Research Article
BibTex RIS Cite

Kendiliğinden Yerleşen Hafif Betonda Mermer Tozu Kullanımının Araştırılması

Year 2022, Volume: 5 Issue: 3, 1184 - 1200, 12.12.2022
https://doi.org/10.47495/okufbed.981460

Abstract

Bu çalışmada, doğal kaynaklarımızdan biri olan Nevşehir bölgesine ait asidik pomza agregası ile Kırşehir bölgesinden elde edilen endüstriyel atık olan atık mermer tozunun kullanılması sonucu kendiliğinden yerleşen hafif beton üretilmesi amaçlanmaktadır. çimento ikame malzemesi olarak farklı oranlarda (%0, %5, %10 ve %15). Çalışma sonucunda fiziksel ve mekanik olarak kendiliğinden yerleşen hafif betondan üstün bir yapı malzemesi elde edilmesi hedeflenmiştir.

Bu kapsamda, kendiliğinden yerleşen hafif betonların taze ve sertleşmiş özellikleri araştırılmıştır. Taze beton özelliklerini belirlemek için; taze beton birim ağırlık, çökme-yayılma, V hunisi, L kutu ve U kutu testi ve taze beton birim hacim ağırlık testi yapılmıştır. Sertleşmiş beton özelliklerini belirlemek için su emme, kuru birim ağırlık testi, basınç dayanımı testi, yarmada çekme dayanımı testleri uygulanmıştır.

Çalışma sonucunda; %15 mermer tozu kullanımının uygun olacağı kendiliğinden yerleşen hafif beton üretiminde kullanılmasında bir sakınca olmadığı belirlenmiştir. Mermer tozu gibi endüstriyel atıkların beton üretiminde kullanılması hem çevre kirliliği hem de sürdürülebilirlik açısından önemlidir.

