Review
BibTex RIS Cite

Silajın Aerobik Safha Sorunlarının Çözümünde Biyoteknolojik Yaklaşımlar

Year 2022, Volume: 5 Issue: 2, 1105 - 1115, 18.07.2022
https://doi.org/10.47495/okufbed.1079848

Abstract

Silaj, yeşil yem materyallerinin fermantasyona uğratılması ile muhafazasında uygulanan bir yöntemdir. Anaerobik koşullar altında suda çözünür karbonhidratların laktik asit bakterilerince laktik asit ve diğer organik asitlere dönüştürmesi esasına dayanır. Laktik asit bakterileri tarafından üretilen laktik asit ile pH düşer ve böylece siloda bulunan yem materyali zararlı mikroorganizmalardan korunmuş olur. Silaj yapımında ticari silaj inokülantları yaygın bir şekilde kullanılmaktadır. Lactobacillus plantarum hızlı üremesi ve pH’yı çabuk düşürmesi dolayısıyla ticari silaj inokülantları içerisinde önemli bir yere sahiptir. Son yıllarda gerek silajın yem değerinin artırılması gerekse aerobik bozulmanın önüne geçilebilmesi amacıyla yapılan biyoteknolojik çalışmalara önem kazanmıştır. Bu çalışmalar özellikle L. plantarum üzerine yoğunlaşmış ve moleküler genetik yöntemleriyle yeni özellikler kazandırılmış rekombinant suşlar geliştirilmiştir.

