Review
BibTex RIS Cite

Deri Endüstrisinde Krom Kullanımı ve Biyolojik Yöntemlerle Krom Giderimi

Year 2023, Volume: 6 Issue: 1, 1006 - 1029, 10.03.2023
https://doi.org/10.47495/okufbed.1089874

Abstract

Endüstriyel faaliyetler, zirai ve evsel atıklar sonucu atık sularda bazen eser miktarda bazen de yüksek konsantrasyonda metaller bulunmaktadır. Metaller sularda çözünmüş halde bulunarak ya da su dibinde toplanarak kimyasal kirliliğe ve de çevre kirliliğine neden olmakta ve canlı sağlığı için de tehdit oluşturmaktadır. Deri sanayinde fazla miktarda su kullanılmakta olup, oluşan atık sular yüksek oranda kirletici madde içermektedir. Deri işleme sonucu oluşan atık suyun arıtılmadan alıcı ortama verilmesi durumunda, temiz su kaynakları kirlenmekte ve kullanımı kısıtlanmaktadır. Bu nedenle atık sularının, çevreye deşarj edilmeden önce uygun tekniklerle bertaraf edilip zararlı etkisinin azaltılması ve/veya giderilmesi oldukça önemlidir. Atık sulardan ağır metallerin uzaklaştırılmasında fiziksel ve kimyasal yöntemler etkin olarak kullanılırken, özellikle son yıllarda biyolojik yöntemlerle giderim işlemi de yaygınlık kazanmıştır. Kirleticilerin mikroorganizmalar tarafından biyolojik olarak parçalanarak, çevreye daha az zararlı bileşiklere dönüştürülmesi biyolojik yöntemlerle uzaklaştırma işleminin temelini oluşturmaktadır. Bu derleme çalışmasında, endüstrinin birçok dalında etkin olarak kullanılan yüksek toksik özellikteki Cr(VI)’nın mikrobiyal yöntemler ile daha az toksik Cr(III)’e indirgenmesinin önemi vurgulanmaya çalışılmıştır.

References

  • Abalı Y., Öztekin B., Çanlı M., Şirin K. Deri sanayi atık sularından krom (VI) iyonunun adsorbsiyonu. Celal Bayar Üniversitesi Fen Bilimleri Dergisi 2014; 10(1), 11-24. ISSN 1305-1385. DOI: https://doi.org/10.18466/cbufbe.36355.
  • Abbaszadeh-Dahaji P., Omidvari M., Ghorbanpour M. Increasing phytoremediation efficiency of heavy metal-contaminated soil using PGPR for sustainable agriculture. In Plant-Microbe Interaction: An Approach to Sustainable Agriculture; Choudhary, D.K., Varma, A., Tuteja, N., Eds.; Springer: New Delhi, India 2016; 187-204. 91.
  • Abinandan S., Subashchandrabose S.R., Venkateswarlu K., Perera I.A., Megharaj M. Acid-tolerant microalgae can withstand higher concentrations of invasive cadmium and produce sustainable biomass and biodiesel at pH 3,5. Bioresource Technology 2019; 281, 469-473. DOI: 10.1016/j.biortech.2019.03.001.
  • Aggarwal R., Saini D., Sonkar S.K., Sonker A.K., Westman G. Sunlight promoted removal of toxic hexavalent chromium by cellulose derived photoactive carbon dots. Chemosphere 2022; 287, 3, 132287. DOI: https://doi.org/10.1016/j.chemosphere.2021.132287.
  • Agrawal R., Singh R., Verma A., Panwar P., Verma A.K. Partial purification and characterization of alkaline protease from Bacillus sp. isolated from soil. World Journal of Agricultural Sciences 2012; 8(1), 129-133. ISSN 1817-3047.
  • Ahemad M. Bacterial mechanisms for Cr(VI) resistance and reduction: An overview and recent advances. Folia Microbiologica 2014; 59(4), 321-332. DOI: 10.1007/s12223-014-0304-8.
  • Ahmad W.A., Venil C.K., Chirwa E.M.N., Wang Y.T., Sani M.H., Samad A.F.A., Kamaroddin M.F.A., Donati E.R., Urbieta M.S., Zakaria Z.A. Bacterial reduction of Cr(VI): Operational challenges and feasibility. Current Pollution Reports 2021; 7: 115-127. DOI: https://doi.org/10.1007/s40726-021-00174-8.
  • Al-Dhabi N.A., Arasu M.V. Biosorption of hazardous waste from the municipal wastewater by marine algal biomass. Environmental Research 2022; 204, 112115. DOI: https://doi.org/10.1016/j.envres.2021.112115.
  • Ali H., Khan E., Sajad M.A. Phytoremediation of heavy metals-Concepts and applications. Chemosphere 2013; 91(7), 869-881. DOI: https://doi.org/10.1016/j.chemosphere.2013.01.075.
  • Ayele A., Godeto Y.G. Bioremediation of Chromium by Microorganisms and Its Mechanisms Related to Functional Groups. Hindawi Journal of Chemistry 2021; Article ID 7694157, 21. DOI: https://doi.org/10.1155/2021/7694157.
  • Bai Y.N., Luc Y.Z., Shenc N., Lau T.C., Zeng R.J. Investigation of Cr(VI) reduction potential and mechanism by Caldicellulosiruptor saccharolyticus under glucose fermentation condition. Journal of Hazardous Materials 2018; 344, 585-592. DOI: 10.1016/j.jhazmat.2017.10.059.
  • Balaji S., Kalaivani T., Sushma B., Pillai C.V., Shalini M., Rajasekaran C. Characterization of sorption sites and differential stress response of microalgae isolates against tannery effluents from ranipet industrial area-an application towards phycoremediation. International Journal of Phytoremediation 2016; 18 (8), 747-753. DOI:https://doi.org/10.1080/15226514.2015.1115960.
  • Beretta G., Daghio M., Espinoza Tofalos A., Franzetti A., Mastorgio A.F., Saponaro, S., Sezenna, E. Progress towards bioelectrochemical remediation of hexavalent chromium. Water 2019; 11:2336. DOI: 10.3390/w11112336.
  • Beukes J.P., du Preez S.P. van Zyl P.G., Paktunc D., Fabritius T., Paatalo, M., Cramer, M. Review of Cr(VI) environmental practices in the chromite mining and smelting industry- Relevance to development of the Ring of Fire. Canada. Journal of Cleaner Production 2017; 165, 874-889. DOI. https://doi.org/10.1016/j.jclepro.2017.07.176.
  • Bharagava R.N. and Mishra S. Hexavalent chromium reduction potential of Cellulosimicrobium sp. isolated from common effluent treatment plant of tannery industries. Ecotoxicology and Environmental Safety 2018; 147, 102-109. DOI: 10.1016/j.ecoenv.2017.08.040.
  • Biswas S.K., Lisa L.A., Rubaya R., Banu N.A., Islam A., Roy A.K., Islam R. Microbial Treatment of Tannery Effluents: A Review. Plant Environment Development 2015; 4(2):13-20. ISSN 1994-1501.
  • Bratovcic A., Buksek H., Helix-Nielsen C., Petrinic I. Concentrating hexavalent chromium electroplating wastewater for recovery and reuse by forward osmosis using underground brine as draw solution. Chemical Engineering Journal 2022; 431, 1,133918. DOI: https://doi.org/10.1016/j.cej.2021.133918.
  • Cao W., Wang Z., Ao H., Yuan B. Removal of Cr(VI) by corn stalk based anion exchanger: the extent and rate of Cr(VI) reduction as side reaction. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2018; 539, 424-432. DOI: https://doi.org/10.1016/j.colsurfa.2017.12.049.
  • Chen L., Zhang J., Zhu Y., Zhang Y. Interaction of chromium(III) or chromium(VI) with catalase and its effect on the structure and function of catalase: An in vitro study. Food Chemistry 2018; 244, 378-385. DOI: 10.1016/j.foodchem.2017.10.062.
  • Chen W., Li W., Wang T., Wen Y., Shi W., Zhang W., Guo B., Yang Y. Isolation of functional bacterial strains from chromium-contaminated site and bioremediation potentials. Journal of Environmental Management 2022; 307, 114557. DOI: https://doi.org/10.1016/j.jenvman.2022.114557.