References

  • [1]Khodabakhshian, A., Ghalehnovi, M., Brito, J., & Shamsabadi, E.A. (2018a). Durability performance of structural concrete containing silica füme and marble industry waste powder. Journal of Cleaner Production, 170 (2018), 42-60.
  • [2]Choudhary, R., Gupta, R., Nagar, R., & Jain, A. (2020). Sorptivity characteristics of high strength self-consolidating concrete produced by marble waste powder, fly ash, and micro silica. Materials Today: Proceedings, 32(2020), 531-535.
  • [3] Hasar, U.C., Şimsek, O., & Aydın, A.C. (2010). Application of varying-frequency amplitude only technique for electrical characterization of hardened cement-based materials, Microwave and Optical Technology Letters, 52 (4) (2010) 801–805.
  • [4]Erdogan, T. (2003). Beton, ODTÜ Yayıncılık, Ankara.
  • [5] Çelik, Y. (2021). Early Age Performance and Mechanical Characteristics Of Concrete Which is Used in Service Buildings. M.Sc. Thesis, Gaziantep University Graduate School Of Natural & Applied Sciences, Gaziantep.
  • [6] Aslan, S. (2020). Investigation of the Effects of Glass Fiber Reinforcement on Concrete.
  • [7] Topçuoğlu, Z. (2021). Self Compacting Heavy Concrete Using Barite Aggregate
  • [8] Ağsu, A. S. (2019). Investigation of Strength and Rapid Chlorine Permeability of Self-Compacting Concrete, Master Thesis, Atatürk University Institute of Science and Technology. Erzurum.
  • [9] Zarrog, M.H.T. (2020). Investigation of the Use of Fly Ash and Marble Dust in the Production of Self-Compacting Concrete. Master Thesis, Kastamonu University Institute of Science and Technology, Kastamonu.
  • [10] Danish, P., & Ganesh, G.M. (2021). Study on influence of metakaolin and waste marble powder on self-compacting concrete – A state of the art review. Materials Today: Proceedings, 44(2021), 1428-1436.
  • [11] Aruntaş, Y.H., Dayı, M.,Tekin, İ., Birgül, R., & Şimşek, O., (2007). Effect of waste marble dust on self-compacting concrete properties, 2. Chemical Additives in Structures Symposium, 173-180.
  • [12] Lo, T.Y., Tang, P.W.C., Cui, H.Z., & Nadeem, A. (2007). Comparison of workability andmechanical properties of self-compacting lightweight concrete and normalself-compacting concrete. Materials Research Innovations, 11 (1), 45–50.
  • [13] Altalabani, D., Bzeni, D.K.H., & Linsel, S. (2020). Mechanical properties and load deflection relationship of polypropylene fiber reinforced self-compacting lightweight concrete. Construction and Building Materials 252(2020), 119084.
  • [14] Awal, A. & Mohammadhosseini, H. (2016). Green concrete production incorporating waste carpet fiber and palm oil fuel ash, Journal of Cleaner Production (137), 157-166.
  • [15] Benjeddou, O., Alyousef, R., Mohammadhosseini, H., Soussi, C., Khadimallah, M.A., Alabduljabbar, H., & Tahir, M. (2020). Utilisation of waste marble powder as low-cost cementing materials in the production of mortar. Journal of Building Engineering, 32(2020), 101642.
  • [16] Ashish, D.K. (2019). Concrete made with waste marble powder and supplementary cementitious material for sustainable development. Journal of Cleaner Production, 211 (2019) 716–729.
  • [17] Mohammadhosseini, H., Lim, N.H.A.S., Tahir, M.M., Alyousef, R., Samadi, M., Alabduljabbar, H., & Mohamed, A.M. (2020). Effects of waste ceramic as cement and fine aggregate on durability performance of sustainable mortar, Arabian Journal for Science and Engineering, 45 (2020), 3623–3634.
  • [18] TS EN 197-1, (2012). “Cement- Part 1: General cements - Composition, properties and conformity criteria" Turkish Standards Institute, Ankara.
  • [19] EFNARC, (2002). Specifications and Guidelines for Self-Compacting Concrete.
  • [20] Uysal, M. & Sümer, M.,(2011). Performance of self-compacting concrete containing different mineral admixtures. Construction and Building Materials, 25, 4112–4120.
  • [21] Şahmaran, M., Christiano, H.A., & Yaman, İ.Ö., (2006). The effect of chemical admixtures and mineral additives on the properties of self-compacting mortars. Cement and Concrete Composites 28, 432-440.
  • [22] Hallal, A., Kadri, E.H., Ezziane, K., Kadri, A. & Khelafi, H., (2010). Combined effect of mineral admixtures with superplasticizers on the fluidity of the blended cement paste, Construction and Building Materials, 24(8), 1418–1423.
  • [23] Gesoğlu, M., Güneyisi, E., Kocabağ, M.E., Bayram, V. & Mermerdaş¸ K., (2012). Fresh and hardened characteristics of self compacting concretes made with combined use of marble powder, limestone filler and fly ash. Construction and Building Materials, 37,160-170.
  • [24] Türkmenoğlu, Z.F., Kılıç, A.M. & Depci, T. (2015). Investigation of mechanical properties of self-compacting lightweight concrete produced with Van pumice and marble dust wastes, Journal of Çukurova University Faculty of Engineering and Architecture, 30(1), 105-116.
  • [25] Uysal, M., (2010). Investigation of Mechanical Properties and Durability of Self-Compacting Concretes Produced Using Mineral Additives. Doctoral Thesis, Sakarya University Institute of Science and Technology, Sakarya.
  • [26] TS EN 12390-6, (2010). Concrete-Hardened Concrete Tests, Chapter 6: Determination of Splitting Tensile Strength of Test Samples. Turkish Standards Institute, Ankara.
  • [27] Chindaprasirt, P., & Rattanasak, U., (2011). Shrinkage behavior of structural foam lightweight concrete containing glycol compounds and fly ash. Materials & Design, 32, 723-727.
  • [28] Jitchaiyaphum, K., Sinsiri, T., Jaturapitakkul, C., & Chindaprasirt, P., (2013). Cellular lightweight concrete containing high-calcium fly ash and natural zeolite. International Journal of Minerals, Metallurgy and Materials, 20 (5), 462-471.
  • [29] TS EN 206-1, (2010). Concrete - Part 1: Feature, performance, manufacturing and conformity, Turkish Standards Institute, Ankara.
  • [30] TS EN 12390-3, (2010). Concrete-Hardened concrete tests-Part 3: Determination of compressive strength in test samples, Turkish Standards Institute, Ankara.
  • [31] Vijayalakshmi, M., Sekar, ASS., & Prabhu, G.G., (2013). Strength And Durability
  • [32] Arshad, A., Shahid, I., Anwar, U.H.C., Baig, M.N., Khan, S., & Shakir, K., (2014). The wastes utility in concrete. International Journal of Environment Research, 8(4), 1323-1328.
  • [33] Aruntaş, H.Y., Gürü, M., Dayı, M., & Tekin, İ. (2010). Utilization of waste marble dust as an additive in cement production. Materials and Design, 31 (2010), 4039–4042.
  • [34] Shirule, P.A., Rahman, A., & Gupta, R.D., (2012). Partial replacement of cement with marble dust powder. International Journal of Advanced Engineering Research and Studies, 1(3), 175-177.
  • [35] Omar, M.O., Elhameed, G.D., Sherıf, M.A., & Mohamadıen, H.A., (2012). Influence of Limestone Waste as Partial Material For Sand And Marble Powder In Concrete Properties. Housing an Building National Research Center, 8, 193-203.
  • [36] Uysal, M. & Yılmaz, K. (2011). Effect of mineral admixtures on properties of self-compacting concrete. Cement and Concrete Composites, 33(7), 771-776.