References

  • Bates EEM., Gilbert HJ., Hazlewood GP., Huckle J., Laurie JI., Mann SP. Expression of a Clostridium thermocellum endoglucanase gene in Lactobacillus plantarum. Applied and Environmental Microbiology 1989; 55: 2095-7.
  • Basmacıoğlu H., Ergül M. Silaj mikrobiyolojisi. Hayvansal Üretim 2002; 43(1): 12-24.
  • Combs DK., Hoffman PC. Lactobacillus buchneri for silage aerobic stability. Focus on Forage 2001; 3(14): 1-3.
  • Doi K., Doi A. Cloning and expression in Escherichia coli of the gene for an Arthrobacter β-(13)-glucanase. Journal of Bacteriology 1986; 168(3): 1272-1276.
  • Driehuis F., Oude Elferink SJWH., Spolestra SF. Anaerobic lactic acid degradation during ensilage of whole crop maize inoculated with Lactobacillus buchneri inhibits yeast growth and improves aerobic stability. Journal of Applied Microbiology 1999; 87: 583-594.
  • Ergül M. Yem zararlıları ve etkileri. International Animal Nutrition Congress 2000’, 4-6, Eylül 2000, Isparta-Türkiye.
  • Ferrer P., Halkier T., Hedegaard L., Savva D., Diers I., Asenjo JA. Nucleotide sequence of a β-1,3-glucanase isoenzyme IIA gene of Oerskovia xanthineolytica LL G109 (Cellulomonas cellulans) and initial characterization of the recombinant enzyme expressed in Bacillus subtilis. Journal of Bacteriology 1996a; 178(15): 4751-4757.
  • Ferrer P., Hedegaard L., Halkier T., Diers I., Savva D., Asenjo JA. Molecular cloning of a lytic β-1,3-glucanase gene from Oerskovia xanthineolytica LL G109: A β-1,3-glucanase able to selectively permeabilize the yeast cell wall. Annals of the New York Academy of Sciences 1996b; 782(1): 555-565.
  • Ferrer P. Revisiting the Cellulosimicrobium cellulans yeast-lytic β-1,3-glucanases toolbox: A review. Microbial Cell Factories 2006; 5(10): 1-8.
  • Filya İ. Silaj fermentasyonunda katkı maddeleri kullanımı. Ondokuz Mayıs Üniversitesi Ziraat Fakültesi Dergisi 2000; 15(3): 118-125.
  • Fitzsimons A., Hols P., Jore J., Leer RJ., O’connell M., Delcour J. Development of an amylolytic Lactobacillus plantarum silage strain expressing the Lactobacillus amylovorus α-amylase gene. Applied and Environmental Microbiology 1994; 60(10): 3529-3535.
  • Holzer M., Mayrhuber E., Dannerr H., Braun R. The role of Lactobacillus buchneri in forage preservation. Trends in Biotechnology 2003; 21: 282-287.
  • Kleinschmit DH., Schmidt RJ., Kung Jr L. The effects of various antifungal additives on the fermentation and aerobic stability of corn silage. Journal of Dairy Science 2005; 88:2130-2139.
  • Kulkarni N., Shendye A., Rao M. Molecular and biotechnological aspects of xylanases. FEMS Microbiology Reviews 1999; 23: 411-456.
  • Kung Jr L., Ranjit NK. The effect of Lactobacillus buchneri and other additives on the fermentation and aerobic stability of barley silage. Journal of Dairy Science 2001; 84: 1149-1155.
  • Kung L. Aerobic stability of silages. Proceedings of the Silage for Dairy Farms, Harrisburg, PA, 2005, University of Delaware, Department of Animal and Food Sciences.
  • McDonald P., Henderson AR., Heron SJE. The Biochemistry of Silage, 2nd ed. Chalcombe Publ., Church Lane, Kingston, Canterbury, Kent, UK 1991.
  • McDonald P. The Biochemistry of Silage. John Wiley and Sons. Chalcome Publications, pp. 226, 1981.
  • Menke KH., Huss W. Tierernährung und Futtermittelkunde. Verlag Eugen Ulmer, Stuttgart 1975.
  • Muck RE. A lactic acid bacteria strain to improve aerobic stability of silages. In, Research Summaries, 42-43, U.S. Dairy Forage Research Center, Madison, WI 1996.
  • Nguyen HA., Nguyen T-H., Nguyen T-T., Peterbauer CK., Mathiesen G., Haltrich D. Chitinase from Bacillus licheniformis DSM13: Expression in Lactobacillus plantarum WCFS1 and biochemical characterization. Protein Expression and Purification 2012; 81: 166-174.
  • Ohmomo S., Tanaka O., Kitamoto HK., Cai Y. Silage and microbial performance, old story but new problems. Japan Agricultural Research Quarterly 2002; 36(2): 59–71.
  • Okazaki K., Nishimura N., Matsuoka F., Hayakawa S. Cloning and characterization of the gene encoding endo-β-1,3-glucanase from Arthrobacter sp. NHB-10. Bioscience, Biotechnology, and Biochemistry 2007; 71(6): 1568-1571.
  • Özdüven ML., Koç F., Yurtman İY. Mikrobiyal katkı maddelerinin mısır silajında kalite ve aerobik dayanıklılık üzerindeki etkileri. Tarım Bilimleri Dergisi 1999; 5(3): 7-12.
  • Ozkose E., Akyol I., Kar B., Comlekcioglu U., Ekinci MS. Expression of fungal cellulase gene in Lactococcus lactis to construct novel recombinant silage inoculants. Folia Microbiologica (Praha) 2009; 54: 335–342.
  • Özcan BD., Ayaşan T. Hayvan beslemede biyoteknoloji uygulamaları. Journal of Poultry Research 2009; 8(1): 58-64.
  • Özcan BD., Özcan N., Baylan M., Güzel Aİ. Cloning and expression of β-1,3-glucanase gene from Cellulosimicrobium cellulans in Escherichia coli DH5α. Kafkas Üniversitesi Veteriner Fakültesi Dergisi 2013a; 19(3): 523-528.
  • Özcan BD., Özcan N., Baylan M., Güzel Aİ. Cloning and expression of Cellulosimicrobium cellulans β-1,3-glucanase gene in Lactobacillus plantarum to create new silage inoculant for aerobic stability. Kafkas Üniversitesi Veteriner Fakültesi Dergisi 2013b; 19(4): 575-581.
  • Romero J., Castillo M., Burns J. Forage Conservation Techniques: Silage and Haylage Production Introduction. North Carolina Cooperative Extension Resources 2005; 1-8.
  • Rossi F., Rudella A., Marzotto M., Dellaglio F. Vector-free cloning of a bacterial endo-1,4-β-glucanase in Lactobacillus plantarum and its effect on the acidifying activity in silage: Use of recombinant cellulolytic Lactobacillus plantarum as silage inoculant. Antonie Leeuwenhoek 2001; 80(2): 139-147.
  • Scheirlinck T., Mahillon J., Joos H., Dhaese P., Michiels F. Integration and expression of α-amylase and enduglucanase genes in the Lactobacillus plantarum chromosome. Applied and Environmental Microbiology 1989; 55(9): 2130-2137.
  • Scheirlinck T., Meutter JD., Arnaut G., Joos H., Claeyssens M., Michiels F. Cloning and expression of cellulase and xylanase genes in Lactobacillus plantarum. Applied Microbiology and Biotechnology 1990; 33(5): 534-541.
  • Seale DR. Bacteria and enzyme as products to improve silage preservation. In, Wilkinson JM, Stark BA (Eds): Developments in Silage. 47-61, Chalcombe Publications, Marlow, United Kingdom 1987.
  • Woolford MK. The detrimental effects of air on silage. Journal of Applied Microbiology 1990. 68: 101-116.
  • Woolford MK. The Science and Technology of Silage Making. Alltech Technical Publications, 1999.
  • Yurtman İY., Koç F., Özdüven ML., Erman MS. Silaj üretiminde mikrobiyal katkı maddelerinin kullanımı. Trakya Bölgesi II. Hayvancılık Sempozyumu, 9-10 Ocak 1997, s. 346-351, Tekirdağ.

