Miglio A. et al. Galactic archaeology: mapping and dating stellar populations with asteroseismology of red-giant stars. Monthly Notices of the Royal Astronomical Society 2013; 429:423–428. doi:10.1093/mnras/sts345.
  • Morris R. L. et al. Kepler Data Processing Handbook: Photometric Analysis. Kepler Science Document KSCI-19081-003, id. 6. 2020. Editörler: Jon M. Jenkins.
  • Neiner C. and Hubert A. M. The pulsations of Be stars. Communications in Asteroseismology 2009; 158:194.
  • Neiner C. et al. Rotation, pulsations and outbursts in the Be star HD 202904. Astronomy and Astrophysics 2005; 437:257–272. doi:10.1051/0004-6361:20041901.
  • Oelkers R. J., and Stassun K. G. Precision Light Curves from TESS Full-frame Images: A Different Imaging Approach. The Astronomical Journal 2018; 156:132. doi:10.3847/1538-3881/aad68e.
  • Ozuyar D., Caliskan S., Stevens I. R. and Elmasli A. Photometric and spectroscopic variability of the Be star 48 Lib: The relation between photometric variations and rotation. Publications of the Astronomical Society of Australia 2018; 35:34. doi:10.1017/pasa.2018.38.
  • Paunzen E., Wraight K. T., Fossati L., Netopil M., White G. J., Bewsher D. A photometric study of chemically peculiar stars with the STEREO satellites - II. Non-magnetic chemically peculiar stars. Monthly Notices of the Royal Astronomical Society 2013; 429:119–125. doi:10.1093/mnras/sts318.
  • Pojmanski G. The All Sky Automated Survey. Catalog of about 3800 Variable Stars. Acta Astronomica 2000; 50:177–190.
  • Pollacco D. et al. The WASP Project and SuperWASP Camera. Astrophysics and Space Science 2006; 304:253–255. doi:10.1007/s10509-006-9124-x.
  • Porter J. M. and Rivinius T. Classical Be Stars. Publications of the Astronomical Society of the Pacific 2003; 115:1153–1170. doi:10.1086/378307.
  • Pribulla T. et al. Eclipsing binaries in the MOST satellite fields. Astronomische Nachrichten 2010; 331:397. doi:10.1002/asna.201011351.
  • Ricker G. R. et al. Transiting Exoplanet Survey Satellite (TESS). Space Telescopes and Instrumentation 2014: Optical, Infrared, and Millimeter Wave 2014; 9143. doi:10.1117/12.2063489.
  • Rivinius T., Baade D., Stefl S., Stahl O., Wolf B. and Kaufer A. Stellar and circumstellar activity of the Be star MU Centauri. II. Multiperiodic low-order line-profile variability. Astronomy and Astrophysics 1998; 336:177–190.
  • Saio H. A- and B-type star pulsations in the Kepler and CoRoT era: theoretical considerations. Putting A Stars into Context: Evolution, Environment, and Related Stars 2014; 305–313.
  • Sangaralingam V. and Stevens I. R. STEREO TRansiting Exoplanet and Stellar Survey (STRESS) - I. Introduction and data pipeline. Monthly Notices of the Royal Astronomical Society 2011; 418:1325–1334. doi:10.1111/j.1365-2966.2011.19581.x.
  • Socker D. G., Howard R. A., Korendyke C. M., Simnett G. M. and Webb D.F. NASA Solar Terrestrial Relations Observatory (STEREO) mission heliospheric imager. Instrumentation for UV/EUV Astronomy and Solar Missions 2000; 4139:284–293. doi:10.1117/12.410528.
  • Spreckley S. A. and Stevens I. R. The period and amplitude changes of Polaris alpha UMi from 2003 to 2007 measured with SMEI. Monthly Notices of the Royal Astronomical Society 2008; 388:1239–1244. doi:10.1111/j.1365-2966.2008.13439.x.
  • Stassun K. G. et al. The TESS Input Catalog and Candidate Target List. The Astronomical Journal 2018; 156:102. doi:10.3847/1538-3881/aad050.
  • Stumpe M. C. et al. Kepler Presearch Data Conditioning I-Architecture and Algorithms for Error Correction in Kepler Light Curves. Publications of the Astronomical Society of the Pacific 2012; 124:985. doi:10.1086/667698.
  • Stumpe M. C. et al. Multiscale Systematic Error Correction via Wavelet-Based Bandsplitting in Kepler Data. Publications of the Astronomical Society of the Pacific 2014; 126:100. doi:10.1086/674989.
  • Sullivan P. W. et al. The Transiting Exoplanet Survey Satellite: Simulations of Planet Detections and Astrophysical False Positives. The Astrophysical Journal 2015; 809:77. doi:10.1088/0004-637X/809/1/77.
  • Szabo R. et al. Cepheid investigations using the Kepler space telescope. Monthly Notices of the Royal Astronomical Society 2011; 413:2709–2720. doi:10.1111/j.1365-2966.2011.18342.x.
  • Tappin S. J., Eyles C. J. and Davies J. A. Determination of the Photometric Calibration and Large-Scale Flatfield of the STEREO Heliospheric Imagers: II. HI-2. Solar Physics 2015; 290:2143–2170. doi:10.1007/s11207-015-0737-5.
  • Tappin S. J., Eyles C. J. and Davies J. A. On the Long-Term Evolution of the Sensitivity of the STEREO HI-1 Cameras. Solar Physics 2017; 292:28. doi:10.1007/s11207-017-1052-0.
  • Valtonen M. J., Mikkola S., Lehto H. J., Gopakumar A., Hudec R. and Polednikova J. Testing the Black Hole No-hair Theorem with OJ287. The Astrophysical Journal 2011; 742:22. doi:10.1088/0004-637X/742/1/22.
  • Whittaker G. N., Stevens I. R. and Sangaralingam V. STEREO trend removal pipeline and planet detection possibilities. Monthly Notices of the Royal Astronomical Society 2013; 431:3456–3469. doi:10.1093/mnras/stt425.
  • Wraight K. T. et al. A photometric study of chemically peculiar stars with the STEREO satellites - I. Magnetic chemically peculiar stars. Monthly Notices of the Royal Astronomical Society 2012a; 420:757–772. doi:10.1111/j.1365-2966.2011.20090.x.
  • Wraight K. T., Bewsher D., White G. J., Nowotny W., Norton A.J. and Paladini C. STEREO observations of long period variables. Monthly Notices of the Royal Astronomical Society 2012b; 426:816–832. doi:10.1111/j.1365-2966.2012.21445.x.
  • Wraight K. T., Fossati L., White G. J., Norton A. J. and Bewsher D. Bright low mass eclipsing binary candidates observed by STEREO. Monthly Notices of the Royal Astronomical Society. 2012c; 427:2298–2307. doi:10.1111/j.1365-2966.2012.22102.x.
  • Wraight K. T., White G. J., Bewsher D. and Norton A. J. STEREO observations of stars and the search for exoplanets. Monthly Notices of the Royal Astronomical Society 2011; 416:2477–2493. doi:10.1111/j.1365-2966.2011.18599.x.
  • Zacharias N., Monet D. G., Levine S. E., Urban S. E., Gaume R. and Wycoff G. L. The Naval Observatory Merged Astrometric Dataset (NOMAD). American Astronomical Society Meeting Abstracts. 2004.

