Review
BibTex RIS Cite

Biyolojik Mücadelede Örümceklerin Rolü Üzerine Bir Derleme

Year 2022, Volume: 5 Issue: 3, 1801 - 1814, 12.12.2022
https://doi.org/10.47495/okufbed.1022668

Abstract

Tarımsal alanlarda kullanılan pestisitlerin çevreye ve canlılara olumsuz etkileri sebebiyle zararlılarla mücadelede Entegre Zararlı Yönetimi gibi yeni yöntemler öne çıkmaktadır. Mekanik, kültürel ve biyolojik uygulamaları bir bütün haline getiren Entegre Zararlı Yönetiminin en önemli parçalarından biri de Biyolojik Mücadeledir. Biyolojik Mücadele zararlıların doğal düşmanları olan karnivor avcılar kullanılarak zararlı yoğunluğunun istenilen seviyede tutulmasını sağlayan bir mücadele yöntemi olarak bilinmektedir. Bu avcılar içerisinde bulunan örümcekler; çeşitli avlanma stratejileri, farklı habitat tercihleri, aktif dönem farklıkları, birim zamanda çok sayıda av tüketebilmeleri ve uzun açlık dönemlerine uyum sağlayabilmeleri gibi özellikleri sebebiyle Biyolojik Mücadele için önem arz etmektedir. Yapılan çalışmalar örümceklerin buğdaydaki yaprak bitlerini, elma bahçelerinde güveleri ve yaprak bitlerini, zeytin bahçelerinde dipteranları ve armut bahçelerinde pisillerin yoğunluğunu azalttığını göstermektedir. Örümceklerin bulunmadığı arazilerde ise zararlı yoğunluğu artış göstermektedir. Örümcekler arasında görülen cannibalisim ve örümcek topluluklarının diğer doğal düşmanlarla beslenmeleri biyolojik kontrolü bozabilmektedir. Bu sebeple örümceklerin av stratejileri, beslenme tercihleri, habitat tercihleri gibi özellikleri üzerine daha çok çalışma yapılması onların Biyolojik Mücadelede daha etkili kullanılmalarına katkı sağlaması açısından büyük önem arz etmektedir.