Researching the Use of Marble Powder in Self-Compacting Light Concrete

Year 2022, Volume: 5 Issue: 3, 1184 - 1200, 12.12.2022
https://doi.org/10.47495/okufbed.981460

Abstract

In this study, it is aimed to produce self-compacting lightweight concrete as a result of using acidic pumice aggregate belonging to Nevşehir region, which is one of our natural resources, and waste marble dust, which is industrial waste and obtained from Kırşehir region, at different rates (0%, 5%, 10% and 15%) as cement substitute material. As a result of the study, it is aimed to obtain a building material that is superior to the self-compacting lightweight concrete in physical and mechanical terms.

In this context, the fresh and hardened properties of self-compacting lightweight concretes were investigated. To determine the fresh concrete properties; fresh concrete unit weight, slump-sprawl, V funnel, L box and U box test and fresh concrete unit volume weight test were carried out. In order to determine the hardened concrete properties, water absorption, dry unit weight test, compressive strength test, splitting tensile strength tests were applied.

As a result of the study; it has been determined that there is no harm in using it in the production of self-compacting lightweight concrete, where the use of 15% marble powder will be appropriate. The use of industrial wastes such as marble dust in concrete production is important in terms of both environmental pollution and sustainability.

References

  • [1]Khodabakhshian, A., Ghalehnovi, M., Brito, J., & Shamsabadi, E.A. (2018a). Durability performance of structural concrete containing silica füme and marble industry waste powder. Journal of Cleaner Production, 170 (2018), 42-60.
  • [2]Choudhary, R., Gupta, R., Nagar, R., & Jain, A. (2020). Sorptivity characteristics of high strength self-consolidating concrete produced by marble waste powder, fly ash, and micro silica. Materials Today: Proceedings, 32(2020), 531-535.
  • [3] Hasar, U.C., Şimsek, O., & Aydın, A.C. (2010). Application of varying-frequency amplitude only technique for electrical characterization of hardened cement-based materials, Microwave and Optical Technology Letters, 52 (4) (2010) 801–805.
  • [4]Erdogan, T. (2003). Beton, ODTÜ Yayıncılık, Ankara.
  • [5] Çelik, Y. (2021). Early Age Performance and Mechanical Characteristics Of Concrete Which is Used in Service Buildings. M.Sc. Thesis, Gaziantep University Graduate School Of Natural & Applied Sciences, Gaziantep.
  • [6] Aslan, S. (2020). Investigation of the Effects of Glass Fiber Reinforcement on Concrete.
  • [7] Topçuoğlu, Z. (2021). Self Compacting Heavy Concrete Using Barite Aggregate
  • [8] Ağsu, A. S. (2019). Investigation of Strength and Rapid Chlorine Permeability of Self-Compacting Concrete, Master Thesis, Atatürk University Institute of Science and Technology. Erzurum.
  • [9] Zarrog, M.H.T. (2020). Investigation of the Use of Fly Ash and Marble Dust in the Production of Self-Compacting Concrete. Master Thesis, Kastamonu University Institute of Science and Technology, Kastamonu.
  • [10] Danish, P., & Ganesh, G.M. (2021). Study on influence of metakaolin and waste marble powder on self-compacting concrete – A state of the art review. Materials Today: Proceedings, 44(2021), 1428-1436.
  • [11] Aruntaş, Y.H., Dayı, M.,Tekin, İ., Birgül, R., & Şimşek, O., (2007). Effect of waste marble dust on self-compacting concrete properties, 2. Chemical Additives in Structures Symposium, 173-180.
  • [12] Lo, T.Y., Tang, P.W.C., Cui, H.Z., & Nadeem, A. (2007). Comparison of workability andmechanical properties of self-compacting lightweight concrete and normalself-compacting concrete. Materials Research Innovations, 11 (1), 45–50.
  • [13] Altalabani, D., Bzeni, D.K.H., & Linsel, S. (2020). Mechanical properties and load deflection relationship of polypropylene fiber reinforced self-compacting lightweight concrete. Construction and Building Materials 252(2020), 119084.
  • [14] Awal, A. & Mohammadhosseini, H. (2016). Green concrete production incorporating waste carpet fiber and palm oil fuel ash, Journal of Cleaner Production (137), 157-166.