Reliability of STEREO Satellite Data in Variable Star Photometry

Year 2022, Volume: 5 Issue: 2, 919 - 942, 18.07.2022
https://doi.org/10.47495/okufbed.1051697

Abstract

Thanks to space telescopes with high resolution and uninterrupted observations, celestial objects in our immediate surroundings and in the depths of the Universe have been studied in more detail for last ten years. Among these studies, galactic and extragalactic observations, solar atmosphere and exoplanet research are the leading ones. Two of the important telescopes available for these studies are STEREO and TESS. The main task of the STEREO is to follow coronal mass ejections while TESS's mission is to discover new exoplanets. These telescopes also have the ability to observe the light variations of millions of stars in the background. Therefore, significant advances have been made in stellar astrophysics. Yet, simultaneous observations of many stars cause large datasets to be obtained and consequently, automatic data processing processes using computer codes arise. This process brings several problems with it. Attempting to analyze many and various types of stars does not allow data reduction and analysis codes to work with the same precision and also causes human-induced errors to get involved. When spacecraft-related problems are added to this situation, serious problems may arise in the data obtained and in the results of the analysis. In this context, STEREO data of 41 Be type stars are analyzed and a problem not caused by the stars is encountered in the data. Afterwards, the ones observed with TESS are determined and the light curves taken from the two satellites are compared. Based on the results obtained, the problem in the STEREO data is scrutinized