Biotechnological Approaches in Solving the Aerobic Phase Problems of Silage

Year 2022, Volume: 5 Issue: 2, 1105 - 1115, 18.07.2022
https://doi.org/10.47495/okufbed.1079848

Abstract

Silage is a method used to preserve fresh forage materials by fermentation. It is based on converting water-soluble carbohydrates into lactic acid and other organic acids by lactic acid bacteria under anaerobic conditions. The pH decreases by lactic acid produced by lactic acid bacteria and thus forage is protected against detrimental microorganisms in the silo. Commercial silage inoculants are widely used in silage making. Lactobacillus plantarum is the most important species found in commercial silage inoculants since it grows rapidly and lowers pH quickly. Biotechnological studies have gained importance in recent years, whether to increase the food value of silage or to prevent aerobic spoilage. These studies have mainly focused on L. plantarum and new recombinant species that acquired new properties and were developed by molecular genetic methods.

References

  • Bates EEM., Gilbert HJ., Hazlewood GP., Huckle J., Laurie JI., Mann SP. Expression of a Clostridium thermocellum endoglucanase gene in Lactobacillus plantarum. Applied and Environmental Microbiology 1989; 55: 2095-7.
  • Basmacıoğlu H., Ergül M. Silaj mikrobiyolojisi. Hayvansal Üretim 2002; 43(1): 12-24.
  • Combs DK., Hoffman PC. Lactobacillus buchneri for silage aerobic stability. Focus on Forage 2001; 3(14): 1-3.
  • Doi K., Doi A. Cloning and expression in Escherichia coli of the gene for an Arthrobacter β-(13)-glucanase. Journal of Bacteriology 1986; 168(3): 1272-1276.
  • Driehuis F., Oude Elferink SJWH., Spolestra SF. Anaerobic lactic acid degradation during ensilage of whole crop maize inoculated with Lactobacillus buchneri inhibits yeast growth and improves aerobic stability. Journal of Applied Microbiology 1999; 87: 583-594.
  • Ergül M. Yem zararlıları ve etkileri. International Animal Nutrition Congress 2000’, 4-6, Eylül 2000, Isparta-Türkiye.
  • Ferrer P., Halkier T., Hedegaard L., Savva D., Diers I., Asenjo JA. Nucleotide sequence of a β-1,3-glucanase isoenzyme IIA gene of Oerskovia xanthineolytica LL G109 (Cellulomonas cellulans) and initial characterization of the recombinant enzyme expressed in Bacillus subtilis. Journal of Bacteriology 1996a; 178(15): 4751-4757.
  • Ferrer P., Hedegaard L., Halkier T., Diers I., Savva D., Asenjo JA. Molecular cloning of a lytic β-1,3-glucanase gene from Oerskovia xanthineolytica LL G109: A β-1,3-glucanase able to selectively permeabilize the yeast cell wall. Annals of the New York Academy of Sciences 1996b; 782(1): 555-565.
  • Ferrer P. Revisiting the Cellulosimicrobium cellulans yeast-lytic β-1,3-glucanases toolbox: A review. Microbial Cell Factories 2006; 5(10): 1-8.
  • Filya İ. Silaj fermentasyonunda katkı maddeleri kullanımı. Ondokuz Mayıs Üniversitesi Ziraat Fakültesi Dergisi 2000; 15(3): 118-125.
  • Fitzsimons A., Hols P., Jore J., Leer RJ., O’connell M., Delcour J. Development of an amylolytic Lactobacillus plantarum silage strain expressing the Lactobacillus amylovorus α-amylase gene. Applied and Environmental Microbiology 1994; 60(10): 3529-3535.
  • Holzer M., Mayrhuber E., Dannerr H., Braun R. The role of Lactobacillus buchneri in forage preservation. Trends in Biotechnology 2003; 21: 282-287.
  • Kleinschmit DH., Schmidt RJ., Kung Jr L. The effects of various antifungal additives on the fermentation and aerobic stability of corn silage. Journal of Dairy Science 2005; 88:2130-2139.
  • Kulkarni N., Shendye A., Rao M. Molecular and biotechnological aspects of xylanases. FEMS Microbiology Reviews 1999; 23: 411-456.
  • Kung Jr L., Ranjit NK. The effect of Lactobacillus buchneri and other additives on the fermentation and aerobic stability of barley silage. Journal of Dairy Science 2001; 84: 1149-1155.
