Research Article
BibTex RIS Cite

Farklı Böcek Taksonlarında Wolbachia Bakterisinin İncelenmesi

Year 2022, Volume: 5 Issue: 3, 1733 - 1743, 12.12.2022
https://doi.org/10.47495/okufbed.1123332

Abstract

Eklembacaklılar, popülasyon yoğunlukları ve dağılımları göz önüne alındığında en yaygın canlı türüdür. Ancak artan dünya nüfusu ve küresel ısınmaya bağlı kuraklık nedeniyle hem sağlık hem de tarımsal üretim açısından özellikle zararlı türlerle mücadelede çevre dostu ve etkili alternatif stratejiler geliştirmeye yönelik çalışmaları zorunlu kılmaktadır. Bu bağlamda Wolbachia, ev sahipleriyle olan ilişkileri nedeniyle umut vericidir. Ancak eklembacaklılarda simbiyotik yapı iklim, coğrafya ve ekosistem gibi farklılıklara göre değişmektedir. Bu çalışmada yaşam koşulları, konukçuları ve ekolojik nişleri bakımından farklı olan böcekler: Drosohphila melanosgaster (Diptera: Drosophiidae), Bemisia tabaci (Hemiptera: Aleyrodidae), Pulex irritans (Siphonaptera: Pulicidae), Eusomus ovulum (Coleoptera: Currioculionidae) ve Lariophagus distinguendus (Hymenoptera: Pteromalidae)'de Wolbachia enfeksiyonu incelenmiştir. Wolbachia, spesifik bir Wspec F/R primer seti ile tarandı ve elde edilen PCR ürünlerinin dizi verilerine göre tanımlandı. Wolbachia'nın çalışılan türlerde yaygın bir insidansa sahip olduğu gözlendi. Pire, sirke sinekleri ve E. ovulum’da A süpergrubu, parsitoid arı ve beyazsineklerde ise B süpergrubu Wolbachia bulunduğu tespit edildi. Bu çalışma, Türkiye'de E. ovulum'da Wolbachia varlığını bildiren ilk çalışma olup, burada sunulan verilerin yapılacak çalışmalara katkı sağlayacağı düşünülmektedir.