  • Cheung K.H. and Gu J.D. Mechanism of hexavalent chromium detoxification by microorganisms and bioremediation application potential. International Biodeterioration & Biodegradation 2007; 59(1), 8-15. DOI: https://doi.org/10.1016/j.ibiod.2006.05.002.
  • Choudhary D.K., Varma A., Tuteja N. Plant-Microbe Interaction: An Approach to Sustainable Agriculture; Springer: New Delhi, India 2017.
  • Christopher J.G., Kumar G., Tesema A.F., Thi N.B.D., Kobayashi T., Xu K. Bioremediation for Tanning Industry: A Future Perspective for Zero Emission. Management of Hazardous Wastes 2016; 186. DOI: 10.5772/63809.
  • CoE. European pollutant emission register (EPER), Commission decision according to Article 15 of Council Directive 96/61/EC concerning the integrated pollution prevention and control (IPPC) Official Journal of the European Communities, Council of Europe, Brusseles, Belgium 2000.
  • Costa A.W.M.C, Guerhardt F., Junior S.E.R.R., Canovas G., Vanale R.M., Coelho D.F., D., Ehrhardt D.D., Rosa J.M., Tambourgi E.B., Curvelo Santana J.C.C., Souza R.R. Biosorption of Cr(VI) using coconut fibers from agro-industrial waste magnetized using magnetite nanoparticles. Environ. Technol 2021; 42(23), 3595-3606. DOI: 10.1080/09593330.2020.1752812.
  • Çağlarırmak N. ve Hepçimen A.Z. Ağır metal toprak kirliliğinin gıda zinciri ve insan sağlığına etkisi. Akademik Gıda 2010; 8(2), 31-35.
  • Çetinkaya F. ve Çetinkaya Y. Derinin tabaklanması işleminde maskeleme maddeleri kullanımının krom alımı üzerine etkisinin araştırılması. Hayvansal Üretim 2020; 51(1), 40-47.
  • Çetinkaya F., Çetinkaya Y. Maskeleme Maddeleri Kullanılarak Kromla Tabaklanmış Giysilik Mamul Derilerin Bazı Kimyasal Özelliklerinin Belirlenmesi. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 2014; 18(1), 48-54.
  • Dey S. and Paul A.K. Evaluation of chromate reductase activity in the cell-free culture filtrate of Arthrobacter sp. SUK 1201 isolated from chromite mine overburden. Chemosphere 2016; 156, 69-75. DOI: https://doi.org/10.1016/j.chemosphere.2016.04.101.
  • Dindar E., Şağban F.O., Başkaya H.S. Kirlenmiş toprakların biyoremediasyon ile ıslahı. Uludağ Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 2010; 15(2), 123-137.
  • Doğu İ., Yalçın M., İleri B., Ayyıldız Ö. Deri Atık suyunun Sono-Elektrokimyasal Arıtımı. Çanakkale Onsekiz Mart Üniversitesi Fen Bilimleri Enstitüsü Dergisi 2017; 3(1), 1-23.
  • Dominguez J.J.A., Inoue C., Chien M.F. Hydroponic approach to assess rhizodegradation by sudangrass (Sorghum x drummondii) reveals pH- and plant age-dependent variability in bacterial degradation of polycyclic aromatic hydrocarbons (PAHs). Journal of Hazardous Materials 2020; 387, 121695. DOI: https://doi.org/10.1016/j.jhazmat.2019.121695.
  • Donot F., Fontana A., Baccou J., Schorr-Galindo S. Microbial exopolysaccharides: Main examples of synthesis, excretion, genetics and extraction. Carbohydr. Polym 2012; 87(2), 951-962. DOI: https://doi.org/10.1016/j.carbpol.2011.08.083. Eaton A.D., Clesceri L.S., Greenberg A.E. Franson M.A.H. Standard Methods for the Examination of Water and Wastewater. (19th). Washington: American Public Health Association, 1998; 3-61.
  • Ewuzie U., Nnorom I.C., Eze S.O. Lithium in drinking water sources in rural and urban communities in Southeastern Nigeria. Chemosphere 2020; 245, 125593. DOI: 10.1016/j.chemosphere.2019.125593.
  • Favas P.J., Pratas J., Varun M., D’Souza R., Paul M.S. Phytoremediation of soils contaminated with metals and metalloids at mining areas: Potential of native flora. In Environmental Risk Assessment of Soil Contamination; Maria, C., Hernandez, S., Eds.; InTech: Shanghai, China 2014.
  • Franco D.S.P., Georgin J., Drumm F.C., Netto M.S., Allasia D., Oliveira M.L.S., Dotto G.L. Araticum (Annona crassiflora) seed powder (ASP) for the treatment of colored effluents by biosorption. Environmental Science and Pollution Research 2020; 27(10), 11184-11194. DOI: 10.1007/s11356-019-07490-z.
  • Gaiero J.R., McCall C.A., Thompson K.A., Day N.J., Best A.S., Dunfield K.E. Inside the root microbiome: Bacterial root endophytes and plant growth promotion. American Journal of Botany 2013; 100, 1738-1750. DOI: 10.3732/ajb.1200572.
  • Gan M., Lia J., Sunb S., Cao Y., Zhenga Z., Zhua J., Liua X., Wanga J., Qiu, G. The enhanced effect of Acidithiobacillus ferrooxidans on pyrite based Cr(VI) reduction. Chemical Engineering Journal 2018; 341, 27-36. DOI: https://doi.org/10.1016/j.cej.2018.02.014.
  • Gautam A., Kushwaha A., Rani R. Reduction of hexavalent chromium [Cr(VI)] by heavy metal tolerant bacterium Alkalihalobacillus clausii CRA1 and its toxicity assessment through flow cytometry. Current Microbiology 2022; 79:33. DOI: https://doi.org/10.1007/s00284-021-02734-z.
  • Günay D. Deri ve Deri İşleme Sanayii Sektörü. Türkiye Kalkınma Bankası Sektörel Araştırma Raporu 2004; 1-43. Hamilton E.M., Young S.D., Bailey E.H., Watts M.J. Chromium speciation in food stuffs. Food Chemistry 2018; 250, 105-112. DOI: 10.1016/j.foodchem.2018.01.016.
  • Hamutoğlu R., Dinçsoy A. B., Cansaran-Duman D., Aras S. Biyosorpsiyon, adsorpsiyon ve fitoremediasyon yöntemleri ve uygulamaları. Türk Hijyen Deneysel Biyoloji Dergisi 2012; 69(4), 235-253. DOI: 10.5505/TurkHijyen.2012.94914.
  • Hossan S., Hossain S., Islam M.R., Kabir M.R., Ali S., Islam M.S., Imran K.M., Moniruzzaman M., Mou T.J., Parvez A.K., Mahmud Z.H. Bioremediation of hexavalent chromium by chromium resistant bacteria reduces phytotoxicity. International Journal of Environmental Research and Public Health 2020; 17, 6013. DOI: https://doi.org/10.3390/ijerph17176013.
  • Hussein M.H., Hamouda R.A., Elhadary A.M.A., Abuelmagd M.A., Ali S., Rizwan M. Characterization and chromium biosorption potential of extruded polymeric substances from Synechococcus mundulus induced by acute dose of gamma irradiation. Environmental Science and Pollution Research 2019; 26(31), 31998-32012. DOI: 10.1007/s11356-019-06202-x.
  • Ilias M., Rafiqullah I.M., Debnath B.C., Mannan K.S.B., Hoq M.M. Isolation and Characterization of Chromium(VI)-Reducing Bacteria from Tannery Effluents 2011; 51(1), 76-81. DOI: 10.1007/s12088-011-0095-4.
  • Ishfaq A., Ilyas S., Yaseen A., Farhan M. Hydrometallurgical valorization of chromium, iron, and zinc from an electroplating effluent. Separation and Purification Technology 2019; 209, 964-971. DOI: https://doi.org/10.1016/j.seppur.2018.09.050.