  • [15] Benjeddou, O., Alyousef, R., Mohammadhosseini, H., Soussi, C., Khadimallah, M.A., Alabduljabbar, H., & Tahir, M. (2020). Utilisation of waste marble powder as low-cost cementing materials in the production of mortar. Journal of Building Engineering, 32(2020), 101642.
  • [16] Ashish, D.K. (2019). Concrete made with waste marble powder and supplementary cementitious material for sustainable development. Journal of Cleaner Production, 211 (2019) 716–729.
  • [17] Mohammadhosseini, H., Lim, N.H.A.S., Tahir, M.M., Alyousef, R., Samadi, M., Alabduljabbar, H., & Mohamed, A.M. (2020). Effects of waste ceramic as cement and fine aggregate on durability performance of sustainable mortar, Arabian Journal for Science and Engineering, 45 (2020), 3623–3634.
  • [18] TS EN 197-1, (2012). “Cement- Part 1: General cements - Composition, properties and conformity criteria" Turkish Standards Institute, Ankara.
  • [19] EFNARC, (2002). Specifications and Guidelines for Self-Compacting Concrete.
  • [20] Uysal, M. & Sümer, M.,(2011). Performance of self-compacting concrete containing different mineral admixtures. Construction and Building Materials, 25, 4112–4120.
  • [21] Şahmaran, M., Christiano, H.A., & Yaman, İ.Ö., (2006). The effect of chemical admixtures and mineral additives on the properties of self-compacting mortars. Cement and Concrete Composites 28, 432-440.
  • [22] Hallal, A., Kadri, E.H., Ezziane, K., Kadri, A. & Khelafi, H., (2010). Combined effect of mineral admixtures with superplasticizers on the fluidity of the blended cement paste, Construction and Building Materials, 24(8), 1418–1423.
  • [23] Gesoğlu, M., Güneyisi, E., Kocabağ, M.E., Bayram, V. & Mermerdaş¸ K., (2012). Fresh and hardened characteristics of self compacting concretes made with combined use of marble powder, limestone filler and fly ash. Construction and Building Materials, 37,160-170.
  • [24] Türkmenoğlu, Z.F., Kılıç, A.M. & Depci, T. (2015). Investigation of mechanical properties of self-compacting lightweight concrete produced with Van pumice and marble dust wastes, Journal of Çukurova University Faculty of Engineering and Architecture, 30(1), 105-116.
  • [25] Uysal, M., (2010). Investigation of Mechanical Properties and Durability of Self-Compacting Concretes Produced Using Mineral Additives. Doctoral Thesis, Sakarya University Institute of Science and Technology, Sakarya.
  • [26] TS EN 12390-6, (2010). Concrete-Hardened Concrete Tests, Chapter 6: Determination of Splitting Tensile Strength of Test Samples. Turkish Standards Institute, Ankara.
  • [27] Chindaprasirt, P., & Rattanasak, U., (2011). Shrinkage behavior of structural foam lightweight concrete containing glycol compounds and fly ash. Materials & Design, 32, 723-727.
  • [28] Jitchaiyaphum, K., Sinsiri, T., Jaturapitakkul, C., & Chindaprasirt, P., (2013). Cellular lightweight concrete containing high-calcium fly ash and natural zeolite. International Journal of Minerals, Metallurgy and Materials, 20 (5), 462-471.
  • [29] TS EN 206-1, (2010). Concrete - Part 1: Feature, performance, manufacturing and conformity, Turkish Standards Institute, Ankara.
  • [30] TS EN 12390-3, (2010). Concrete-Hardened concrete tests-Part 3: Determination of compressive strength in test samples, Turkish Standards Institute, Ankara.
  • [31] Vijayalakshmi, M., Sekar, ASS., & Prabhu, G.G., (2013). Strength And Durability
  • [32] Arshad, A., Shahid, I., Anwar, U.H.C., Baig, M.N., Khan, S., & Shakir, K., (2014). The wastes utility in concrete. International Journal of Environment Research, 8(4), 1323-1328.
  • [33] Aruntaş, H.Y., Gürü, M., Dayı, M., & Tekin, İ. (2010). Utilization of waste marble dust as an additive in cement production. Materials and Design, 31 (2010), 4039–4042.
  • [34] Shirule, P.A., Rahman, A., & Gupta, R.D., (2012). Partial replacement of cement with marble dust powder. International Journal of Advanced Engineering Research and Studies, 1(3), 175-177.
  • [35] Omar, M.O., Elhameed, G.D., Sherıf, M.A., & Mohamadıen, H.A., (2012). Influence of Limestone Waste as Partial Material For Sand And Marble Powder In Concrete Properties. Housing an Building National Research Center, 8, 193-203.
  • [36] Uysal, M. & Yılmaz, K. (2011). Effect of mineral admixtures on properties of self-compacting concrete. Cement and Concrete Composites, 33(7), 771-776.
There are 36 citations in total.