References

  • Aerts C., Christensen-Dalsgaard J. and Kurtz D. W. Asteroseismology, Yayın evi: Springer, Berlin. 2010; 256-257.
  • Baglin A., Vauclair G. and COROT Team The Space Stellar Photometry Mission COROT: Asteroseismology and Search for Extrasolar Planets. Journal of Astrophysics and Astronomy 2000; 21:319. doi:10.1007/BF02702417.
  • Bakos G. A., Lazar J., Papp I., Sari P. and Green E. M. System Description and First Light Curves of the Hungarian Automated Telescope, an Autonomous Observatory for Variability Search. Publications of the Astronomical Society of the Pacific 2002; 114, 974–987. doi:10.1086/342382.
  • Balona L. A. and Ozuyar D. TESS Observations of Be Stars: General Characteristics and the Impulsive Magnetic Rotator Model. The Astrophysical Journal 2021; 921:5B. doi:10.3847/1538-4357/ac1a77.
  • Balona L. A., Guzik J. A., Uytterhoeven K., Smith J. C., Tenenbaum P. and Twicken J. D. The Kepler view of gamma Doradus stars. Monthly Notices of the Royal Astronomical Society 2011; 415:3531–3538. doi:10.1111/j.1365-2966.2011.18973.x.
  • Basri G. et al. Photometric Variability in Kepler Target Stars: The Sun Among Stars - a First Look. The Astrophysical Journal 2010; 713:L155–L159. doi:10.1088/2041-8205/713/2/L155.
  • Batalha N. M. et al. Kepler's First Rocky Planet: Kepler-10b. The Astrophysical Journal 2011;729:27. doi:10.1088/0004-637X/729/1/27.
  • Belcheva M., Markov H., Tsvetanov Z., Iliev, I. and Stateva I. Physical parameters of eclipsing binary components, discovered by STEREO. Bulgarian Astronomical Journal 2015; 22:28.
  • Bewsher D., Brown D. S. and Eyles C. J. Long-Term Evolution of the Photometric Calibration of the STEREO Heliospheric Imagers: I. HI-1. Solar Physics 2012; 276:491–499. doi:10.1007/s11207-011-9874-7.
  • Bewsher D., Brown D. S., Eyles C. J., Kellett B. J., White G. J. and Swinyard B. Determination of the Photometric Calibration and Large-Scale Flatfield of the STEREO Heliospheric Imagers: I. HI-1. Solar Physics 2010; 264:433–460. doi:10.1007/s11207-010-9582-8.
  • Blomme J. et al. Automated Classification of Variable Stars in the Asteroseismology Program of the Kepler Space Mission. The Astrophysical Journal 2010; 713:L204–L207. doi:10.1088/2041-8205/713/2/L204.
  • Borucki W. J. et al. Kepler Planet-Detection Mission: Introduction and First Results. Science 2010; 327:977. doi:10.1126/science.1185402.
  • Brown D. S., Bewsher D. and Eyles C. J. Calibrating the Pointing and Optical Parameters of the STEREO Heliospheric Imagers. Solar Physics 2009; 254:185–225. doi:10.1007/s11207-008-9277-6.
  • Bryson S. T. et al. Kepler Data Processing Handbook: Target and Aperture Definitions: Selecting Pixels for Kepler Downlink. Kepler Science Document KSCI-19081-003, id. 3. 2020. Editörler: Jon M. Jenkins.
  • Cameron C. et al. MOST Detects SPBe Pulsations in HD 127756 and HD 217543: Asteroseismic Rotation Rates Independent of vsini. The Astrophysical Journal 2008; 685:489–507. doi:10.1086/590369.
  • Chaturvedi P. et al. Determination of mass and orbital parameters of a low-mass star HD 213597B. Monthly Notices of the Royal Astronomical Society 2014; 442:3737–3744. doi:10.1093/mnras/stu1127.
  • Clarke B. D. et al. Kepler Data Processing Handbook: Pixel Level Calibrations. Kepler Science Document KSCI-19081-003, id. 5. 2020. Editörler: Jon M. Jenkins.
  • Eyles C. J. et al. The Heliospheric Imagers Onboard the STEREO Mission. Solar Physics 2009; 254:387–445. doi:10.1007/s11207-008-9299-0.
  • Holdsworth D. L. et al. STEREO/HI and optical observations of the classical nova V5583 Sagittarii. Monthly Notices of the Royal Astronomical Society 2014; 438:3483–3489. doi:10.1093/mnras/stt2455.
  • Howell S. B. et al. The K2 Mission: Characterization and Early Results. Publications of the Astronomical Society of the Pacific 2014; 126:398. doi:10.1086/676406.