References

  • Arthofer W., Riegler M., Schneider D., Krammer M., Miller WJ. Hidden Wolbachia diversity in field populations of the European cherry fruit fly, Rhagoletis cerasi (Diptera, Tephritidae). Molecular Ecology 2009; 18: 3816.3830.
  • Gerth M., Gansauge, MT., Weigert A., Bleidorn C. Phylogenomic analyses uncover origin and spread of the Wolbachia pandemic. Nature communications 2014; 5(1): 1-7.
  • Ahmed MZ., De Barro PJ., Ren SX., Greeff JM., Qiu BL. Evidence for horizontal transmission of secondary endosymbionts in the Bemisia tabaci Cryptic Species Complex. PLoS One 2013; 8: e53084.
  • Ahmed MZ., Li SJ., Xue X., Yin XJ., Ren SX., Jiggins FM., ... Qiu, BL. The intracellular bacterium Wolbachia uses parasitoid wasps as phoretic vectors for efficient horizontal transmission. PLOS Pathogens 2015; 11(2): e1004672.
  • Aikawa T., Maehara N., Ichihara Y., Masuya H., Nakamura K., Anbutsu H. Cytoplasmic incompatibility in the semivoltine longicorn beetle Acalolepta fraudatrix (Coleoptera: Cerambycidae) double infected with Wolbachia. Plos one 2022; 17(1): e0261928.
  • Altschul SF., Gish W., Miller W., Myers EW., Lipman DJ. Basic local alignment search tool. Journal of Molecular Biology 1990; 215 (3): 403e410.
  • Baldo L., Werren JH. Revisiting Wolbachia supergroup typing based on WSP: spurious lineages and discordance with MLST. Current microbiology 2007; 55(1): 81-87.
  • Bi J., Wang YF. The effect of the endosymbiont Wolbachia on the behavior of insect hosts. Insect science 2020; 27(5): 846-858.
  • Bourtzis K. Wolbachia- Based Technologies for Insect Pest Population Control. “In: Transgenesis and the Management of Vector-Borne Disease. Advances in Experimental Medicine and Biology. (ed) Aksoy, S., vol 627. Springer, New York; 2008.
  • Breeuwer JA., Werren JH. Microorganisms associated with chromosome destruction and reproductive isolation between two insect species. Nature 1990; 346(6284): 558-560.
  • Brown AN., Lloyd VK. Evidence for horizontal transfer of Wolbachia by a Drosophila mite. Experimental and Applied Acarology 2015; 66: 301–311.
  • Bruzzese DJ., Schuler H., Wolfe TM., Glover MM., Mastroni JV., Doellman MM., ... Feder JL. Testing the potential contribution of Wolbachia to speciation when cytoplasmic incompatibility becomes associated with host‐related reproductive isolation. Molecular Ecology 2021; 00: 1–16.
  • Doyle JJ., Doyle JL. Isolation of plant DNA from fresh tissue. Focus 1990; 12: 13-15.
  • Gang LIU., Shuo ZHAO., Hornok S., Meihua YANG., Hazihan W., Xinli GU., Yuanzhi WANG. Rickettsia aeschlimannii and Wolbachia endosymbiont in Ctenocephalides canis from Eurasian lynx (Lynx lynx) Near the China-Kazakhstan Border. Kafkas Üniversitesi Veteriner Fakültesi Dergisi 2020; 26(5).
  • Folmer O., Black M., Hoeh W., Lutz R., Vrijenhoek R. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Molecular Marine Biology and Biotechnology 1994; 3: 294–299.
  • Gomard Y., Flores O., Vıttecoq M., Blanchon T., Toty C., Duron O., .... Mccoy KD. Changes in bacterial diversity, composition and interactions during the development of the seabird tick Ornithodoros maritimus (Argasidae). Microbial Ecology 2021; 81: 3, 770-783.
  • Guo Y., Hoffmann AA., Xu XQ., Mo PW., Huang HJ., Gong JT., ... Hong XY. Vertical transmission of Wolbachia is associated with host vitellogenin in Laodelphax striatellus. Frontiers in microbiology 2018; 9: 2016.
  • Hamilton PT. Perlman SJ. Host defense via symbiosis in Drosophila. PLoS Pathog 2013; 9(12): e1003808.
  • Hancock PA., Sinkins SP., Godfray HCJ. Strategies for introducing Wolbachia to reduce transmission of mosquito-borne diseases. PLOS Neglected Tropical Diseases 2011; 5(4): e1024.
  • Hilgenboecker K., Hammerstein P., Schlattmann P., Telschow A., Werren JH. How many species are infected with Wolbachia?–a statistical analysis of current data. FEMS microbiology letters 2008; 281(2): 215-220.
  • Hou HQ., Zhao GZ., Su CY., Zhu DH. Wolbachia prevalence patterns: horizontal transmission, recombination, and multiple infections in chestnut gall wasp‐parasitoid communities. Entomologia Experimentalis et Applicata 2020; 168(10): 752-765.
  • Hughes GL., Allsopp PG., Brumbley SM., Woolfit M., McGraw EA. Variable infection frequency and high diversity of multiple strains of Wolbachia pipientis in Perkinsiella planthoppers. Applied and Environmental Microbiology 2011; 77: 2165.2168.
  • Hurst GD., Jiggins FM., Hinrich Graf von der Schulenburg J., Bertrand D., West SA., Goriacheva II., ... Majerus ME. Male–killing Wolbachia in two species of insect. Proceedings of the Royal Society of London. Series B: Biological Sciences 1999; 266(1420): 735-740.
  • Inci A., Yıldırım A., Düzlü O., Doganay M., Aksoy S. Tick-borne diseases in Turkey: A review based on one health perspective. PLOS Neglected Tropical Diseases 2016; 10: 12, e0005021.
  • İpekdal K., Kaya T. Screening stored wheat beetles for reproductive parasitic endosymbionts in central Turkey. Journal of Stored Products Research 2020; 89: 101732.
  • Johnson K. The impact of Wolbachia on virus infection in mosquitoes. Viruses 2015; 7(11): 5705-5717.
  • Kimura M. A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. Journal of Molecular Evolution 1980; 16: 111e120.
  • König K., Krimmer E., Brose S., Gantert C., Buschlüter I., König C., ... Steidle JL. Does early learning drive ecological divergence during speciation processes in parasitoid wasps?. Proceedings of the Royal Society B: Biological Sciences 2015; 282(1799): 20141850.