  • Islam M.S., Ueno Y., SikderM .T., Kurasaki M. Phytofiltration of arsenic and cadmium from the water environment using Micranthemum umbrosum (jf GMEL) sf blake as a hyperaccumulator. International Journal of Phytoremediation 2013; 15, 1010-1021. DOI: https://doi.org/10.1080/15226514.2012.751356.
  • İrdemez Ş., Ekmekyapar Torun F., Durmuş G. Montmorillonit mineral kayacı kullanılarak çözeltilerden krom (III) iyonlarının giderimi ve etki eden parametrelerin incelemesi. Dokuz Eylül Üniversitesi-Mühendislik Fakültesi Fen ve Mühendislik Dergisi 2017; 19(57), 701-711. DOI: 10.21205/deufmd.2017195763.
  • Jeřábková J., Tejnecký V., Borůvka L., Drábek O.Chromium in anthropogenically polluted and naturally enriched soils: A review. Scientia Agriculturae Bohemica 2018; 49(4) 297-312. DOI: https://doi.org/10.2478/sab-2018-0037.
  • Jin W., Du H., Zheng S., Zhang Y. Electrochemical processes for the environmental remediation of toxic Cr(VI): A review. Electrochimica Acta 2016; 191, 10, 1044-1055. DOI: https://doi.org/10.1016/j.electacta.2016.01.130.
  • Jutsz A.M., Gnida A. Mechanisms of stress avoidance and tolerance by plants used in phytoremediation of heavy metals. Archives of Environmental Protection 2015; 41, 104-114. DOI 10.1515/aep-2015-0045.
  • Kan C.C., Sumalinog II M.J.R., Rivera K.K.P., Arazo R.O., de Luna M.D.G. Ultrasound-assisted synthesis of adsorbents from groundwater treatment residuals for hexavalent chromium removal from aqueous solutions. Groundwater for Sustainable Development 2017; 5, 253-260. DOI: https://doi.org/10.1016/j.gsd.2017.07.004.
  • Kaya A. Polimer içerikli membranlarda kompleksometrik yöntem kullanılarak Cr(VI) metal katyonunun taşınım kinetiğinin incelenmesi. Pamukkale Üniversitesi Fen Bilimleri Enstitüsü, Doktora Tezi, 2014, 95 sayfa.
  • Khanam A. Phytoremediation: A green bio-engineering technology for cleanup the environmental contaminants. International Journal of Recent Scientific Research 2016; 7, 9925-9928.
  • Kookhaee F., Tabatabaee A.S., Jabalameli B.L. Isolation and characterization of chromium (VI) tolerant bacteria from tannery effluents. Journal of Environmental Health Science and Engineering 2022. DOI: https://doi.org/10.1007/s40201-022-00791-5.
  • Kulkarni R.M., Vidya Shetty K., Srinikethan G. Kinetic and equilibrium modeling of biosorption of nickel (II) and cadmium (II) on brewery sludge. Water Science and Technology 2019; 79, 888-894. DOI: https://doi.org/10.2166/wst.2019.090.
  • Kumar L., Khushbu, Chugh M., Bharadvaja N. Microbial remediation of tannery wastewater. Development in Wastewater Treatment Research and Processes 2022; 303-328. DOI:https://doi.org/10.1016/B978-0-323-85657-7.00011-0.
  • Kumar P.H., Srivastava A., Kumar V., Majhi M.R., Singh V.K. Implementation of industrial waste ferrochrome slag in conventional and low cement castables: Effect of microsilica addition. Journal of Asian Ceramic Societies 2014; 2(2), 169-175. DOI:https://doi.org/10.1016/j.jascer.2014.03.004.
  • Kumari V., Yadav A., Haq I., Kumar S., Bharagava R.N., Singh S.K., Raj A. Genotoxicity evaluation of tannery effluent treated with newly isolated hexavalent chromium reducing Bacillus cereus. Journal of Environmental Management 2016; 183, 204-211. DOI: 10.1016/j.jenvman.2016.08.017.
  • Küçükpelvan H., Yarımtepe C.C., Ayman Öz N. Deri Atıksuyunun Arıtım Metotları. Çanakkale Onsekiz Mart Üniversitesi Fen Bilimleri Enstitüsü Dergisi 2017; 3(1), 59-96. DOI:https://doi.org/10.28979/comufbed.317004.
  • Küresel Rekabette İstanbul Sanayi Odası Meslek Komiteleri Sektör Stratejileri Projesi. Deri ve Deri Ürünleri İmalatı Sanayi 2015, İstanbul.
  • Leong Y.K., Chang J.S. Bioremediation of heavy metals using microalgae: Recent advances and mechanisms. Bioresource Technology 2020; 303, 122886. DOI:https://doi.org/10.1016/j.biortech.2020.122886.
  • López-Chuken U.J. Hydroponics and environmental clean-up. In Hydroponics-A Standard Methodology for Plant Biological Researches; Toshiki, A., Ed.; InTech: Shanghai, China 2012.
  • Ma S., Song C.S., Chen Y., Wang F., Chen H.L. Hematite enhances the removal of Cr(VI) by Bacillus subtilis BSn5 from aquatic environment. Chemosphere 2018; 208, 579-585. DOI:https://doi.org/10.1016/j.chemosphere.2018.06.037.
  • Malaviya P., and Singh A. Bioremediation of chromium solutions and chromium containing wastewaters. Critical Reviews in Microbiology 2016; 42, 607-633. DOI: 10. 3109/1040841X.2014.974501.
  • Martins S.C.S., Martins C.M., Fiúza L.M.C.G., Santaella S.T. Immobilization of microbial cells: A promising tool for treatment of toxic pollutants in industrial wastewater. African Journal of Biotechnology 2013; 12, 28, 4412-4418. DOI: 10.5897/AJB12.2677.
  • Medhi H., Chowdhury P.R., Baruah P.D., Bhattacharyya K.G. Kinetics of aqueous Cu(II) biosorption onto Thevetia peruviana leaf powder. ACS Omega 2020; 5(23), 13489-13502. DOI: 10.1021/acsomega.9b04032.
  • Mohan D. and Pittman C.U. Activated carbons and low cost adsorbents for remediation of tri and hexavalent chromium from water. Journal of Hazardous Materials 2006; 137(2), 762-811. DOI: 10.1016/j.jhazmat.2006.06.060.
  • Mohanty M. and Kumar H.P. Effect of ionic and chelate assisted hexavalent chromium on mung bean seedlings (Vigna Radiata L. Wilczek. Var K-851) during seedling growth. Journal of Stress Physiology and Biochemistry 2013; 9(2), 232-241. ISSN: 1997-0838.
  • Mustafa H.M., Hayder G. Recent studies on applications of aquatic weed plants in phytoremediation of wastewater: A review article Ain Shams Engineering Journal 2021; 12(1), 355-365. DOI:https://doi.org/10.1016/j.asej.2020.05.009.
  • Muszynska E., Hanus-Fajerska E. Why are heavy metal hyperaccumulating plants so amazing? BioTechnolia Journal of Biotechnology, Computational Biology and Bionanotechnology 2015; 96(4), 265-271. DOI: https://doi.org/10.5114/bta.2015.57730.
  • Njoya O., Shengxin Zhao S., Qu Y., Shen J., Wang B., Shi H., Chen Z. Performance and potential mechanism of Cr(VI) reduction and subsequent Cr(III) precipitation using sodium borohydride driven by oxalate. Journal of Environmental Management 2020; 275,111165. DOI:https://doi.org/10.1016/j.jenvman.2020.111165.
  • Nyoja O., Zhao S., Qu Y., Shen J., Wang B., Shi H., Chen Z. Performance andM potential mechanism of Cr(VI) reduction and subsequent Cr(III) precipitation using sodium borohydride driven by oxalate. Journal of Environmental Management Volume 2020; 275, 111165. DOI:https://doi.org/10.1016/j.jenvman.2020.111165.
  • Ogunmayowa O.T. Coupling Bio/Phytoremediation with Switchgrass to Biofuel Feedstock Production in Mixed-Contaminant Soils. PhD. Thesis, Tennessee State University, Nashville, TN, USA 2015.
  • Ojuederie O.B., Babalola O.O. Microbial and plant-assisted bioremediation of heavy metal polluted environments: A review. International Journal of Environmental Research Public Health 2017; 14, 1504. DOI:10.3390/ijerph14121504.