  • Hubert A. M. and Floquet M. Investigation of the variability of bright Be stars using HIPPARCOS photometry. Astronomy and Astrophysics 1998; 335:565–572.
  • Jenkins J. M. et al. The TESS science processing operations center. Software and Cyber infrastructure for Astronomy IV, 9913. 2016. doi:10.1117/12.2233418.
  • Jenkins J. M. Kepler Data Processing Handbook: Overview of the Science Operations Center. Kepler Science Document KSCI-19081-002, 2017. id. 2, Editör: Jon M. Jenkins.
  • Kim D. W., Protopapas P., Alcock C., Byun Y. I. and Bianco F. B. Detrending time series for astronomical variability surveys. Monthly Notices of the Royal Astronomical Society 2009; 397:558–568. doi:10.1111/j.1365-2966.2009.14967.x.
  • Kovacs G., Bakos G. and Noyes R. W. A trend filtering algorithm for wide-field variability surveys. Monthly Notices of the Royal Astronomical Society 2005; 356:557–567. doi:10.1111/j.1365-2966.2004.08479.x.
  • Labadie-Bartz J. et al. Photometric Variability of the Be Star Population. The Astronomical Journal 2017; 153:252. doi:10.3847/1538-3881/aa6396.
  • Matthews J. M. et al. Ultraprecise Photometry from Space: The MOST Microsat Mission. IAU Colloq. 176: The Impact of Large-Scale Surveys on Pulsating Star Research 2000; 203:74–75.
  • Michel E., Auvergne M., Baglin A., Catala C. and COROT Team Stellar variability from space with COROT: pulsation and binarity. Tidal Evolution and Oscillations in Binary Stars 2005; 333:264.
  • Miglio A. et al. Galactic archaeology: mapping and dating stellar populations with asteroseismology of red-giant stars. Monthly Notices of the Royal Astronomical Society 2013; 429:423–428. doi:10.1093/mnras/sts345.
  • Morris R. L. et al. Kepler Data Processing Handbook: Photometric Analysis. Kepler Science Document KSCI-19081-003, id. 6. 2020. Editörler: Jon M. Jenkins.
  • Neiner C. and Hubert A. M. The pulsations of Be stars. Communications in Asteroseismology 2009; 158:194.
  • Neiner C. et al. Rotation, pulsations and outbursts in the Be star HD 202904. Astronomy and Astrophysics 2005; 437:257–272. doi:10.1051/0004-6361:20041901.
  • Oelkers R. J., and Stassun K. G. Precision Light Curves from TESS Full-frame Images: A Different Imaging Approach. The Astronomical Journal 2018; 156:132. doi:10.3847/1538-3881/aad68e.
  • Ozuyar D., Caliskan S., Stevens I. R. and Elmasli A. Photometric and spectroscopic variability of the Be star 48 Lib: The relation between photometric variations and rotation. Publications of the Astronomical Society of Australia 2018; 35:34. doi:10.1017/pasa.2018.38.
  • Paunzen E., Wraight K. T., Fossati L., Netopil M., White G. J., Bewsher D. A photometric study of chemically peculiar stars with the STEREO satellites - II. Non-magnetic chemically peculiar stars. Monthly Notices of the Royal Astronomical Society 2013; 429:119–125. doi:10.1093/mnras/sts318.
  • Pojmanski G. The All Sky Automated Survey. Catalog of about 3800 Variable Stars. Acta Astronomica 2000; 50:177–190.
  • Pollacco D. et al. The WASP Project and SuperWASP Camera. Astrophysics and Space Science 2006; 304:253–255. doi:10.1007/s10509-006-9124-x.
  • Porter J. M. and Rivinius T. Classical Be Stars. Publications of the Astronomical Society of the Pacific 2003; 115:1153–1170. doi:10.1086/378307.
  • Pribulla T. et al. Eclipsing binaries in the MOST satellite fields. Astronomische Nachrichten 2010; 331:397. doi:10.1002/asna.201011351.
  • Ricker G. R. et al. Transiting Exoplanet Survey Satellite (TESS). Space Telescopes and Instrumentation 2014: Optical, Infrared, and Millimeter Wave 2014; 9143. doi:10.1117/12.2063489.
  • Rivinius T., Baade D., Stefl S., Stahl O., Wolf B. and Kaufer A. Stellar and circumstellar activity of the Be star MU Centauri. II. Multiperiodic low-order line-profile variability. Astronomy and Astrophysics 1998; 336:177–190.