  • König K., Zundel P., Krimmer E., König C., Pollmann M., Gottlieb Y., Steidle JL. Reproductive isolation due to prezygotic isolation and postzygotic cytoplasmic incompatibility in parasitoid wasps. Ecology and evolution 2019; 9(18): 10694-10706.
  • Kumar S., Stecher G., Li M., Knyaz C., Tamura K. Mega X: molecular evolutionary genetics analysis across computing platforms. Molecular Biology and Evolution 2018; 35: 1547e1549. Laidoudi Y., Levasseur A., Medkour H., Maaloum M., Ben Khedher M., Sambou M., ... Mediannikov O. An Earliest Endosymbiont, Wolbachia massiliensis sp. nov., Strain PL13 from the Bed Bug (Cimex hemipterus), Type Strain of a New Supergroup T. International journal of molecular sciences 2020; 21(21): 8064.
  • Le Clec’h W., Chevalier FD., Genty L., Bertaux J., Bouchon D., Sicard M. Cannibalism and predation as paths for horizontal passage of Wolbachia between terrestrial isopods. PloS one 2013; 8: e60232.
  • Lefoulon E., Clark T., Borveto F., Perriat-Sanguinet M., Moulia C., Slatko BE., Gavotte L. Pseudoscorpion Wolbachia symbionts: diversity and evidence for a new supergroup S. BMC microbiology 2020; 20(1): 1-15.
  • Li SJ., Ahmed MZ., Lv N., Shi PQ., Wang XM., Huang JL., Qiu BL. Plantmediated horizontal transmission of Wolbachia between whiteflies. The ISME journal 2017; 11(4): 1019-1028.
  • Lo N., Casiraghi M., Salati E., Bazzocchi C., Bandi C. How many Wolbachia supergroups exist?. Molecular biology and evolution 2002; 19(3): 341-346.
  • Madhav M., Baker D., Morgan JA., Asgari S. James P. Wolbachia: A tool for livestock ectoparasite control. Veterinary parasitology 2020; 288: 109297.
  • Marvaldi AE., Del Río MG., Pereyra VA., Rocamundi N., Lanteri AA. A combined molecular and morphological approach to explore the higher phylogeny of entimine weevils (Coleoptera: Curculionidae), with special reference to South American taxa. Diversity 2018; 10(3): 95.
  • Mazur MA., Holecová M., Lachowska‐Cierlik D., Lis A., Kubisz D., Kajtoch Ł. Selective sweep of Wolbachia and parthenogenetic host genomes–the example of the weevil Eusomus ovulum. Insect Molecular Biology 2016; 25(6): 701-711.
  • Morozov-Leonov SY., Nazarenko VY. Genetic differentiation of Ukrainian populations of Eusomus ovulum (Coleoptera, Curculionidae): evidence of multiple hybrid speciation. Zoodiversity 2021; 55(1).
  • Onder Z., Ciloglu A., Duzlu O., Yildirim A., Okur M., Yetismis G., Inci A. Molecular detection and identification of Wolbachia endosymbiont in fleas (Insecta: Siphonaptera). Folia microbiologica 2019; 64(6), 789-796.
  • Oteo JA., Portillo A., Portero F., Zavala-Castro J., Venzal JM. Labruna MB. Candidatus Rickettsia asemboensis’ and Wolbachia spp. in Ctenocephalides felis and Pulex irritans fleas removed from dogs in Ecuador. Parasites & vectors 2014; 7(1): 1-5.
  • Pagendam DE., Trewin BJ., Snoad N., Ritchie SA., Hoffmann AA., Staunton KM., ... Beebe N. Modelling the Wolbachia incompatible insect technique: strategies for effective mosquito population elimination. BMC biology 2020; 18(1): 1-13.
  • Rigaud T. Juchault P. Success and failure of horizontal transfers of feminizing Wolbachia endosymbionts in woodlice. Journal of Evolutionary Biology 1995: 8(2); 249-255.
  • Taylor MJ., Hoerauf A. Wolbachia bacteria of filarial nematodes. Parasitology Today 1999; 15(11): 437-442.
  • Thompson JD., Higgins DG., Gibson TJ. ClustalW: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Research 1994; 22 (22): 4673e4680. Tijsse-Klasen E., Braks M., Scholte EJ., Sprong H. Parasites of vectors-Ixodiphagus hookeri and its Wolbachia symbionts in ticks in the Netherlands. Parasites & vectors 2011; 4(1): 1-7.
  • Tolley SJ., Nonacs P., Sapountzis P. Wolbachia horizontal transmission events in ants: what do we know and what can we learn?. Frontiers in microbiology 2019; 10: 296.
  • Tuncbilek AS., Bakir S., Derin I., Bilbil H. Screening of reproductive symbionts of Sitophilus granarius, Sitophilus zeamais and their parasitoid Lariophagus distinguendus. Integrated Protection of Stored Products IOBC-WPRS Bulletin 2015; 111: 511-517.
  • Vavre F., Fleury F., Lepetit D., Fouillet P., Bouletreau M. Phylogenetic evidence for horizontal transmission of Wolbachia in host-parasitoid associations. Molecular Biology and Evolution 1999; 16: 1711–1723.
  • Werren JH., Zhang W., Guo LR. Evolution and phylogeny of Wolbachia: reproductive parasites of arthropods. Proceedings of the Royal Society B: Biological Sciences 1995; 261: 55–63.
  • Weeks AR., Breeuwer JAJ. Wolbachia–induced parthenogenesis in a genus of phytophagous mites. Proceedings of the Royal Society B: Biological Sciences 2001; 268(1482): 2245-2251.
  • Werren JH. Biology of Wolbachia. Annual review of entomology 1997; 42(1): 587-609.
  • Werren JH., Windsor DM. Wolbachia infection frequencies in insects: evidence of a global equilibrium?. Proceedings of the Royal Society B: Biological Sciences 2000; 267(1450): 1277-1285.
  • Zug R., Hammerstein P. Still a host of hosts for Wolbachia: analysis of recent data suggests that 40% of terrestrial arthropod species are infected. PloS one 2012; 7(6): e38544.
  • Zhang D., Wang Y., He K., Yang Q., Gong M., Ji M., Chen L. Wolbachia limits pathogen infections through induction of host innate immune responses. Plos one 2020; 15(2): e0226736.
  • Zouache K., Voronin D., Tran-Van V., Mousson L., Failloux AB., Mavingui P. Persistent Wolbachia and cultivable bacteria infection in the reproductive and somatic tissues of the mosquito vector Aedes albopictus. PLoS One 2009; 4(7): e6388.