References

  • Akpınar, A., & Varol, M. İ. (2019). Gaziantep İli Antepfıstığı Bahçelerinde Örümcek Faunası ve Zararlılara Karşı Laboratuvarda Etkinliklerinin. Erzincan Binali Yıldırım Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 12(1), 527-532. doi:10.18185/erzifbed.461931
  • Baba, Y. G., Kusumoto, Y., & Tanaka, K. (2018). Effects of agricultural practices and fine-scale landscape factors on spiders and a pest insect in Japanese rice paddy. BioControl, 63, 265–275.
  • Bambaradeniya, C. N., & Edirisinghe, J. P. (2008). Composition, structure and dynamics of arthropod communities in a rice agro-ecosystem. Ceylon Journal of Science (Biological Science), 37(1), 23-48.
  • Betz, L., & Tscharntke, T. (2017). Enhancing spider families and spider webs in Indian rice fields for conservation biological control, considering local. J Insect Conserv, 21, 495-508.
  • Birişik, N. (2013). Teoriden Pratiğe Biyolojik Mücadele ve Gelecek Stratejisi. Teoriden Pratiğe Biyolojik Mücadele (s. 13-36). içinde Ankara: Gıda Tarım ve Hayvancılık Bakanlığı.
  • Birkhofer, K., Gavish-Regev, E., Endlweber, K., Lubin, Y. D., von Berg, K., Wise, K. H., & Scheu, S. (2008). Cursorial spiders retard initial aphid population growth at low densities in winter wheat. Bulletin of Entomological Research, 98, 249–255. doi:10.1017/S0007485308006019
  • Cardoso, P., Pekar, S., Jocqué, R., & Coddington, J. (2011). Global patterns of guild composition and functional diversity of spiders. PLoS One, 6, 1-10. doi:10.137
  • Costello, M. J., & Daane, K. M. (1999). Abundance of spiders and insect predators on grapes in central California. J. Arachnol, 27(2), 531-538.
  • Craig, C. L., & Bernard, G. D. (1990). Insect attraction to ultraviolet reflecting spiders webs and web decorations. Ecology, 71, 616-623.
  • Craig, C. L., Weber, R. S., & Bernard, G. D. (1996). Evolution predator-prey systems: Spider foraging plasticity in response to the visual ecology of prey. Am.Nat., 147, 205-229.
  • Denno, R. F., Mitter, M. S., Langellotto, G. A., Gratton, C., & Finke, D. L. (2004). Interactions between a hunting spider and a web-builder: consequences of intraguild predation and cannibalism for prey suppression. Ecological Entomology, 29(5), 566-577.
  • Duman, M., Mutlu, Ç., Büyük, M., & Karaca, V. (2013). Karacadağ çeltik ekim alanlarında bulunan faydalı böcek, örümcek ve polinatör türlerin belirlenmesi. Türk. biyo. müc. derg, 4(1), 53-64. Efil, L., Bayram , A., & Deltshev, C. (2012). Güneydoğu Anadolu Bölgesi yonca alanlarındaki örümcek. Türk. entomol. bült., 2(1), 31-35.
  • Elekçioğlu, N. Z. (2013). Determination of the natural mortality factors of Citrus leafminer [Phyllocnistis citrella Stainton (Lepidoptera: Gracillariidae)] in Adana. Türk. entomol. derg, 37(1), 21-30.
  • Ghavami, S. (2008). The Potential of Predatory Spiders as Biological Control Agents of Cotton Pests in Tehran Provinces of Iran. Asian J. Exp. Sci, 22(3), 303-306.
  • Giuseppe, C. (2017). Spiders ( Aranaeae) as predators of the exotic Metcalfa pruinosa (Say, 1830) (Homoptera : flatidae) in the Central Western Po Flood Plain ( Nothern Italy). Indian journal of Arachnology, 6(1), 72-80.
  • Heong, K. L., Bleih, S., & Rubia, E. G. (1991). Prey preference of the wolf spider, Pardosa pseudoannulata (Boesenberg et Strand). Population Ecology, 33(2), 179-186.
  • Hoefler, C. D., Chen, A., & Jakob, E. M. (2006). The Potential of a Jumping Spider, Phidippus clarus, as a Biocontrol Agent. J. Econ. Entomol, 99(2), 432-436.
  • Horton, D. R., Miliczky, E. R., Jones, V. P., Baker, C. C., & Unruh, T. R. (2012). Diversity and phenology of the generalist predator community in apple orchards of Central Washington State (Insecta, Araneae). Canadian Entomologist, 144(5), 691-710.
  • Huang, X., Quan, X., Wang, X., Yun, Y., & Peng, Y. (2018). Is the spider a good biological control agent for Plutella xylostella (Lepidoptera: Plutellidae)? Zoologia, 35, 1-8. doi:10.3897/zoologia.35.e23481
  • Isaia, M., Beikes, S., Paschetta, M., Sarvajayakesevalu, S., & Badino, G. (2010). Spiders as potential biological controllers in apple orchards infested by Cydia spp. (Lepidoptera: Tortricidae. (W. Nentwig, M. Entling, & C. Kropf, Dü) Bern: Proceedings of the 24th European Congress of Arachnology.