  • Kung L. Aerobic stability of silages. Proceedings of the Silage for Dairy Farms, Harrisburg, PA, 2005, University of Delaware, Department of Animal and Food Sciences.
  • McDonald P., Henderson AR., Heron SJE. The Biochemistry of Silage, 2nd ed. Chalcombe Publ., Church Lane, Kingston, Canterbury, Kent, UK 1991.
  • McDonald P. The Biochemistry of Silage. John Wiley and Sons. Chalcome Publications, pp. 226, 1981.
  • Menke KH., Huss W. Tierernährung und Futtermittelkunde. Verlag Eugen Ulmer, Stuttgart 1975.
  • Muck RE. A lactic acid bacteria strain to improve aerobic stability of silages. In, Research Summaries, 42-43, U.S. Dairy Forage Research Center, Madison, WI 1996.
  • Nguyen HA., Nguyen T-H., Nguyen T-T., Peterbauer CK., Mathiesen G., Haltrich D. Chitinase from Bacillus licheniformis DSM13: Expression in Lactobacillus plantarum WCFS1 and biochemical characterization. Protein Expression and Purification 2012; 81: 166-174.
  • Ohmomo S., Tanaka O., Kitamoto HK., Cai Y. Silage and microbial performance, old story but new problems. Japan Agricultural Research Quarterly 2002; 36(2): 59–71.
  • Okazaki K., Nishimura N., Matsuoka F., Hayakawa S. Cloning and characterization of the gene encoding endo-β-1,3-glucanase from Arthrobacter sp. NHB-10. Bioscience, Biotechnology, and Biochemistry 2007; 71(6): 1568-1571.
  • Özdüven ML., Koç F., Yurtman İY. Mikrobiyal katkı maddelerinin mısır silajında kalite ve aerobik dayanıklılık üzerindeki etkileri. Tarım Bilimleri Dergisi 1999; 5(3): 7-12.
  • Ozkose E., Akyol I., Kar B., Comlekcioglu U., Ekinci MS. Expression of fungal cellulase gene in Lactococcus lactis to construct novel recombinant silage inoculants. Folia Microbiologica (Praha) 2009; 54: 335–342.
  • Özcan BD., Ayaşan T. Hayvan beslemede biyoteknoloji uygulamaları. Journal of Poultry Research 2009; 8(1): 58-64.
  • Özcan BD., Özcan N., Baylan M., Güzel Aİ. Cloning and expression of β-1,3-glucanase gene from Cellulosimicrobium cellulans in Escherichia coli DH5α. Kafkas Üniversitesi Veteriner Fakültesi Dergisi 2013a; 19(3): 523-528.
  • Özcan BD., Özcan N., Baylan M., Güzel Aİ. Cloning and expression of Cellulosimicrobium cellulans β-1,3-glucanase gene in Lactobacillus plantarum to create new silage inoculant for aerobic stability. Kafkas Üniversitesi Veteriner Fakültesi Dergisi 2013b; 19(4): 575-581.
  • Romero J., Castillo M., Burns J. Forage Conservation Techniques: Silage and Haylage Production Introduction. North Carolina Cooperative Extension Resources 2005; 1-8.
  • Rossi F., Rudella A., Marzotto M., Dellaglio F. Vector-free cloning of a bacterial endo-1,4-β-glucanase in Lactobacillus plantarum and its effect on the acidifying activity in silage: Use of recombinant cellulolytic Lactobacillus plantarum as silage inoculant. Antonie Leeuwenhoek 2001; 80(2): 139-147.
  • Scheirlinck T., Mahillon J., Joos H., Dhaese P., Michiels F. Integration and expression of α-amylase and enduglucanase genes in the Lactobacillus plantarum chromosome. Applied and Environmental Microbiology 1989; 55(9): 2130-2137.
  • Scheirlinck T., Meutter JD., Arnaut G., Joos H., Claeyssens M., Michiels F. Cloning and expression of cellulase and xylanase genes in Lactobacillus plantarum. Applied Microbiology and Biotechnology 1990; 33(5): 534-541.
  • Seale DR. Bacteria and enzyme as products to improve silage preservation. In, Wilkinson JM, Stark BA (Eds): Developments in Silage. 47-61, Chalcombe Publications, Marlow, United Kingdom 1987.
  • Woolford MK. The detrimental effects of air on silage. Journal of Applied Microbiology 1990. 68: 101-116.
  • Woolford MK. The Science and Technology of Silage Making. Alltech Technical Publications, 1999.
  • Yurtman İY., Koç F., Özdüven ML., Erman MS. Silaj üretiminde mikrobiyal katkı maddelerinin kullanımı. Trakya Bölgesi II. Hayvancılık Sempozyumu, 9-10 Ocak 1997, s. 346-351, Tekirdağ.
There are 36 citations in total.