Investigation of Wolbachia Bacteria in Different Insect Taxa

Year 2022, Volume: 5 Issue: 3, 1733 - 1743, 12.12.2022
https://doi.org/10.47495/okufbed.1123332

Abstract

Arthropods are the most common living species considering their population densities and distribution. However, due to the increasing world population and drought due to global warming, it is necessary to develop environmentally friendly and effective alternative strategies in terms of both health and agricultural production, especially in the fight against harmful species. In this context, Wolbachia is promising due to its relations with its hosts. However, the symbiotic structure in arthropods varies with differences such as climate, geography and ecosystem. In this study, Wolbachia infection was investigated in insects that differ in their living conditions, hosts and ecological niches: Drosohphila melanosgaster (Diptera: Drosophilidae), Bemisia tabaci (Hemiptera: Aleyrodidae), Pulex irritans (Siphonaptera: Pulicidae), Eusomus ovulum (Coleoptera: Currioculionidae) and Lariophagus distinguendus (Hymenoptera: Pteromalidae). Wolbachia was screened with a specific Wspec F/R primer set and identified according to the sequence data of the obtained PCR products. Wolbachia was observed to have a widespread incidence in the species studied. A supergroup Wolbachia was found in fleas, vinegar flies and E. ovulum, and B supergroup Wolbachia in parsitoid bees and whiteflies. This is the first study in Turkey to report the presence of Wolbachia in E. ovulum, and it is thought that the data presented here will contribute to future studies.