  • Jesikha, M. (2012). The Potential Of Pilixeppus Petersi As A Biocontrol Agent On Muska domestica. IOSR-JESTFT, 2(3), 30-31. Jeyaparvathi, S., Baskaran, S., & Bakavathiappan, G. (2013). Biological control potential of spiders on the selected cotton pests. Int. J. of Pharm. & Life Sci, 4(4), 2568-2572.
  • Kaplan, M., Danışman, T., Alaserhat, İ., & Özgen, İ. (2017). Mardin ili zeytin bahçelerindeki örümcek (Araneae) türlerinin belirlenmesi. Türk. entomol. bült, 7(2), 167-172. doi:http://dx.doi.org/10.16969/entoteb.295377
  • Kobayashi, T., Takada, M., Takagi, S., Yoshioka, A., & Washitani, I. (2011). Spider predation on a mirid pest in Japanese rice fields. Basic and Applied Ecology, 12, 532–539.
  • Kobayashi, T., Takada, M., Takagi, S., Yoshioka, A., & Washitani, I. (2011). Spider predation on a mirid pest in Japanese rice fields. Basic and Applied Ecology, 6, 532–539. doi:10.1016/j.baae.2011.07.007
  • Lang, A. (2003). Intraguild interference and biocontrol effects of generalist predators in a winter wheat field. Oecologia, 144(1), 144-153.
  • Lefebvre, M., Franck, P., Olivares, J., Ricard, J. M., Mandrin, J. F., & Lavigne, C. (2017). Spider predation on rosy apple aphid in conventional, organic and insecticide-free orchards and its impact on aphid populations. Biological Control, 104, 57-65.
  • Liu, S., Li, Z., Sui, Y., Schaefer, D. A., Alele, P. O., Chen, J., & Yang, X. (2015). Spider foraging strategies dominate pest suppression in organic tea plantations. BioControl, 60(6), 839-847.
  • M, J. (2012). The Potential Of Pilixeppus Petersi As A Biocontrol Agent On Muska domestica. IOSR-JESTFT, 2(3), 30-31. Maloney, D., Drummond, F. A., & Alford, R. (2003). Spider Predation in Agroecosystems: Can Spiders Effectively Control Pest Populations? Technical Bulletin 190, 1-32.
  • Marc , P., & Canard, A. (1997). Maintaining spider biodiversity in agroecosystems as a tool. Agric. Ecosyst. Environ., 62, 229-235.
  • Marc, P., Canard, A., & Ysnel, F. (1999). Spiders (Araneae) useful for pest limitation and bioindication. Agriculture, Ecosystems & Environment, 74(1), 229-273.
  • Mestre, L., Piñol, J., Barrientos, J. A., Espadaler, X., Brewitt,, K., Werner, C., & PlatneR, C. (2013). Trophic structure of the spider community of a Mediterranean citrus grove: a stable isotope analysis. Basic & Applied Ecology, 14(5), 413-422. Michalko, R. (2017). Spiders as bioagens of pome orchard pests. Ph.D. Dissertation, 148.
  • Michalko, R., & Pekar, S. (2016). Different hunting strategies of generalist predators result in functional differences. Oecologia, 181(4), 1187-1197.
  • Michalko, R., Petráková, L., Sentenská, L., & Pekár, S. (2017). The effect of habitat complexity and density-dependent non-consumptive interference on pest suppression by winter-active spiders. Agriculture, Ecosystems & Environment, 242, 26-33.
  • Miliczky, E. R., & Horton, D. R. (2005). Densities of beneficial arthropods within pear and apple orchards affected by distance from adjacent native habitat and association of natural enemies with extra-orchard host plants. Biological Control, 33(3), 249-259.
  • Morin, P. J. (1999). Community Ecology. Malden, MA: Blackwell Science, Inc.
  • Nyffeler, M., & Birkhofer, K. (2017). An estimated 400–800 million tons of prey are annually killed by the global spider community. Science of Nature, 104, 30. doi:0.1007/s00114-017
  • Nyffeler, M., Sterling, W. L., & Dean, D. A. (1994). How spiders make a living. Environ.Entomology, 23, 357-1367. Öztürk, N., Danışman, T., Tüfekli, M., & Ulusoy, M. R. (2013). Spider fauna of pomegranate and olive orchards in the Eastern Mediterranean Region of Turkey. Türk. entomol. bült, 3(2), 67-73.
  • Patil, R., Patil, Y., & Salunkhe, P. (2018). Spider, A Potential Biocontrol Agent in Insect Pest Management of Vineyard. IJCRT, 6(2), 1422-1427.
  • Pearce, S., Hebron, W. M., Raven, R. J., Zalucki, M. P., & Hassan, E. (2004). Spider fauna of soybean crops in south-east Queensland and their potential as predators of. Australian Journal of Entomology, 43, 57-65.