  • Pradhan D., Sukla L.B., Sawyer M., Rahman P.K.S.M. Recent bioreduction of hexavalent chromium in wastewater treatment: A review. Journal of Industrial and Engineering Chemistry 2017; 55, 1-20. DOI: https://doi.org/10.1016/j.jiec.2017.06.040.
  • Priyadarshanee M., Das S. Biosorption and removal of toxic heavy metals by metal tolerating bacteria for bioremediation of metal contamination: A comprehensive review. Journal of Environmental Chemical Engineering 2021; 9, 104686. DOI: ttps://doi.org/10.1016/j.jece.2020.104686.
  • Rahman M.A., Reichman S.M., De Filippis L., Sany S.B.T., Hasegawa H. Phytoremediation of toxic metals in soils and wetlands: Concepts and applications. Environmental Remediation Technologies for Metal-Contaminated Soils 2016; 8,161-195. DOI: https://doi.org/10.1007/978-4-431-55759-3_8.
  • Rahman Z., Thomas L. Chemical-Assisted Microbially Mediated Chromium Cr (VI) Reduction Under the Influence of Various Electron Donors, Redox Mediators, and Other Additives: An Outlook on Enhanced Cr(VI) Removal. Frontiers in Microbiology 2021; 11, 619766. DOI: https://doi.org/10.3389/fmicb.2020.619766.
  • Raman N.M., Asokan S., Sundari N.S., Ramasamy S. Bioremediation of chromium (VI) by Stenotrophomonas maltophilia isolated from tannery effluent. International Journal Environmental Science Technology 2018; 15(1):207-216. DOI: 10.1007/s13762-017-1378-z.
  • Rayu S., Karpouzas D.G., Singh B.K. Emerging technologies in bioremediation: Constraints and opportunities. Biodegradation 2012; 23(6), 917-926. DOI: 10.1007/s10532-012-9576-3.
  • Rida B., Yrjälä K., Hasnain S. Hexavalent Chromium Reduction by Bacteria from Tannery Effluent. Journal of Microbiology and Biotechnology 2012; 22(4), 547-554. DOI: http://dx.doi.org/10.4014/jmb.1108.08029.
  • Saranraj P. and Sujitha D. Microbial bioremediation of chromium in tannery effluent. A review: International Journal of Microbiological Research 2013; 4(3), 305-320. DOI: 10.5829/idosi. ijmr.2013.4.3.81228.
  • Sereshti H., Farahani M.V., Baghdadi M. Trace determination of chromium(VI) in environmental water samples using innovative thermally reduced graphene (TRG) modified SiO2 adsorbent for solid phase extractionand UV-vis spectrophotometry. Talanta 2016; 146, 662-669. DOI: 10.1016/j.talanta.2015.06.051.
  • Sharma A., Vishwakarmaab K., Singh N.K., Prakasha V., Ramawat N., Prasad R., Sahi S., Singh V.P., Tripathi D.K., Sharma S. Synergistic action of silicon nanoparticles and indole acetic acid in alleviation of chromium (CrVI) toxicity in Oryza sativa seedlings. Journal of Biotechnology 2022; 343, 10, 71-82. DOI: https://doi.org/10.1016/j.jbiotec.2021.09.005.
  • Shekhar S., Sundaramanickam A., Vijayansiva G. Detoxification hexavalent chromium by potential chromate reducing bacteria isolated from turnery effluent. American Journal of Research Communication 2014; 2(2), 205-216.
  • Taciroğlu B., Kara E.E., Sak T. Toprakta ağır metal gideriminde solucanların kullanımı. KSÜ Doğa Bil. Dergisi 2016; 19(2), 201-207. ISSN: 1309-1743.
  • Tak H.I., Ahmad F., Babalola O.O. Advances in the application of plant growth-promoting rhizobacteria in phytoremediation of heavy metals. In Reviews of Environmental Contamination and Toxicology; Whitacre, D.M., Ed.; Springer: New York, NY, USA. 2013; 223, 33-52.
  • Taki K., Gogoi A., Mazumder P., Bhattacharya S.S., Kumar M. Efficacy of vermitechnology integration with Upflow Anaerobic Sludge Blanket (UASB) and activated sludge for metal stabilization: A compliance study on fractionation and biosorption. Journal of Environmental Management 2019; 15, 236, 603-612. DOI: 10.1016/j.jenvman.2019.01.006.
  • Tan H., Wang C., Zeng G., Luo Y., Li H., Xu H. Bioreduction and biosorption of Cr(VI) by a novel Bacillus sp. CRB-B1 strain. Journal of Hazardous Materials 2020; 386, 121628. DOI:https://doi.org/10.1016/j.jhazmat.2019.121628.
  • Tayang A., Songachan,L.S. Microbial bioremediation of heavy metals. Current Science 2021; 120 (6).
  • Torres E. Biosorption: A review of the latest advances. Processes 2020; 8, 1584. DOI:10.3390/pr8121584.
  • Tumolo M., Ancona V., De Paola D., Losacco D., Campanale C., Massarelli C., Uricchio V.F. Chromium pollution in european water, sources, health risk, and remediation strategies: An overview 2020; 17 (15), 1-25. DOI: https://doi.org/ 10.3390/ijerph17155438.
  • Türkiye Cumhuriyeti Ekonomi Bakanlığı. Deri ve Deri Mamulleri Sektör Raporları 2016; Ankara. 1-10. United States Environmental Agency. Drinking Water Contaminants Standards and Regulations 2015; URL:http://www.webcitation.org/query?url=http%3A%2F%2Fwww.epa.gov%2Fsafewater%2Fcontaminants%2Findex.html&date=2018-05-16 Son Erişim Tarihi 17/03/2018.
  • Vaiopoulou E., Gikas P. Regulations for chromium emissions to the aquatic environment in Europe and elsewhere. Chemosphere 2020; 254, 126876. DOI:https://doi.org/10.1016/j.chemosphere.2020.126876.
  • Vendruscolo F., Ferreira G.L.R., Filho N.R.A. Biosorption of hexavalent chromium by microorganisms. International Biodeterioration and Biodegradation 2017; 119, 87-95.
  • Verma S., Kuila A. Bioremediation of heavy metals by microbial process. Environmental Technology & Innovation 2019; 14, 100369. DOI: https://doi.org/10.1016/j.eti.2019.100369.
  • Vijayaraj A.S., Mohandass C., Joshi D., Rajput N. Effective bioremediation and toxicity assessment of tannery wastewaters treated with indigenous bacteria. 3 Biotech 2018; 8:428. DOI:https://doi.org/10.1007/s13205-018-1444-3.
  • Wang X., Aulenta F., Puig S., Esteve-Núñez A., He Y., Mu Y., Rabaey, K. Microbial electrochemistry for bioremediation. Environmental Science and Ecotechnology 2020; 1:100013. DOI:https://doi.org/10.1016/j.ese.2020.100013.
  • Wang Y., Huang K. Biosorption of tungstate onto garlic peel loaded with Fe(III), Ce(III), and Ti(IV). Environmental Science and Pollution Research 2020; 27(27), 33692-33702. DOI: 10.1007/s11356-020-09309-8.
  • WHO. World Health Organization. Chromium in Drinking-Water 2003; Geneva, Switzerland.
  • WHO. World Health Organization. Chromium in Drinking-Water, Draft Background Document for Development of WHO Guidelines for Drinking-Water Quality 2019; Geneva, Switzerland.
  • Xu W.H., Liu Y.G., Zeng G.M., Li X., Zhang W. Promoting influence of organic carbon source on chromate reduction by Bacillus sp. Advanced Materials Research 2013; 610-613, 1789-1794. DOI: 10.4028/www.scientific.net/AMR.610-613.1789.
  • Zahoor A. and Rehman A. Isolation of Cr(VI) reducing bacteria from industrial effluentsand their potential use in bioremediation of chromium containing wastewater. Journal of Environmental Science 2009; 21, 814-20. DOI: 10.1016/s1001-0742(08)62346-3.