References

  • Arthofer W., Riegler M., Schneider D., Krammer M., Miller WJ. Hidden Wolbachia diversity in field populations of the European cherry fruit fly, Rhagoletis cerasi (Diptera, Tephritidae). Molecular Ecology 2009; 18: 3816.3830.
  • Gerth M., Gansauge, MT., Weigert A., Bleidorn C. Phylogenomic analyses uncover origin and spread of the Wolbachia pandemic. Nature communications 2014; 5(1): 1-7.
  • Ahmed MZ., De Barro PJ., Ren SX., Greeff JM., Qiu BL. Evidence for horizontal transmission of secondary endosymbionts in the Bemisia tabaci Cryptic Species Complex. PLoS One 2013; 8: e53084.
  • Ahmed MZ., Li SJ., Xue X., Yin XJ., Ren SX., Jiggins FM., ... Qiu, BL. The intracellular bacterium Wolbachia uses parasitoid wasps as phoretic vectors for efficient horizontal transmission. PLOS Pathogens 2015; 11(2): e1004672.
  • Aikawa T., Maehara N., Ichihara Y., Masuya H., Nakamura K., Anbutsu H. Cytoplasmic incompatibility in the semivoltine longicorn beetle Acalolepta fraudatrix (Coleoptera: Cerambycidae) double infected with Wolbachia. Plos one 2022; 17(1): e0261928.
  • Altschul SF., Gish W., Miller W., Myers EW., Lipman DJ. Basic local alignment search tool. Journal of Molecular Biology 1990; 215 (3): 403e410.
  • Baldo L., Werren JH. Revisiting Wolbachia supergroup typing based on WSP: spurious lineages and discordance with MLST. Current microbiology 2007; 55(1): 81-87.
  • Bi J., Wang YF. The effect of the endosymbiont Wolbachia on the behavior of insect hosts. Insect science 2020; 27(5): 846-858.
  • Bourtzis K. Wolbachia- Based Technologies for Insect Pest Population Control. “In: Transgenesis and the Management of Vector-Borne Disease. Advances in Experimental Medicine and Biology. (ed) Aksoy, S., vol 627. Springer, New York; 2008.
  • Breeuwer JA., Werren JH. Microorganisms associated with chromosome destruction and reproductive isolation between two insect species. Nature 1990; 346(6284): 558-560.
  • Brown AN., Lloyd VK. Evidence for horizontal transfer of Wolbachia by a Drosophila mite. Experimental and Applied Acarology 2015; 66: 301–311.
  • Bruzzese DJ., Schuler H., Wolfe TM., Glover MM., Mastroni JV., Doellman MM., ... Feder JL. Testing the potential contribution of Wolbachia to speciation when cytoplasmic incompatibility becomes associated with host‐related reproductive isolation. Molecular Ecology 2021; 00: 1–16.
  • Doyle JJ., Doyle JL. Isolation of plant DNA from fresh tissue. Focus 1990; 12: 13-15.
  • Gang LIU., Shuo ZHAO., Hornok S., Meihua YANG., Hazihan W., Xinli GU., Yuanzhi WANG. Rickettsia aeschlimannii and Wolbachia endosymbiont in Ctenocephalides canis from Eurasian lynx (Lynx lynx) Near the China-Kazakhstan Border. Kafkas Üniversitesi Veteriner Fakültesi Dergisi 2020; 26(5).
  • Folmer O., Black M., Hoeh W., Lutz R., Vrijenhoek R. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Molecular Marine Biology and Biotechnology 1994; 3: 294–299.
  • Gomard Y., Flores O., Vıttecoq M., Blanchon T., Toty C., Duron O., .... Mccoy KD. Changes in bacterial diversity, composition and interactions during the development of the seabird tick Ornithodoros maritimus (Argasidae). Microbial Ecology 2021; 81: 3, 770-783.
  • Guo Y., Hoffmann AA., Xu XQ., Mo PW., Huang HJ., Gong JT., ... Hong XY. Vertical transmission of Wolbachia is associated with host vitellogenin in Laodelphax striatellus. Frontiers in microbiology 2018; 9: 2016.
  • Hamilton PT. Perlman SJ. Host defense via symbiosis in Drosophila. PLoS Pathog 2013; 9(12): e1003808.
  • Hancock PA., Sinkins SP., Godfray HCJ. Strategies for introducing Wolbachia to reduce transmission of mosquito-borne diseases. PLOS Neglected Tropical Diseases 2011; 5(4): e1024.