  • Pedigo, L. P. (2001). Entomology and Pest Management, 4th ed. Prentice Hall: New Jersey.
  • Pekár, S., Michalko, R., Loverre, P., Líznarová, E., & Černecká, L. (2015). Biological control in winter: novel evidence for the importance of generalist predators. Journal of Applied Ecology, 52(1), 270-279.
  • Persons, M. H. (1999). Hunger effects on foraging responses to perceptual cues in immature and adult wolf spiders (Lycosidae). Anim. Behav., 57, 81-88.
  • Persons, M. H., & Rypstra, A. L. (2000). Preference for chemical cues associated with recent prey in the wolf spider Hogna helluo (Araneae: Lycosidae). Ethology, 106(1), 27-35.
  • Picchi, M. S., Bocci, G., Petracci, R., & Entling, M. R. (2016). Effects of local and landscape factors on spiders and olive fruit flies. Agriculture, Ecosystems & Environment, 222, 138-147.
  • Richert, S. E., & Bishop, L. (1990). Prey control by an assemblage of generalist predators:Spiders in garden test systems. Ecology, 71, 1441-1450.
  • Riechert, S. E., & Harp, J. M. (1987). Nutritional ecology of spiders. F. SlanskY, & J. G. Rodriguez (Dü) içinde, Nutritional Ecology of Insects, Mites, and Spiders (s. 645-672). New York: John Wiley.
  • Riechert, S. E., & Lockley, T. (1984). Spider as biocontrol agents. Ann. Rev. Entomol, 29, 229-320.
  • Sanders, D., Vogel, E., & Knopp, E. (2015). Individual and species-specific traits explain niche size and functional role in spiders as generalist predators. Journal of Animal Ecology, 84(1), 134-142.
  • Sanyal, D., Bhowmik, P., Anderson, R., & Shrestha, A. (2008). Revisiting the perspective and progress of integrated weed management. Weed Science, 56(1), 161-167.
  • Sarma, S., Pujari, D., & Rahman, Z. (2013). Role of Spiders in Regulating Insect Pest in the Agricultural Ecosystem-An Overview. Journal of International Academic Reseach for Multidisciplinary, 1(5), 100-117.
  • Schmidt, J. M., Harwood, D. J., & Rypstra, A. L. (2012a). Foraging activity of a dominant epigeal predator: molecular evidence for the effect of prey density on consumption. Oikos, 121(11), 1715-1724.
  • Schmidt, J. M., Sebastian, P., Wilder, S. M., & Rypstra, A. (2012b). The nutritional content of prey affects the foraging of a generalist arthropod predator. PLoS One, 7(11), e49223.
  • Schmidt, M. H., Lauer, A., Purtauf, T., Thies, C., Schaefer, M., & Tscharntke, T. (2003). Relative importance of predators and parasitoids for cereal aphid control. Proceedings of the Royal Society B Biological Sciences, 270(1527), 1905-1909.
  • Schmidt, M. H., Thewes, U., Thies, C., & Tscharntke, T. (2004). Aphid suppression by natural enemies in mulched cereals. Entomologia Experimentalis et Applicata, 113(2), 87-93.
  • Sinclair, A. R., Pech, R. P., Dickman, C. R., Hik, D., Mahon, P., & Newsome, A. E. (1998). Predicting effects of predation on conservation of endangered prey. Conservation Biology, 12(3), 564-575.
  • Snyder, W. E., & Wise, D. H. (2000). Antipredator behaviour of spotted cucumber beetles (Coleoptera: Chrysomelidae) in response to predators that pose varying risks. Environ. Entomol, 29, 35-42.
  • Sunderland, K. D., Fracer, A. M., & and Dixon, A. F. (1986). Field and laboratory studies on money spiders (Linyphiidae) as predators of cereal aphids. J. Appl. Ecol., 23, 433 - 447.
  • Şimşek, A., & Bolu , H. (2016). Diyarbakır ili Antep fıstığı (Pistacia vera L.) alanlarındaki yararlı böcek faunasının belirlenmesi. Bitki Koruma Bülteni, 56(3), 267-282. doi:10.16955/bkb.56653
  • Thomson, L. J., & Hoffman, A. A. (2010). Natural enemy responses and pest control: importance of local vegetation. Biological Control, 52(2), 160-166.
  • Traugott, M., Bell, J., Raso, L., Sint, D., & Symondson, W. O. (2012). Generalist predators disrupt parasitoid aphid control by direct and coincidental intraguild predation. Bulletin of Entomological Research, 102(2), 239-247.
  • World Spider Catalog. (2021). 2020 tarihinde World Spider Catalog: https://wsc.nmbe.ch/ adresinden alındı
  • Young, A. P., & Edwards, G. B. (1990). Spiders in United States field crops and their potential effect on crop pests. J. Araehnol, 18, 1-27.