  • Zaimee M.Z.A., Sarjadi M.S., Rahman M.L. Heavy metals removal from water by efficient adsorbents. Water 2021; 13, 2659. DOI: https://doi.org/10.3390/w13192659.
  • Zhang J., Wang P., Zhang Z., Xiang P., Xia S. Biosorption characteristics of hg(II) from aqueous solution by the biopolymer from waste activated sludge. International Journal of Environmental Research and Public Health 2020; 17, 1488. DOI: 10.3390/ijerph17051488.
  • Zheng Z., Li Y., Zhang X., Liu P., Ren J., Wu G., Zhang Y., Chen Y., Li X. A Bacillus subtilis strain can reduce hexavalent chromium to trivalent and an nfrA gene is involved. International Biodeterioration & Biodegradation 2015; 97, 90-96. ISSN 0964-8305. DOI: https://doi.org/10.1016/j.ibiod.2014.10.017.

Chromium Use in Leather Industry and Chromium Removal by Biological Methods

Year 2023, Volume: 6 Issue: 1, 1006 - 1029, 10.03.2023
https://doi.org/10.47495/okufbed.1089874

Abstract

As a result of industrial activities, agricultural, and domestic wastes, there are sometimes traces and sometimes high concentrations of metals in wastewater. Metals being dissolved in water or collected at the bottom of the water cause chemical pollution and environmental pollution and pose a threat to the health of living things. A large amount of water is used in the leather industry, and the resulting wastewater contains high levels of pollutants. In case the wastewater generated as a result of leather processing is given to the receiving environment without being treated, clean water resources are polluted and its use is restricted. For this reason, it is very important to eliminate and/or eliminate the harmful effects of wastewater with appropriate techniques before it is discharged into the environment. While physical and chemical methods are used effectively in the removal of heavy metals from wastewater, the removal process by biological methods has also become widespread, especially in recent years. The biological decomposition of pollutants by microorganisms and their conversion to compounds that are less harmful to the environment form the basis of the biological removal process. In this review, the importance of reducing the highly toxic Cr(VI), which is used effectively in many branches of industry, to less toxic Cr(III) by microbial methods has been tried to be emphasized.

References

  • Abalı Y., Öztekin B., Çanlı M., Şirin K. Deri sanayi atık sularından krom (VI) iyonunun adsorbsiyonu. Celal Bayar Üniversitesi Fen Bilimleri Dergisi 2014; 10(1), 11-24. ISSN 1305-1385. DOI: https://doi.org/10.18466/cbufbe.36355.
  • Abbaszadeh-Dahaji P., Omidvari M., Ghorbanpour M. Increasing phytoremediation efficiency of heavy metal-contaminated soil using PGPR for sustainable agriculture. In Plant-Microbe Interaction: An Approach to Sustainable Agriculture; Choudhary, D.K., Varma, A., Tuteja, N., Eds.; Springer: New Delhi, India 2016; 187-204. 91.
  • Abinandan S., Subashchandrabose S.R., Venkateswarlu K., Perera I.A., Megharaj M. Acid-tolerant microalgae can withstand higher concentrations of invasive cadmium and produce sustainable biomass and biodiesel at pH 3,5. Bioresource Technology 2019; 281, 469-473. DOI: 10.1016/j.biortech.2019.03.001.
  • Aggarwal R., Saini D., Sonkar S.K., Sonker A.K., Westman G. Sunlight promoted removal of toxic hexavalent chromium by cellulose derived photoactive carbon dots. Chemosphere 2022; 287, 3, 132287. DOI: https://doi.org/10.1016/j.chemosphere.2021.132287.
  • Agrawal R., Singh R., Verma A., Panwar P., Verma A.K. Partial purification and characterization of alkaline protease from Bacillus sp. isolated from soil. World Journal of Agricultural Sciences 2012; 8(1), 129-133. ISSN 1817-3047.
  • Ahemad M. Bacterial mechanisms for Cr(VI) resistance and reduction: An overview and recent advances. Folia Microbiologica 2014; 59(4), 321-332. DOI: 10.1007/s12223-014-0304-8.
  • Ahmad W.A., Venil C.K., Chirwa E.M.N., Wang Y.T., Sani M.H., Samad A.F.A., Kamaroddin M.F.A., Donati E.R., Urbieta M.S., Zakaria Z.A. Bacterial reduction of Cr(VI): Operational challenges and feasibility. Current Pollution Reports 2021; 7: 115-127. DOI: https://doi.org/10.1007/s40726-021-00174-8.
  • Al-Dhabi N.A., Arasu M.V. Biosorption of hazardous waste from the municipal wastewater by marine algal biomass. Environmental Research 2022; 204, 112115. DOI: https://doi.org/10.1016/j.envres.2021.112115.
  • Ali H., Khan E., Sajad M.A. Phytoremediation of heavy metals-Concepts and applications. Chemosphere 2013; 91(7), 869-881. DOI: https://doi.org/10.1016/j.chemosphere.2013.01.075.
  • Ayele A., Godeto Y.G. Bioremediation of Chromium by Microorganisms and Its Mechanisms Related to Functional Groups. Hindawi Journal of Chemistry 2021; Article ID 7694157, 21. DOI: https://doi.org/10.1155/2021/7694157.
  • Bai Y.N., Luc Y.Z., Shenc N., Lau T.C., Zeng R.J. Investigation of Cr(VI) reduction potential and mechanism by Caldicellulosiruptor saccharolyticus under glucose fermentation condition. Journal of Hazardous Materials 2018; 344, 585-592. DOI: 10.1016/j.jhazmat.2017.10.059.
  • Balaji S., Kalaivani T., Sushma B., Pillai C.V., Shalini M., Rajasekaran C. Characterization of sorption sites and differential stress response of microalgae isolates against tannery effluents from ranipet industrial area-an application towards phycoremediation. International Journal of Phytoremediation 2016; 18 (8), 747-753. DOI:https://doi.org/10.1080/15226514.2015.1115960.
  • Beretta G., Daghio M., Espinoza Tofalos A., Franzetti A., Mastorgio A.F., Saponaro, S., Sezenna, E. Progress towards bioelectrochemical remediation of hexavalent chromium. Water 2019; 11:2336. DOI: 10.3390/w11112336.
  • Beukes J.P., du Preez S.P. van Zyl P.G., Paktunc D., Fabritius T., Paatalo, M., Cramer, M. Review of Cr(VI) environmental practices in the chromite mining and smelting industry- Relevance to development of the Ring of Fire. Canada. Journal of Cleaner Production 2017; 165, 874-889. DOI. https://doi.org/10.1016/j.jclepro.2017.07.176.
  • Bharagava R.N. and Mishra S. Hexavalent chromium reduction potential of Cellulosimicrobium sp. isolated from common effluent treatment plant of tannery industries. Ecotoxicology and Environmental Safety 2018; 147, 102-109. DOI: 10.1016/j.ecoenv.2017.08.040.
  • Biswas S.K., Lisa L.A., Rubaya R., Banu N.A., Islam A., Roy A.K., Islam R. Microbial Treatment of Tannery Effluents: A Review. Plant Environment Development 2015; 4(2):13-20. ISSN 1994-1501.
  • Bratovcic A., Buksek H., Helix-Nielsen C., Petrinic I. Concentrating hexavalent chromium electroplating wastewater for recovery and reuse by forward osmosis using underground brine as draw solution. Chemical Engineering Journal 2022; 431, 1,133918. DOI: https://doi.org/10.1016/j.cej.2021.133918.
  • Cao W., Wang Z., Ao H., Yuan B. Removal of Cr(VI) by corn stalk based anion exchanger: the extent and rate of Cr(VI) reduction as side reaction. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2018; 539, 424-432. DOI: https://doi.org/10.1016/j.colsurfa.2017.12.049.
  • Chen L., Zhang J., Zhu Y., Zhang Y. Interaction of chromium(III) or chromium(VI) with catalase and its effect on the structure and function of catalase: An in vitro study. Food Chemistry 2018; 244, 378-385. DOI: 10.1016/j.foodchem.2017.10.062.
  • Chen W., Li W., Wang T., Wen Y., Shi W., Zhang W., Guo B., Yang Y. Isolation of functional bacterial strains from chromium-contaminated site and bioremediation potentials. Journal of Environmental Management 2022; 307, 114557. DOI: https://doi.org/10.1016/j.jenvman.2022.114557.