Details

Primary Language Turkish
Subjects Zootechny (Other)
Journal Section REVIEWS
Authors

B. Devrim Özcan 0000-0002-9198-656X

Publication Date July 18, 2022
Submission Date February 27, 2022
Acceptance Date May 26, 2022
Published in Issue Year 2022 Volume: 5 Issue: 2

Cite

APA Özcan, B. D. (2022). Silajın Aerobik Safha Sorunlarının Çözümünde Biyoteknolojik Yaklaşımlar. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 5(2), 1105-1115. https://doi.org/10.47495/okufbed.1079848
AMA Özcan BD. Silajın Aerobik Safha Sorunlarının Çözümünde Biyoteknolojik Yaklaşımlar. Osmaniye Korkut Ata University Journal of The Institute of Science and Techno. July 2022;5(2):1105-1115. doi:10.47495/okufbed.1079848
Chicago Özcan, B. Devrim. “Silajın Aerobik Safha Sorunlarının Çözümünde Biyoteknolojik Yaklaşımlar”. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi 5, no. 2 (July 2022): 1105-15. https://doi.org/10.47495/okufbed.1079848.
EndNote Özcan BD (July 1, 2022) Silajın Aerobik Safha Sorunlarının Çözümünde Biyoteknolojik Yaklaşımlar. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi 5 2 1105–1115.
IEEE B. D. Özcan, “Silajın Aerobik Safha Sorunlarının Çözümünde Biyoteknolojik Yaklaşımlar”, Osmaniye Korkut Ata University Journal of The Institute of Science and Techno, vol. 5, no. 2, pp. 1105–1115, 2022, doi: 10.47495/okufbed.1079848.
ISNAD Özcan, B. Devrim. “Silajın Aerobik Safha Sorunlarının Çözümünde Biyoteknolojik Yaklaşımlar”. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi 5/2 (July 2022), 1105-1115. https://doi.org/10.47495/okufbed.1079848.
JAMA Özcan BD. Silajın Aerobik Safha Sorunlarının Çözümünde Biyoteknolojik Yaklaşımlar. Osmaniye Korkut Ata University Journal of The Institute of Science and Techno. 2022;5:1105–1115.
MLA Özcan, B. Devrim. “Silajın Aerobik Safha Sorunlarının Çözümünde Biyoteknolojik Yaklaşımlar”. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi, vol. 5, no. 2, 2022, pp. 1105-1, doi:10.47495/okufbed.1079848.
Vancouver Özcan BD. Silajın Aerobik Safha Sorunlarının Çözümünde Biyoteknolojik Yaklaşımlar. Osmaniye Korkut Ata University Journal of The Institute of Science and Techno. 2022;5(2):1105-1.

23487


196541947019414

19433194341943519436 1960219721 197842261021238 23877

*This journal is an international refereed journal 

*Our journal does not charge any article processing fees over publication process.

* This journal is online publishes 5 issues per year (January, March, June, September, December)

*This journal published in Turkish and English as open access. 

19450 This work is licensed under a Creative Commons Attribution 4.0 International License.