A Review on The Role Of Spiders In Biological Control

Year 2022, Volume: 5 Issue: 3, 1801 - 1814, 12.12.2022
https://doi.org/10.47495/okufbed.1022668

Abstract

Due to the negative effects of pesticides used in agricultural fields on the environment and living beings, new methods such as Integrated Pest Management stand out in the struggle against pests. Biological Control is one of the most important parts of Integrated Pest Management that integrates mechanical, cultural, and biological practices. Biological Control is known as a method of struggle that allows the pest density to be maintained at the desired level using carnivorous predators, which are natural enemies of pests. Spiders in these predators; it is important for Biological Control due to its characteristics such as various strategies, different habitat preferences, active period differences, ability to consume a large number of preys in unit time and adapt to long hunger periods. Studies indicate that spiders reduce aphids in wheat, moths and aphids in apple orchards, dipterans in olive orchards, and psyllid in pear orchards. In the absence of spiders, the density of pests increases. Cannibalism among spiders and the feeding of spider communities with other natural enemies can decimate Biological Control. For this reason, it is of great importance to conduct more studies on the characteristics of spiders such as hunting strategies, feeding preferences, habitat preferences in order to contribute to their more effective use in Biological Control.

References

  • Akpınar, A., & Varol, M. İ. (2019). Gaziantep İli Antepfıstığı Bahçelerinde Örümcek Faunası ve Zararlılara Karşı Laboratuvarda Etkinliklerinin. Erzincan Binali Yıldırım Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 12(1), 527-532. doi:10.18185/erzifbed.461931
  • Baba, Y. G., Kusumoto, Y., & Tanaka, K. (2018). Effects of agricultural practices and fine-scale landscape factors on spiders and a pest insect in Japanese rice paddy. BioControl, 63, 265–275.
  • Bambaradeniya, C. N., & Edirisinghe, J. P. (2008). Composition, structure and dynamics of arthropod communities in a rice agro-ecosystem. Ceylon Journal of Science (Biological Science), 37(1), 23-48.
  • Betz, L., & Tscharntke, T. (2017). Enhancing spider families and spider webs in Indian rice fields for conservation biological control, considering local. J Insect Conserv, 21, 495-508.
  • Birişik, N. (2013). Teoriden Pratiğe Biyolojik Mücadele ve Gelecek Stratejisi. Teoriden Pratiğe Biyolojik Mücadele (s. 13-36). içinde Ankara: Gıda Tarım ve Hayvancılık Bakanlığı.
  • Birkhofer, K., Gavish-Regev, E., Endlweber, K., Lubin, Y. D., von Berg, K., Wise, K. H., & Scheu, S. (2008). Cursorial spiders retard initial aphid population growth at low densities in winter wheat. Bulletin of Entomological Research, 98, 249–255. doi:10.1017/S0007485308006019
  • Cardoso, P., Pekar, S., Jocqué, R., & Coddington, J. (2011). Global patterns of guild composition and functional diversity of spiders. PLoS One, 6, 1-10. doi:10.137
  • Costello, M. J., & Daane, K. M. (1999). Abundance of spiders and insect predators on grapes in central California. J. Arachnol, 27(2), 531-538.
  • Craig, C. L., & Bernard, G. D. (1990). Insect attraction to ultraviolet reflecting spiders webs and web decorations. Ecology, 71, 616-623.
  • Craig, C. L., Weber, R. S., & Bernard, G. D. (1996). Evolution predator-prey systems: Spider foraging plasticity in response to the visual ecology of prey. Am.Nat., 147, 205-229.
  • Denno, R. F., Mitter, M. S., Langellotto, G. A., Gratton, C., & Finke, D. L. (2004). Interactions between a hunting spider and a web-builder: consequences of intraguild predation and cannibalism for prey suppression. Ecological Entomology, 29(5), 566-577.
  • Duman, M., Mutlu, Ç., Büyük, M., & Karaca, V. (2013). Karacadağ çeltik ekim alanlarında bulunan faydalı böcek, örümcek ve polinatör türlerin belirlenmesi. Türk. biyo. müc. derg, 4(1), 53-64. Efil, L., Bayram , A., & Deltshev, C. (2012). Güneydoğu Anadolu Bölgesi yonca alanlarındaki örümcek. Türk. entomol. bült., 2(1), 31-35.
  • Elekçioğlu, N. Z. (2013). Determination of the natural mortality factors of Citrus leafminer [Phyllocnistis citrella Stainton (Lepidoptera: Gracillariidae)] in Adana. Türk. entomol. derg, 37(1), 21-30.
  • Ghavami, S. (2008). The Potential of Predatory Spiders as Biological Control Agents of Cotton Pests in Tehran Provinces of Iran. Asian J. Exp. Sci, 22(3), 303-306.
  • Giuseppe, C. (2017). Spiders ( Aranaeae) as predators of the exotic Metcalfa pruinosa (Say, 1830) (Homoptera : flatidae) in the Central Western Po Flood Plain ( Nothern Italy). Indian journal of Arachnology, 6(1), 72-80.