  • Cheung K.H. and Gu J.D. Mechanism of hexavalent chromium detoxification by microorganisms and bioremediation application potential. International Biodeterioration & Biodegradation 2007; 59(1), 8-15. DOI: https://doi.org/10.1016/j.ibiod.2006.05.002.
  • Choudhary D.K., Varma A., Tuteja N. Plant-Microbe Interaction: An Approach to Sustainable Agriculture; Springer: New Delhi, India 2017.
  • Christopher J.G., Kumar G., Tesema A.F., Thi N.B.D., Kobayashi T., Xu K. Bioremediation for Tanning Industry: A Future Perspective for Zero Emission. Management of Hazardous Wastes 2016; 186. DOI: 10.5772/63809.
  • CoE. European pollutant emission register (EPER), Commission decision according to Article 15 of Council Directive 96/61/EC concerning the integrated pollution prevention and control (IPPC) Official Journal of the European Communities, Council of Europe, Brusseles, Belgium 2000.
  • Costa A.W.M.C, Guerhardt F., Junior S.E.R.R., Canovas G., Vanale R.M., Coelho D.F., D., Ehrhardt D.D., Rosa J.M., Tambourgi E.B., Curvelo Santana J.C.C., Souza R.R. Biosorption of Cr(VI) using coconut fibers from agro-industrial waste magnetized using magnetite nanoparticles. Environ. Technol 2021; 42(23), 3595-3606. DOI: 10.1080/09593330.2020.1752812.
  • Çağlarırmak N. ve Hepçimen A.Z. Ağır metal toprak kirliliğinin gıda zinciri ve insan sağlığına etkisi. Akademik Gıda 2010; 8(2), 31-35.
  • Çetinkaya F. ve Çetinkaya Y. Derinin tabaklanması işleminde maskeleme maddeleri kullanımının krom alımı üzerine etkisinin araştırılması. Hayvansal Üretim 2020; 51(1), 40-47.
  • Çetinkaya F., Çetinkaya Y. Maskeleme Maddeleri Kullanılarak Kromla Tabaklanmış Giysilik Mamul Derilerin Bazı Kimyasal Özelliklerinin Belirlenmesi. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 2014; 18(1), 48-54.
  • Dey S. and Paul A.K. Evaluation of chromate reductase activity in the cell-free culture filtrate of Arthrobacter sp. SUK 1201 isolated from chromite mine overburden. Chemosphere 2016; 156, 69-75. DOI: https://doi.org/10.1016/j.chemosphere.2016.04.101.
  • Dindar E., Şağban F.O., Başkaya H.S. Kirlenmiş toprakların biyoremediasyon ile ıslahı. Uludağ Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 2010; 15(2), 123-137.
  • Doğu İ., Yalçın M., İleri B., Ayyıldız Ö. Deri Atık suyunun Sono-Elektrokimyasal Arıtımı. Çanakkale Onsekiz Mart Üniversitesi Fen Bilimleri Enstitüsü Dergisi 2017; 3(1), 1-23.
  • Dominguez J.J.A., Inoue C., Chien M.F. Hydroponic approach to assess rhizodegradation by sudangrass (Sorghum x drummondii) reveals pH- and plant age-dependent variability in bacterial degradation of polycyclic aromatic hydrocarbons (PAHs). Journal of Hazardous Materials 2020; 387, 121695. DOI: https://doi.org/10.1016/j.jhazmat.2019.121695.
  • Donot F., Fontana A., Baccou J., Schorr-Galindo S. Microbial exopolysaccharides: Main examples of synthesis, excretion, genetics and extraction. Carbohydr. Polym 2012; 87(2), 951-962. DOI: https://doi.org/10.1016/j.carbpol.2011.08.083. Eaton A.D., Clesceri L.S., Greenberg A.E. Franson M.A.H. Standard Methods for the Examination of Water and Wastewater. (19th). Washington: American Public Health Association, 1998; 3-61.
  • Ewuzie U., Nnorom I.C., Eze S.O. Lithium in drinking water sources in rural and urban communities in Southeastern Nigeria. Chemosphere 2020; 245, 125593. DOI: 10.1016/j.chemosphere.2019.125593.
  • Favas P.J., Pratas J., Varun M., D’Souza R., Paul M.S. Phytoremediation of soils contaminated with metals and metalloids at mining areas: Potential of native flora. In Environmental Risk Assessment of Soil Contamination; Maria, C., Hernandez, S., Eds.; InTech: Shanghai, China 2014.
  • Franco D.S.P., Georgin J., Drumm F.C., Netto M.S., Allasia D., Oliveira M.L.S., Dotto G.L. Araticum (Annona crassiflora) seed powder (ASP) for the treatment of colored effluents by biosorption. Environmental Science and Pollution Research 2020; 27(10), 11184-11194. DOI: 10.1007/s11356-019-07490-z.
  • Gaiero J.R., McCall C.A., Thompson K.A., Day N.J., Best A.S., Dunfield K.E. Inside the root microbiome: Bacterial root endophytes and plant growth promotion. American Journal of Botany 2013; 100, 1738-1750. DOI: 10.3732/ajb.1200572.
  • Gan M., Lia J., Sunb S., Cao Y., Zhenga Z., Zhua J., Liua X., Wanga J., Qiu, G. The enhanced effect of Acidithiobacillus ferrooxidans on pyrite based Cr(VI) reduction. Chemical Engineering Journal 2018; 341, 27-36. DOI: https://doi.org/10.1016/j.cej.2018.02.014.
  • Gautam A., Kushwaha A., Rani R. Reduction of hexavalent chromium [Cr(VI)] by heavy metal tolerant bacterium Alkalihalobacillus clausii CRA1 and its toxicity assessment through flow cytometry. Current Microbiology 2022; 79:33. DOI: https://doi.org/10.1007/s00284-021-02734-z.
  • Günay D. Deri ve Deri İşleme Sanayii Sektörü. Türkiye Kalkınma Bankası Sektörel Araştırma Raporu 2004; 1-43. Hamilton E.M., Young S.D., Bailey E.H., Watts M.J. Chromium speciation in food stuffs. Food Chemistry 2018; 250, 105-112. DOI: 10.1016/j.foodchem.2018.01.016.
  • Hamutoğlu R., Dinçsoy A. B., Cansaran-Duman D., Aras S. Biyosorpsiyon, adsorpsiyon ve fitoremediasyon yöntemleri ve uygulamaları. Türk Hijyen Deneysel Biyoloji Dergisi 2012; 69(4), 235-253. DOI: 10.5505/TurkHijyen.2012.94914.
  • Hossan S., Hossain S., Islam M.R., Kabir M.R., Ali S., Islam M.S., Imran K.M., Moniruzzaman M., Mou T.J., Parvez A.K., Mahmud Z.H. Bioremediation of hexavalent chromium by chromium resistant bacteria reduces phytotoxicity. International Journal of Environmental Research and Public Health 2020; 17, 6013. DOI: https://doi.org/10.3390/ijerph17176013.
  • Hussein M.H., Hamouda R.A., Elhadary A.M.A., Abuelmagd M.A., Ali S., Rizwan M. Characterization and chromium biosorption potential of extruded polymeric substances from Synechococcus mundulus induced by acute dose of gamma irradiation. Environmental Science and Pollution Research 2019; 26(31), 31998-32012. DOI: 10.1007/s11356-019-06202-x.
  • Ilias M., Rafiqullah I.M., Debnath B.C., Mannan K.S.B., Hoq M.M. Isolation and Characterization of Chromium(VI)-Reducing Bacteria from Tannery Effluents 2011; 51(1), 76-81. DOI: 10.1007/s12088-011-0095-4.
  • Ishfaq A., Ilyas S., Yaseen A., Farhan M. Hydrometallurgical valorization of chromium, iron, and zinc from an electroplating effluent. Separation and Purification Technology 2019; 209, 964-971. DOI: https://doi.org/10.1016/j.seppur.2018.09.050.