Details

Primary Language Turkish
Subjects Civil Engineering
Journal Section RESEARCH ARTICLES
Authors

Celal Özdemir This is me 0000-0002-8489-3568

Hakan Çağlar 0000-0002-1380-8637

Adem Ahıskalı 0000-0002-1265-7312

Selçuk Çimen This is me 0000-0003-4536-7693

Çağrı Avan 0000-0002-4068-7631

Publication Date December 12, 2022
Submission Date August 12, 2021
Acceptance Date March 17, 2022
Published in Issue Year 2022 Volume: 5 Issue: 3

Cite

APA Özdemir, C., Çağlar, H., Ahıskalı, A., Çimen, S., et al. (2022). Kendiliğinden Yerleşen Hafif Betonda Mermer Tozu Kullanımının Araştırılması. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 5(3), 1184-1200. https://doi.org/10.47495/okufbed.981460
AMA Özdemir C, Çağlar H, Ahıskalı A, Çimen S, Avan Ç. Kendiliğinden Yerleşen Hafif Betonda Mermer Tozu Kullanımının Araştırılması. Osmaniye Korkut Ata University Journal of Natural and Applied Sciences. December 2022;5(3):1184-1200. doi:10.47495/okufbed.981460
Chicago Özdemir, Celal, Hakan Çağlar, Adem Ahıskalı, Selçuk Çimen, and Çağrı Avan. “Kendiliğinden Yerleşen Hafif Betonda Mermer Tozu Kullanımının Araştırılması”. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi 5, no. 3 (December 2022): 1184-1200. https://doi.org/10.47495/okufbed.981460.
EndNote Özdemir C, Çağlar H, Ahıskalı A, Çimen S, Avan Ç (December 1, 2022) Kendiliğinden Yerleşen Hafif Betonda Mermer Tozu Kullanımının Araştırılması. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi 5 3 1184–1200.
IEEE C. Özdemir, H. Çağlar, A. Ahıskalı, S. Çimen, and Ç. Avan, “Kendiliğinden Yerleşen Hafif Betonda Mermer Tozu Kullanımının Araştırılması”, Osmaniye Korkut Ata University Journal of Natural and Applied Sciences, vol. 5, no. 3, pp. 1184–1200, 2022, doi: 10.47495/okufbed.981460.
ISNAD Özdemir, Celal et al. “Kendiliğinden Yerleşen Hafif Betonda Mermer Tozu Kullanımının Araştırılması”. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi 5/3 (December 2022), 1184-1200. https://doi.org/10.47495/okufbed.981460.
JAMA Özdemir C, Çağlar H, Ahıskalı A, Çimen S, Avan Ç. Kendiliğinden Yerleşen Hafif Betonda Mermer Tozu Kullanımının Araştırılması. Osmaniye Korkut Ata University Journal of Natural and Applied Sciences. 2022;5:1184–1200.
MLA Özdemir, Celal et al. “Kendiliğinden Yerleşen Hafif Betonda Mermer Tozu Kullanımının Araştırılması”. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi, vol. 5, no. 3, 2022, pp. 1184-00, doi:10.47495/okufbed.981460.
Vancouver Özdemir C, Çağlar H, Ahıskalı A, Çimen S, Avan Ç. Kendiliğinden Yerleşen Hafif Betonda Mermer Tozu Kullanımının Araştırılması. Osmaniye Korkut Ata University Journal of Natural and Applied Sciences. 2022;5(3):1184-200.

23487


196541947019414

19433194341943519436 1960219721 197842261021238 23877

*This journal is an international refereed journal 

*Our journal does not charge any article processing fees over publication process.

* This journal is online publishes 5 issues per year (January, March, June, September, December)

*This journal published in Turkish and English as open access. 

19450 This work is licensed under a Creative Commons Attribution 4.0 International License.