  • Heong, K. L., Bleih, S., & Rubia, E. G. (1991). Prey preference of the wolf spider, Pardosa pseudoannulata (Boesenberg et Strand). Population Ecology, 33(2), 179-186.
  • Hoefler, C. D., Chen, A., & Jakob, E. M. (2006). The Potential of a Jumping Spider, Phidippus clarus, as a Biocontrol Agent. J. Econ. Entomol, 99(2), 432-436.
  • Horton, D. R., Miliczky, E. R., Jones, V. P., Baker, C. C., & Unruh, T. R. (2012). Diversity and phenology of the generalist predator community in apple orchards of Central Washington State (Insecta, Araneae). Canadian Entomologist, 144(5), 691-710.
  • Huang, X., Quan, X., Wang, X., Yun, Y., & Peng, Y. (2018). Is the spider a good biological control agent for Plutella xylostella (Lepidoptera: Plutellidae)? Zoologia, 35, 1-8. doi:10.3897/zoologia.35.e23481
  • Isaia, M., Beikes, S., Paschetta, M., Sarvajayakesevalu, S., & Badino, G. (2010). Spiders as potential biological controllers in apple orchards infested by Cydia spp. (Lepidoptera: Tortricidae. (W. Nentwig, M. Entling, & C. Kropf, Dü) Bern: Proceedings of the 24th European Congress of Arachnology.
  • Jesikha, M. (2012). The Potential Of Pilixeppus Petersi As A Biocontrol Agent On Muska domestica. IOSR-JESTFT, 2(3), 30-31. Jeyaparvathi, S., Baskaran, S., & Bakavathiappan, G. (2013). Biological control potential of spiders on the selected cotton pests. Int. J. of Pharm. & Life Sci, 4(4), 2568-2572.
  • Kaplan, M., Danışman, T., Alaserhat, İ., & Özgen, İ. (2017). Mardin ili zeytin bahçelerindeki örümcek (Araneae) türlerinin belirlenmesi. Türk. entomol. bült, 7(2), 167-172. doi:http://dx.doi.org/10.16969/entoteb.295377
  • Kobayashi, T., Takada, M., Takagi, S., Yoshioka, A., & Washitani, I. (2011). Spider predation on a mirid pest in Japanese rice fields. Basic and Applied Ecology, 12, 532–539.
  • Kobayashi, T., Takada, M., Takagi, S., Yoshioka, A., & Washitani, I. (2011). Spider predation on a mirid pest in Japanese rice fields. Basic and Applied Ecology, 6, 532–539. doi:10.1016/j.baae.2011.07.007
  • Lang, A. (2003). Intraguild interference and biocontrol effects of generalist predators in a winter wheat field. Oecologia, 144(1), 144-153.
  • Lefebvre, M., Franck, P., Olivares, J., Ricard, J. M., Mandrin, J. F., & Lavigne, C. (2017). Spider predation on rosy apple aphid in conventional, organic and insecticide-free orchards and its impact on aphid populations. Biological Control, 104, 57-65.
  • Liu, S., Li, Z., Sui, Y., Schaefer, D. A., Alele, P. O., Chen, J., & Yang, X. (2015). Spider foraging strategies dominate pest suppression in organic tea plantations. BioControl, 60(6), 839-847.
  • M, J. (2012). The Potential Of Pilixeppus Petersi As A Biocontrol Agent On Muska domestica. IOSR-JESTFT, 2(3), 30-31. Maloney, D., Drummond, F. A., & Alford, R. (2003). Spider Predation in Agroecosystems: Can Spiders Effectively Control Pest Populations? Technical Bulletin 190, 1-32.
  • Marc , P., & Canard, A. (1997). Maintaining spider biodiversity in agroecosystems as a tool. Agric. Ecosyst. Environ., 62, 229-235.
  • Marc, P., Canard, A., & Ysnel, F. (1999). Spiders (Araneae) useful for pest limitation and bioindication. Agriculture, Ecosystems & Environment, 74(1), 229-273.
  • Mestre, L., Piñol, J., Barrientos, J. A., Espadaler, X., Brewitt,, K., Werner, C., & PlatneR, C. (2013). Trophic structure of the spider community of a Mediterranean citrus grove: a stable isotope analysis. Basic & Applied Ecology, 14(5), 413-422. Michalko, R. (2017). Spiders as bioagens of pome orchard pests. Ph.D. Dissertation, 148.
  • Michalko, R., & Pekar, S. (2016). Different hunting strategies of generalist predators result in functional differences. Oecologia, 181(4), 1187-1197.
  • Michalko, R., Petráková, L., Sentenská, L., & Pekár, S. (2017). The effect of habitat complexity and density-dependent non-consumptive interference on pest suppression by winter-active spiders. Agriculture, Ecosystems & Environment, 242, 26-33.
  • Miliczky, E. R., & Horton, D. R. (2005). Densities of beneficial arthropods within pear and apple orchards affected by distance from adjacent native habitat and association of natural enemies with extra-orchard host plants. Biological Control, 33(3), 249-259.
  • Morin, P. J. (1999). Community Ecology. Malden, MA: Blackwell Science, Inc.
  • Nyffeler, M., & Birkhofer, K. (2017). An estimated 400–800 million tons of prey are annually killed by the global spider community. Science of Nature, 104, 30. doi:0.1007/s00114-017
  • Nyffeler, M., Sterling, W. L., & Dean, D. A. (1994). How spiders make a living. Environ.Entomology, 23, 357-1367. Öztürk, N., Danışman, T., Tüfekli, M., & Ulusoy, M. R. (2013). Spider fauna of pomegranate and olive orchards in the Eastern Mediterranean Region of Turkey. Türk. entomol. bült, 3(2), 67-73.