  • Islam M.S., Ueno Y., SikderM .T., Kurasaki M. Phytofiltration of arsenic and cadmium from the water environment using Micranthemum umbrosum (jf GMEL) sf blake as a hyperaccumulator. International Journal of Phytoremediation 2013; 15, 1010-1021. DOI: https://doi.org/10.1080/15226514.2012.751356.
  • İrdemez Ş., Ekmekyapar Torun F., Durmuş G. Montmorillonit mineral kayacı kullanılarak çözeltilerden krom (III) iyonlarının giderimi ve etki eden parametrelerin incelemesi. Dokuz Eylül Üniversitesi-Mühendislik Fakültesi Fen ve Mühendislik Dergisi 2017; 19(57), 701-711. DOI: 10.21205/deufmd.2017195763.
  • Jeřábková J., Tejnecký V., Borůvka L., Drábek O.Chromium in anthropogenically polluted and naturally enriched soils: A review. Scientia Agriculturae Bohemica 2018; 49(4) 297-312. DOI: https://doi.org/10.2478/sab-2018-0037.
  • Jin W., Du H., Zheng S., Zhang Y. Electrochemical processes for the environmental remediation of toxic Cr(VI): A review. Electrochimica Acta 2016; 191, 10, 1044-1055. DOI: https://doi.org/10.1016/j.electacta.2016.01.130.
  • Jutsz A.M., Gnida A. Mechanisms of stress avoidance and tolerance by plants used in phytoremediation of heavy metals. Archives of Environmental Protection 2015; 41, 104-114. DOI 10.1515/aep-2015-0045.
  • Kan C.C., Sumalinog II M.J.R., Rivera K.K.P., Arazo R.O., de Luna M.D.G. Ultrasound-assisted synthesis of adsorbents from groundwater treatment residuals for hexavalent chromium removal from aqueous solutions. Groundwater for Sustainable Development 2017; 5, 253-260. DOI: https://doi.org/10.1016/j.gsd.2017.07.004.
  • Kaya A. Polimer içerikli membranlarda kompleksometrik yöntem kullanılarak Cr(VI) metal katyonunun taşınım kinetiğinin incelenmesi. Pamukkale Üniversitesi Fen Bilimleri Enstitüsü, Doktora Tezi, 2014, 95 sayfa.
  • Khanam A. Phytoremediation: A green bio-engineering technology for cleanup the environmental contaminants. International Journal of Recent Scientific Research 2016; 7, 9925-9928.
  • Kookhaee F., Tabatabaee A.S., Jabalameli B.L. Isolation and characterization of chromium (VI) tolerant bacteria from tannery effluents. Journal of Environmental Health Science and Engineering 2022. DOI: https://doi.org/10.1007/s40201-022-00791-5.
  • Kulkarni R.M., Vidya Shetty K., Srinikethan G. Kinetic and equilibrium modeling of biosorption of nickel (II) and cadmium (II) on brewery sludge. Water Science and Technology 2019; 79, 888-894. DOI: https://doi.org/10.2166/wst.2019.090.
  • Kumar L., Khushbu, Chugh M., Bharadvaja N. Microbial remediation of tannery wastewater. Development in Wastewater Treatment Research and Processes 2022; 303-328. DOI:https://doi.org/10.1016/B978-0-323-85657-7.00011-0.
  • Kumar P.H., Srivastava A., Kumar V., Majhi M.R., Singh V.K. Implementation of industrial waste ferrochrome slag in conventional and low cement castables: Effect of microsilica addition. Journal of Asian Ceramic Societies 2014; 2(2), 169-175. DOI:https://doi.org/10.1016/j.jascer.2014.03.004.
  • Kumari V., Yadav A., Haq I., Kumar S., Bharagava R.N., Singh S.K., Raj A. Genotoxicity evaluation of tannery effluent treated with newly isolated hexavalent chromium reducing Bacillus cereus. Journal of Environmental Management 2016; 183, 204-211. DOI: 10.1016/j.jenvman.2016.08.017.
  • Küçükpelvan H., Yarımtepe C.C., Ayman Öz N. Deri Atıksuyunun Arıtım Metotları. Çanakkale Onsekiz Mart Üniversitesi Fen Bilimleri Enstitüsü Dergisi 2017; 3(1), 59-96. DOI:https://doi.org/10.28979/comufbed.317004.
  • Küresel Rekabette İstanbul Sanayi Odası Meslek Komiteleri Sektör Stratejileri Projesi. Deri ve Deri Ürünleri İmalatı Sanayi 2015, İstanbul.
  • Leong Y.K., Chang J.S. Bioremediation of heavy metals using microalgae: Recent advances and mechanisms. Bioresource Technology 2020; 303, 122886. DOI:https://doi.org/10.1016/j.biortech.2020.122886.
  • López-Chuken U.J. Hydroponics and environmental clean-up. In Hydroponics-A Standard Methodology for Plant Biological Researches; Toshiki, A., Ed.; InTech: Shanghai, China 2012.
  • Ma S., Song C.S., Chen Y., Wang F., Chen H.L. Hematite enhances the removal of Cr(VI) by Bacillus subtilis BSn5 from aquatic environment. Chemosphere 2018; 208, 579-585. DOI:https://doi.org/10.1016/j.chemosphere.2018.06.037.
  • Malaviya P., and Singh A. Bioremediation of chromium solutions and chromium containing wastewaters. Critical Reviews in Microbiology 2016; 42, 607-633. DOI: 10. 3109/1040841X.2014.974501.
  • Martins S.C.S., Martins C.M., Fiúza L.M.C.G., Santaella S.T. Immobilization of microbial cells: A promising tool for treatment of toxic pollutants in industrial wastewater. African Journal of Biotechnology 2013; 12, 28, 4412-4418. DOI: 10.5897/AJB12.2677.
  • Medhi H., Chowdhury P.R., Baruah P.D., Bhattacharyya K.G. Kinetics of aqueous Cu(II) biosorption onto Thevetia peruviana leaf powder. ACS Omega 2020; 5(23), 13489-13502. DOI: 10.1021/acsomega.9b04032.
  • Mohan D. and Pittman C.U. Activated carbons and low cost adsorbents for remediation of tri and hexavalent chromium from water. Journal of Hazardous Materials 2006; 137(2), 762-811. DOI: 10.1016/j.jhazmat.2006.06.060.
  • Mohanty M. and Kumar H.P. Effect of ionic and chelate assisted hexavalent chromium on mung bean seedlings (Vigna Radiata L. Wilczek. Var K-851) during seedling growth. Journal of Stress Physiology and Biochemistry 2013; 9(2), 232-241. ISSN: 1997-0838.
  • Mustafa H.M., Hayder G. Recent studies on applications of aquatic weed plants in phytoremediation of wastewater: A review article Ain Shams Engineering Journal 2021; 12(1), 355-365. DOI:https://doi.org/10.1016/j.asej.2020.05.009.
  • Muszynska E., Hanus-Fajerska E. Why are heavy metal hyperaccumulating plants so amazing? BioTechnolia Journal of Biotechnology, Computational Biology and Bionanotechnology 2015; 96(4), 265-271. DOI: https://doi.org/10.5114/bta.2015.57730.
  • Njoya O., Shengxin Zhao S., Qu Y., Shen J., Wang B., Shi H., Chen Z. Performance and potential mechanism of Cr(VI) reduction and subsequent Cr(III) precipitation using sodium borohydride driven by oxalate. Journal of Environmental Management 2020; 275,111165. DOI:https://doi.org/10.1016/j.jenvman.2020.111165.
  • Nyoja O., Zhao S., Qu Y., Shen J., Wang B., Shi H., Chen Z. Performance andM potential mechanism of Cr(VI) reduction and subsequent Cr(III) precipitation using sodium borohydride driven by oxalate. Journal of Environmental Management Volume 2020; 275, 111165. DOI:https://doi.org/10.1016/j.jenvman.2020.111165.
  • Ogunmayowa O.T. Coupling Bio/Phytoremediation with Switchgrass to Biofuel Feedstock Production in Mixed-Contaminant Soils. PhD. Thesis, Tennessee State University, Nashville, TN, USA 2015.