  • Saio H. A- and B-type star pulsations in the Kepler and CoRoT era: theoretical considerations. Putting A Stars into Context: Evolution, Environment, and Related Stars 2014; 305–313.
  • Sangaralingam V. and Stevens I. R. STEREO TRansiting Exoplanet and Stellar Survey (STRESS) - I. Introduction and data pipeline. Monthly Notices of the Royal Astronomical Society 2011; 418:1325–1334. doi:10.1111/j.1365-2966.2011.19581.x.
  • Socker D. G., Howard R. A., Korendyke C. M., Simnett G. M. and Webb D.F. NASA Solar Terrestrial Relations Observatory (STEREO) mission heliospheric imager. Instrumentation for UV/EUV Astronomy and Solar Missions 2000; 4139:284–293. doi:10.1117/12.410528.
  • Spreckley S. A. and Stevens I. R. The period and amplitude changes of Polaris alpha UMi from 2003 to 2007 measured with SMEI. Monthly Notices of the Royal Astronomical Society 2008; 388:1239–1244. doi:10.1111/j.1365-2966.2008.13439.x.
  • Stassun K. G. et al. The TESS Input Catalog and Candidate Target List. The Astronomical Journal 2018; 156:102. doi:10.3847/1538-3881/aad050.
  • Stumpe M. C. et al. Kepler Presearch Data Conditioning I-Architecture and Algorithms for Error Correction in Kepler Light Curves. Publications of the Astronomical Society of the Pacific 2012; 124:985. doi:10.1086/667698.
  • Stumpe M. C. et al. Multiscale Systematic Error Correction via Wavelet-Based Bandsplitting in Kepler Data. Publications of the Astronomical Society of the Pacific 2014; 126:100. doi:10.1086/674989.
  • Sullivan P. W. et al. The Transiting Exoplanet Survey Satellite: Simulations of Planet Detections and Astrophysical False Positives. The Astrophysical Journal 2015; 809:77. doi:10.1088/0004-637X/809/1/77.
  • Szabo R. et al. Cepheid investigations using the Kepler space telescope. Monthly Notices of the Royal Astronomical Society 2011; 413:2709–2720. doi:10.1111/j.1365-2966.2011.18342.x.
  • Tappin S. J., Eyles C. J. and Davies J. A. Determination of the Photometric Calibration and Large-Scale Flatfield of the STEREO Heliospheric Imagers: II. HI-2. Solar Physics 2015; 290:2143–2170. doi:10.1007/s11207-015-0737-5.
  • Tappin S. J., Eyles C. J. and Davies J. A. On the Long-Term Evolution of the Sensitivity of the STEREO HI-1 Cameras. Solar Physics 2017; 292:28. doi:10.1007/s11207-017-1052-0.
  • Valtonen M. J., Mikkola S., Lehto H. J., Gopakumar A., Hudec R. and Polednikova J. Testing the Black Hole No-hair Theorem with OJ287. The Astrophysical Journal 2011; 742:22. doi:10.1088/0004-637X/742/1/22.
  • Whittaker G. N., Stevens I. R. and Sangaralingam V. STEREO trend removal pipeline and planet detection possibilities. Monthly Notices of the Royal Astronomical Society 2013; 431:3456–3469. doi:10.1093/mnras/stt425.
  • Wraight K. T. et al. A photometric study of chemically peculiar stars with the STEREO satellites - I. Magnetic chemically peculiar stars. Monthly Notices of the Royal Astronomical Society 2012a; 420:757–772. doi:10.1111/j.1365-2966.2011.20090.x.
  • Wraight K. T., Bewsher D., White G. J., Nowotny W., Norton A.J. and Paladini C. STEREO observations of long period variables. Monthly Notices of the Royal Astronomical Society 2012b; 426:816–832. doi:10.1111/j.1365-2966.2012.21445.x.
  • Wraight K. T., Fossati L., White G. J., Norton A. J. and Bewsher D. Bright low mass eclipsing binary candidates observed by STEREO. Monthly Notices of the Royal Astronomical Society. 2012c; 427:2298–2307. doi:10.1111/j.1365-2966.2012.22102.x.
  • Wraight K. T., White G. J., Bewsher D. and Norton A. J. STEREO observations of stars and the search for exoplanets. Monthly Notices of the Royal Astronomical Society 2011; 416:2477–2493. doi:10.1111/j.1365-2966.2011.18599.x.
  • Zacharias N., Monet D. G., Levine S. E., Urban S. E., Gaume R. and Wycoff G. L. The Naval Observatory Merged Astrometric Dataset (NOMAD). American Astronomical Society Meeting Abstracts. 2004.
There are 59 citations in total.