  • Patil, R., Patil, Y., & Salunkhe, P. (2018). Spider, A Potential Biocontrol Agent in Insect Pest Management of Vineyard. IJCRT, 6(2), 1422-1427.
  • Pearce, S., Hebron, W. M., Raven, R. J., Zalucki, M. P., & Hassan, E. (2004). Spider fauna of soybean crops in south-east Queensland and their potential as predators of. Australian Journal of Entomology, 43, 57-65.
  • Pedigo, L. P. (2001). Entomology and Pest Management, 4th ed. Prentice Hall: New Jersey.
  • Pekár, S., Michalko, R., Loverre, P., Líznarová, E., & Černecká, L. (2015). Biological control in winter: novel evidence for the importance of generalist predators. Journal of Applied Ecology, 52(1), 270-279.
  • Persons, M. H. (1999). Hunger effects on foraging responses to perceptual cues in immature and adult wolf spiders (Lycosidae). Anim. Behav., 57, 81-88.
  • Persons, M. H., & Rypstra, A. L. (2000). Preference for chemical cues associated with recent prey in the wolf spider Hogna helluo (Araneae: Lycosidae). Ethology, 106(1), 27-35.
  • Picchi, M. S., Bocci, G., Petracci, R., & Entling, M. R. (2016). Effects of local and landscape factors on spiders and olive fruit flies. Agriculture, Ecosystems & Environment, 222, 138-147.
  • Richert, S. E., & Bishop, L. (1990). Prey control by an assemblage of generalist predators:Spiders in garden test systems. Ecology, 71, 1441-1450.
  • Riechert, S. E., & Harp, J. M. (1987). Nutritional ecology of spiders. F. SlanskY, & J. G. Rodriguez (Dü) içinde, Nutritional Ecology of Insects, Mites, and Spiders (s. 645-672). New York: John Wiley.
  • Riechert, S. E., & Lockley, T. (1984). Spider as biocontrol agents. Ann. Rev. Entomol, 29, 229-320.
  • Sanders, D., Vogel, E., & Knopp, E. (2015). Individual and species-specific traits explain niche size and functional role in spiders as generalist predators. Journal of Animal Ecology, 84(1), 134-142.
  • Sanyal, D., Bhowmik, P., Anderson, R., & Shrestha, A. (2008). Revisiting the perspective and progress of integrated weed management. Weed Science, 56(1), 161-167.
  • Sarma, S., Pujari, D., & Rahman, Z. (2013). Role of Spiders in Regulating Insect Pest in the Agricultural Ecosystem-An Overview. Journal of International Academic Reseach for Multidisciplinary, 1(5), 100-117.
  • Schmidt, J. M., Harwood, D. J., & Rypstra, A. L. (2012a). Foraging activity of a dominant epigeal predator: molecular evidence for the effect of prey density on consumption. Oikos, 121(11), 1715-1724.
  • Schmidt, J. M., Sebastian, P., Wilder, S. M., & Rypstra, A. (2012b). The nutritional content of prey affects the foraging of a generalist arthropod predator. PLoS One, 7(11), e49223.
  • Schmidt, M. H., Lauer, A., Purtauf, T., Thies, C., Schaefer, M., & Tscharntke, T. (2003). Relative importance of predators and parasitoids for cereal aphid control. Proceedings of the Royal Society B Biological Sciences, 270(1527), 1905-1909.
  • Schmidt, M. H., Thewes, U., Thies, C., & Tscharntke, T. (2004). Aphid suppression by natural enemies in mulched cereals. Entomologia Experimentalis et Applicata, 113(2), 87-93.
  • Sinclair, A. R., Pech, R. P., Dickman, C. R., Hik, D., Mahon, P., & Newsome, A. E. (1998). Predicting effects of predation on conservation of endangered prey. Conservation Biology, 12(3), 564-575.
  • Snyder, W. E., & Wise, D. H. (2000). Antipredator behaviour of spotted cucumber beetles (Coleoptera: Chrysomelidae) in response to predators that pose varying risks. Environ. Entomol, 29, 35-42.
  • Sunderland, K. D., Fracer, A. M., & and Dixon, A. F. (1986). Field and laboratory studies on money spiders (Linyphiidae) as predators of cereal aphids. J. Appl. Ecol., 23, 433 - 447.
  • Şimşek, A., & Bolu , H. (2016). Diyarbakır ili Antep fıstığı (Pistacia vera L.) alanlarındaki yararlı böcek faunasının belirlenmesi. Bitki Koruma Bülteni, 56(3), 267-282. doi:10.16955/bkb.56653
  • Thomson, L. J., & Hoffman, A. A. (2010). Natural enemy responses and pest control: importance of local vegetation. Biological Control, 52(2), 160-166.
  • Traugott, M., Bell, J., Raso, L., Sint, D., & Symondson, W. O. (2012). Generalist predators disrupt parasitoid aphid control by direct and coincidental intraguild predation. Bulletin of Entomological Research, 102(2), 239-247.
  • World Spider Catalog. (2021). 2020 tarihinde World Spider Catalog: https://wsc.nmbe.ch/ adresinden alındı
  • Young, A. P., & Edwards, G. B. (1990). Spiders in United States field crops and their potential effect on crop pests. J. Araehnol, 18, 1-27.
There are 62 citations in total.