  • Hilgenboecker K., Hammerstein P., Schlattmann P., Telschow A., Werren JH. How many species are infected with Wolbachia?–a statistical analysis of current data. FEMS microbiology letters 2008; 281(2): 215-220.
  • Hou HQ., Zhao GZ., Su CY., Zhu DH. Wolbachia prevalence patterns: horizontal transmission, recombination, and multiple infections in chestnut gall wasp‐parasitoid communities. Entomologia Experimentalis et Applicata 2020; 168(10): 752-765.
  • Hughes GL., Allsopp PG., Brumbley SM., Woolfit M., McGraw EA. Variable infection frequency and high diversity of multiple strains of Wolbachia pipientis in Perkinsiella planthoppers. Applied and Environmental Microbiology 2011; 77: 2165.2168.
  • Hurst GD., Jiggins FM., Hinrich Graf von der Schulenburg J., Bertrand D., West SA., Goriacheva II., ... Majerus ME. Male–killing Wolbachia in two species of insect. Proceedings of the Royal Society of London. Series B: Biological Sciences 1999; 266(1420): 735-740.
  • Inci A., Yıldırım A., Düzlü O., Doganay M., Aksoy S. Tick-borne diseases in Turkey: A review based on one health perspective. PLOS Neglected Tropical Diseases 2016; 10: 12, e0005021.
  • İpekdal K., Kaya T. Screening stored wheat beetles for reproductive parasitic endosymbionts in central Turkey. Journal of Stored Products Research 2020; 89: 101732.
  • Johnson K. The impact of Wolbachia on virus infection in mosquitoes. Viruses 2015; 7(11): 5705-5717.
  • Kimura M. A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. Journal of Molecular Evolution 1980; 16: 111e120.
  • König K., Krimmer E., Brose S., Gantert C., Buschlüter I., König C., ... Steidle JL. Does early learning drive ecological divergence during speciation processes in parasitoid wasps?. Proceedings of the Royal Society B: Biological Sciences 2015; 282(1799): 20141850.
  • König K., Zundel P., Krimmer E., König C., Pollmann M., Gottlieb Y., Steidle JL. Reproductive isolation due to prezygotic isolation and postzygotic cytoplasmic incompatibility in parasitoid wasps. Ecology and evolution 2019; 9(18): 10694-10706.
  • Kumar S., Stecher G., Li M., Knyaz C., Tamura K. Mega X: molecular evolutionary genetics analysis across computing platforms. Molecular Biology and Evolution 2018; 35: 1547e1549. Laidoudi Y., Levasseur A., Medkour H., Maaloum M., Ben Khedher M., Sambou M., ... Mediannikov O. An Earliest Endosymbiont, Wolbachia massiliensis sp. nov., Strain PL13 from the Bed Bug (Cimex hemipterus), Type Strain of a New Supergroup T. International journal of molecular sciences 2020; 21(21): 8064.
  • Le Clec’h W., Chevalier FD., Genty L., Bertaux J., Bouchon D., Sicard M. Cannibalism and predation as paths for horizontal passage of Wolbachia between terrestrial isopods. PloS one 2013; 8: e60232.
  • Lefoulon E., Clark T., Borveto F., Perriat-Sanguinet M., Moulia C., Slatko BE., Gavotte L. Pseudoscorpion Wolbachia symbionts: diversity and evidence for a new supergroup S. BMC microbiology 2020; 20(1): 1-15.
  • Li SJ., Ahmed MZ., Lv N., Shi PQ., Wang XM., Huang JL., Qiu BL. Plantmediated horizontal transmission of Wolbachia between whiteflies. The ISME journal 2017; 11(4): 1019-1028.
  • Lo N., Casiraghi M., Salati E., Bazzocchi C., Bandi C. How many Wolbachia supergroups exist?. Molecular biology and evolution 2002; 19(3): 341-346.
  • Madhav M., Baker D., Morgan JA., Asgari S. James P. Wolbachia: A tool for livestock ectoparasite control. Veterinary parasitology 2020; 288: 109297.
  • Marvaldi AE., Del Río MG., Pereyra VA., Rocamundi N., Lanteri AA. A combined molecular and morphological approach to explore the higher phylogeny of entimine weevils (Coleoptera: Curculionidae), with special reference to South American taxa. Diversity 2018; 10(3): 95.