Details

Primary Language Turkish
Subjects Metrology, Applied and Industrial Physics
Journal Section RESEARCH ARTICLES
Authors

Doğuş Özuyar 0000-0001-8544-0950

Publication Date July 18, 2022
Submission Date January 3, 2022
Acceptance Date May 5, 2022
Published in Issue Year 2022 Volume: 5 Issue: 2

Cite

APA Özuyar, D. (2022). Değişen Yıldız Fotometrisinde STEREO Uydu Verilerinin Güvenilirliği. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 5(2), 919-942. https://doi.org/10.47495/okufbed.1051697
AMA Özuyar D. Değişen Yıldız Fotometrisinde STEREO Uydu Verilerinin Güvenilirliği. Osmaniye Korkut Ata University Journal of The Institute of Science and Techno. July 2022;5(2):919-942. doi:10.47495/okufbed.1051697
Chicago Özuyar, Doğuş. “Değişen Yıldız Fotometrisinde STEREO Uydu Verilerinin Güvenilirliği”. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi 5, no. 2 (July 2022): 919-42. https://doi.org/10.47495/okufbed.1051697.
EndNote Özuyar D (July 1, 2022) Değişen Yıldız Fotometrisinde STEREO Uydu Verilerinin Güvenilirliği. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi 5 2 919–942.
IEEE D. Özuyar, “Değişen Yıldız Fotometrisinde STEREO Uydu Verilerinin Güvenilirliği”, Osmaniye Korkut Ata University Journal of The Institute of Science and Techno, vol. 5, no. 2, pp. 919–942, 2022, doi: 10.47495/okufbed.1051697.
ISNAD Özuyar, Doğuş. “Değişen Yıldız Fotometrisinde STEREO Uydu Verilerinin Güvenilirliği”. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi 5/2 (July 2022), 919-942. https://doi.org/10.47495/okufbed.1051697.
JAMA Özuyar D. Değişen Yıldız Fotometrisinde STEREO Uydu Verilerinin Güvenilirliği. Osmaniye Korkut Ata University Journal of The Institute of Science and Techno. 2022;5:919–942.
MLA Özuyar, Doğuş. “Değişen Yıldız Fotometrisinde STEREO Uydu Verilerinin Güvenilirliği”. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi, vol. 5, no. 2, 2022, pp. 919-42, doi:10.47495/okufbed.1051697.
Vancouver Özuyar D. Değişen Yıldız Fotometrisinde STEREO Uydu Verilerinin Güvenilirliği. Osmaniye Korkut Ata University Journal of The Institute of Science and Techno. 2022;5(2):919-42.

23487


196541947019414

19433194341943519436 1960219721 197842261021238 23877

*This journal is an international refereed journal 

*Our journal does not charge any article processing fees over publication process.

* This journal is online publishes 5 issues per year (January, March, June, September, December)

*This journal published in Turkish and English as open access. 

19450 This work is licensed under a Creative Commons Attribution 4.0 International License.