Details

Primary Language Turkish
Subjects Structural Biology, Agricultural, Veterinary and Food Sciences
Journal Section REVIEWS
Authors

Fahrettin Anıl Sırlıbaş

Şeyma Civan

Zübeyde Kumbıçak

Ümit Kumbıçak

Publication Date December 12, 2022
Submission Date November 12, 2021
Acceptance Date March 19, 2022
Published in Issue Year 2022 Volume: 5 Issue: 3

Cite

APA Sırlıbaş, F. A., Civan, Ş., Kumbıçak, Z., Kumbıçak, Ü. (2022). Biyolojik Mücadelede Örümceklerin Rolü Üzerine Bir Derleme. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 5(3), 1801-1814. https://doi.org/10.47495/okufbed.1022668
AMA Sırlıbaş FA, Civan Ş, Kumbıçak Z, Kumbıçak Ü. Biyolojik Mücadelede Örümceklerin Rolü Üzerine Bir Derleme. Osmaniye Korkut Ata University Journal of The Institute of Science and Techno. December 2022;5(3):1801-1814. doi:10.47495/okufbed.1022668
Chicago Sırlıbaş, Fahrettin Anıl, Şeyma Civan, Zübeyde Kumbıçak, and Ümit Kumbıçak. “Biyolojik Mücadelede Örümceklerin Rolü Üzerine Bir Derleme”. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi 5, no. 3 (December 2022): 1801-14. https://doi.org/10.47495/okufbed.1022668.
EndNote Sırlıbaş FA, Civan Ş, Kumbıçak Z, Kumbıçak Ü (December 1, 2022) Biyolojik Mücadelede Örümceklerin Rolü Üzerine Bir Derleme. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi 5 3 1801–1814.
IEEE F. A. Sırlıbaş, Ş. Civan, Z. Kumbıçak, and Ü. Kumbıçak, “Biyolojik Mücadelede Örümceklerin Rolü Üzerine Bir Derleme”, Osmaniye Korkut Ata University Journal of The Institute of Science and Techno, vol. 5, no. 3, pp. 1801–1814, 2022, doi: 10.47495/okufbed.1022668.
ISNAD Sırlıbaş, Fahrettin Anıl et al. “Biyolojik Mücadelede Örümceklerin Rolü Üzerine Bir Derleme”. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi 5/3 (December 2022), 1801-1814. https://doi.org/10.47495/okufbed.1022668.
JAMA Sırlıbaş FA, Civan Ş, Kumbıçak Z, Kumbıçak Ü. Biyolojik Mücadelede Örümceklerin Rolü Üzerine Bir Derleme. Osmaniye Korkut Ata University Journal of The Institute of Science and Techno. 2022;5:1801–1814.
MLA Sırlıbaş, Fahrettin Anıl et al. “Biyolojik Mücadelede Örümceklerin Rolü Üzerine Bir Derleme”. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi, vol. 5, no. 3, 2022, pp. 1801-14, doi:10.47495/okufbed.1022668.
Vancouver Sırlıbaş FA, Civan Ş, Kumbıçak Z, Kumbıçak Ü. Biyolojik Mücadelede Örümceklerin Rolü Üzerine Bir Derleme. Osmaniye Korkut Ata University Journal of The Institute of Science and Techno. 2022;5(3):1801-14.

23487


196541947019414

19433194341943519436 1960219721 197842261021238 23877

*This journal is an international refereed journal 

*Our journal does not charge any article processing fees over publication process.

* This journal is online publishes 5 issues per year (January, March, June, September, December)

*This journal published in Turkish and English as open access. 

19450 This work is licensed under a Creative Commons Attribution 4.0 International License.