  • Mazur MA., Holecová M., Lachowska‐Cierlik D., Lis A., Kubisz D., Kajtoch Ł. Selective sweep of Wolbachia and parthenogenetic host genomes–the example of the weevil Eusomus ovulum. Insect Molecular Biology 2016; 25(6): 701-711.
  • Morozov-Leonov SY., Nazarenko VY. Genetic differentiation of Ukrainian populations of Eusomus ovulum (Coleoptera, Curculionidae): evidence of multiple hybrid speciation. Zoodiversity 2021; 55(1).
  • Onder Z., Ciloglu A., Duzlu O., Yildirim A., Okur M., Yetismis G., Inci A. Molecular detection and identification of Wolbachia endosymbiont in fleas (Insecta: Siphonaptera). Folia microbiologica 2019; 64(6), 789-796.
  • Oteo JA., Portillo A., Portero F., Zavala-Castro J., Venzal JM. Labruna MB. Candidatus Rickettsia asemboensis’ and Wolbachia spp. in Ctenocephalides felis and Pulex irritans fleas removed from dogs in Ecuador. Parasites & vectors 2014; 7(1): 1-5.
  • Pagendam DE., Trewin BJ., Snoad N., Ritchie SA., Hoffmann AA., Staunton KM., ... Beebe N. Modelling the Wolbachia incompatible insect technique: strategies for effective mosquito population elimination. BMC biology 2020; 18(1): 1-13.
  • Rigaud T. Juchault P. Success and failure of horizontal transfers of feminizing Wolbachia endosymbionts in woodlice. Journal of Evolutionary Biology 1995: 8(2); 249-255.
  • Taylor MJ., Hoerauf A. Wolbachia bacteria of filarial nematodes. Parasitology Today 1999; 15(11): 437-442.
  • Thompson JD., Higgins DG., Gibson TJ. ClustalW: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Research 1994; 22 (22): 4673e4680. Tijsse-Klasen E., Braks M., Scholte EJ., Sprong H. Parasites of vectors-Ixodiphagus hookeri and its Wolbachia symbionts in ticks in the Netherlands. Parasites & vectors 2011; 4(1): 1-7.
  • Tolley SJ., Nonacs P., Sapountzis P. Wolbachia horizontal transmission events in ants: what do we know and what can we learn?. Frontiers in microbiology 2019; 10: 296.
  • Tuncbilek AS., Bakir S., Derin I., Bilbil H. Screening of reproductive symbionts of Sitophilus granarius, Sitophilus zeamais and their parasitoid Lariophagus distinguendus. Integrated Protection of Stored Products IOBC-WPRS Bulletin 2015; 111: 511-517.
  • Vavre F., Fleury F., Lepetit D., Fouillet P., Bouletreau M. Phylogenetic evidence for horizontal transmission of Wolbachia in host-parasitoid associations. Molecular Biology and Evolution 1999; 16: 1711–1723.
  • Werren JH., Zhang W., Guo LR. Evolution and phylogeny of Wolbachia: reproductive parasites of arthropods. Proceedings of the Royal Society B: Biological Sciences 1995; 261: 55–63.
  • Weeks AR., Breeuwer JAJ. Wolbachia–induced parthenogenesis in a genus of phytophagous mites. Proceedings of the Royal Society B: Biological Sciences 2001; 268(1482): 2245-2251.
  • Werren JH. Biology of Wolbachia. Annual review of entomology 1997; 42(1): 587-609.
  • Werren JH., Windsor DM. Wolbachia infection frequencies in insects: evidence of a global equilibrium?. Proceedings of the Royal Society B: Biological Sciences 2000; 267(1450): 1277-1285.
  • Zug R., Hammerstein P. Still a host of hosts for Wolbachia: analysis of recent data suggests that 40% of terrestrial arthropod species are infected. PloS one 2012; 7(6): e38544.
  • Zhang D., Wang Y., He K., Yang Q., Gong M., Ji M., Chen L. Wolbachia limits pathogen infections through induction of host innate immune responses. Plos one 2020; 15(2): e0226736.
  • Zouache K., Voronin D., Tran-Van V., Mousson L., Failloux AB., Mavingui P. Persistent Wolbachia and cultivable bacteria infection in the reproductive and somatic tissues of the mosquito vector Aedes albopictus. PLoS One 2009; 4(7): e6388.
There are 54 citations in total.

Details

Primary Language English
Subjects Structural Biology
Journal Section RESEARCH ARTICLES
Authors

Tayfun Kaya 0000-0001-9086-4520

Publication Date December 12, 2022
Submission Date May 30, 2022
Acceptance Date September 8, 2022
Published in Issue Year 2022 Volume: 5 Issue: 3

Cite

APA Kaya, T. (2022). Investigation of Wolbachia Bacteria in Different Insect Taxa. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 5(3), 1733-1743. https://doi.org/10.47495/okufbed.1123332
AMA Kaya T. Investigation of Wolbachia Bacteria in Different Insect Taxa. Osmaniye Korkut Ata University Journal of Natural and Applied Sciences. December 2022;5(3):1733-1743. doi:10.47495/okufbed.1123332
Chicago Kaya, Tayfun. “Investigation of Wolbachia Bacteria in Different Insect Taxa”. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi 5, no. 3 (December 2022): 1733-43. https://doi.org/10.47495/okufbed.1123332.
EndNote Kaya T (December 1, 2022) Investigation of Wolbachia Bacteria in Different Insect Taxa. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi 5 3 1733–1743.
IEEE T. Kaya, “Investigation of Wolbachia Bacteria in Different Insect Taxa”, Osmaniye Korkut Ata University Journal of Natural and Applied Sciences, vol. 5, no. 3, pp. 1733–1743, 2022, doi: 10.47495/okufbed.1123332.
ISNAD Kaya, Tayfun. “Investigation of Wolbachia Bacteria in Different Insect Taxa”. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi 5/3 (December 2022), 1733-1743. https://doi.org/10.47495/okufbed.1123332.
JAMA Kaya T. Investigation of Wolbachia Bacteria in Different Insect Taxa. Osmaniye Korkut Ata University Journal of Natural and Applied Sciences. 2022;5:1733–1743.
MLA Kaya, Tayfun. “Investigation of Wolbachia Bacteria in Different Insect Taxa”. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi, vol. 5, no. 3, 2022, pp. 1733-4, doi:10.47495/okufbed.1123332.
Vancouver Kaya T. Investigation of Wolbachia Bacteria in Different Insect Taxa. Osmaniye Korkut Ata University Journal of Natural and Applied Sciences. 2022;5(3):1733-4.

23487


196541947019414

19433194341943519436 1960219721 197842261021238 23877

*This journal is an international refereed journal 

*Our journal does not charge any article processing fees over publication process.

* This journal is online publishes 5 issues per year (January, March, June, September, December)

*This journal published in Turkish and English as open access. 

19450 This work is licensed under a Creative Commons Attribution 4.0 International License.