  • Ojuederie O.B., Babalola O.O. Microbial and plant-assisted bioremediation of heavy metal polluted environments: A review. International Journal of Environmental Research Public Health 2017; 14, 1504. DOI:10.3390/ijerph14121504.
  • Pradhan D., Sukla L.B., Sawyer M., Rahman P.K.S.M. Recent bioreduction of hexavalent chromium in wastewater treatment: A review. Journal of Industrial and Engineering Chemistry 2017; 55, 1-20. DOI: https://doi.org/10.1016/j.jiec.2017.06.040.
  • Priyadarshanee M., Das S. Biosorption and removal of toxic heavy metals by metal tolerating bacteria for bioremediation of metal contamination: A comprehensive review. Journal of Environmental Chemical Engineering 2021; 9, 104686. DOI: ttps://doi.org/10.1016/j.jece.2020.104686.
  • Rahman M.A., Reichman S.M., De Filippis L., Sany S.B.T., Hasegawa H. Phytoremediation of toxic metals in soils and wetlands: Concepts and applications. Environmental Remediation Technologies for Metal-Contaminated Soils 2016; 8,161-195. DOI: https://doi.org/10.1007/978-4-431-55759-3_8.
  • Rahman Z., Thomas L. Chemical-Assisted Microbially Mediated Chromium Cr (VI) Reduction Under the Influence of Various Electron Donors, Redox Mediators, and Other Additives: An Outlook on Enhanced Cr(VI) Removal. Frontiers in Microbiology 2021; 11, 619766. DOI: https://doi.org/10.3389/fmicb.2020.619766.
  • Raman N.M., Asokan S., Sundari N.S., Ramasamy S. Bioremediation of chromium (VI) by Stenotrophomonas maltophilia isolated from tannery effluent. International Journal Environmental Science Technology 2018; 15(1):207-216. DOI: 10.1007/s13762-017-1378-z.
  • Rayu S., Karpouzas D.G., Singh B.K. Emerging technologies in bioremediation: Constraints and opportunities. Biodegradation 2012; 23(6), 917-926. DOI: 10.1007/s10532-012-9576-3.
  • Rida B., Yrjälä K., Hasnain S. Hexavalent Chromium Reduction by Bacteria from Tannery Effluent. Journal of Microbiology and Biotechnology 2012; 22(4), 547-554. DOI: http://dx.doi.org/10.4014/jmb.1108.08029.
  • Saranraj P. and Sujitha D. Microbial bioremediation of chromium in tannery effluent. A review: International Journal of Microbiological Research 2013; 4(3), 305-320. DOI: 10.5829/idosi. ijmr.2013.4.3.81228.
  • Sereshti H., Farahani M.V., Baghdadi M. Trace determination of chromium(VI) in environmental water samples using innovative thermally reduced graphene (TRG) modified SiO2 adsorbent for solid phase extractionand UV-vis spectrophotometry. Talanta 2016; 146, 662-669. DOI: 10.1016/j.talanta.2015.06.051.
  • Sharma A., Vishwakarmaab K., Singh N.K., Prakasha V., Ramawat N., Prasad R., Sahi S., Singh V.P., Tripathi D.K., Sharma S. Synergistic action of silicon nanoparticles and indole acetic acid in alleviation of chromium (CrVI) toxicity in Oryza sativa seedlings. Journal of Biotechnology 2022; 343, 10, 71-82. DOI: https://doi.org/10.1016/j.jbiotec.2021.09.005.
  • Shekhar S., Sundaramanickam A., Vijayansiva G. Detoxification hexavalent chromium by potential chromate reducing bacteria isolated from turnery effluent. American Journal of Research Communication 2014; 2(2), 205-216.
  • Taciroğlu B., Kara E.E., Sak T. Toprakta ağır metal gideriminde solucanların kullanımı. KSÜ Doğa Bil. Dergisi 2016; 19(2), 201-207. ISSN: 1309-1743.
  • Tak H.I., Ahmad F., Babalola O.O. Advances in the application of plant growth-promoting rhizobacteria in phytoremediation of heavy metals. In Reviews of Environmental Contamination and Toxicology; Whitacre, D.M., Ed.; Springer: New York, NY, USA. 2013; 223, 33-52.
  • Taki K., Gogoi A., Mazumder P., Bhattacharya S.S., Kumar M. Efficacy of vermitechnology integration with Upflow Anaerobic Sludge Blanket (UASB) and activated sludge for metal stabilization: A compliance study on fractionation and biosorption. Journal of Environmental Management 2019; 15, 236, 603-612. DOI: 10.1016/j.jenvman.2019.01.006.
  • Tan H., Wang C., Zeng G., Luo Y., Li H., Xu H. Bioreduction and biosorption of Cr(VI) by a novel Bacillus sp. CRB-B1 strain. Journal of Hazardous Materials 2020; 386, 121628. DOI:https://doi.org/10.1016/j.jhazmat.2019.121628.
  • Tayang A., Songachan,L.S. Microbial bioremediation of heavy metals. Current Science 2021; 120 (6).
  • Torres E. Biosorption: A review of the latest advances. Processes 2020; 8, 1584. DOI:10.3390/pr8121584.
  • Tumolo M., Ancona V., De Paola D., Losacco D., Campanale C., Massarelli C., Uricchio V.F. Chromium pollution in european water, sources, health risk, and remediation strategies: An overview 2020; 17 (15), 1-25. DOI: https://doi.org/ 10.3390/ijerph17155438.
  • Türkiye Cumhuriyeti Ekonomi Bakanlığı. Deri ve Deri Mamulleri Sektör Raporları 2016; Ankara. 1-10. United States Environmental Agency. Drinking Water Contaminants Standards and Regulations 2015; URL:http://www.webcitation.org/query?url=http%3A%2F%2Fwww.epa.gov%2Fsafewater%2Fcontaminants%2Findex.html&date=2018-05-16 Son Erişim Tarihi 17/03/2018.
  • Vaiopoulou E., Gikas P. Regulations for chromium emissions to the aquatic environment in Europe and elsewhere. Chemosphere 2020; 254, 126876. DOI:https://doi.org/10.1016/j.chemosphere.2020.126876.
  • Vendruscolo F., Ferreira G.L.R., Filho N.R.A. Biosorption of hexavalent chromium by microorganisms. International Biodeterioration and Biodegradation 2017; 119, 87-95.
  • Verma S., Kuila A. Bioremediation of heavy metals by microbial process. Environmental Technology & Innovation 2019; 14, 100369. DOI: https://doi.org/10.1016/j.eti.2019.100369.
  • Vijayaraj A.S., Mohandass C., Joshi D., Rajput N. Effective bioremediation and toxicity assessment of tannery wastewaters treated with indigenous bacteria. 3 Biotech 2018; 8:428. DOI:https://doi.org/10.1007/s13205-018-1444-3.
  • Wang X., Aulenta F., Puig S., Esteve-Núñez A., He Y., Mu Y., Rabaey, K. Microbial electrochemistry for bioremediation. Environmental Science and Ecotechnology 2020; 1:100013. DOI:https://doi.org/10.1016/j.ese.2020.100013.
  • Wang Y., Huang K. Biosorption of tungstate onto garlic peel loaded with Fe(III), Ce(III), and Ti(IV). Environmental Science and Pollution Research 2020; 27(27), 33692-33702. DOI: 10.1007/s11356-020-09309-8.
  • WHO. World Health Organization. Chromium in Drinking-Water 2003; Geneva, Switzerland.
  • WHO. World Health Organization. Chromium in Drinking-Water, Draft Background Document for Development of WHO Guidelines for Drinking-Water Quality 2019; Geneva, Switzerland.
  • Xu W.H., Liu Y.G., Zeng G.M., Li X., Zhang W. Promoting influence of organic carbon source on chromate reduction by Bacillus sp. Advanced Materials Research 2013; 610-613, 1789-1794. DOI: 10.4028/www.scientific.net/AMR.610-613.1789.
  • Zahoor A. and Rehman A. Isolation of Cr(VI) reducing bacteria from industrial effluentsand their potential use in bioremediation of chromium containing wastewater. Journal of Environmental Science 2009; 21, 814-20. DOI: 10.1016/s1001-0742(08)62346-3.
  • Zaimee M.Z.A., Sarjadi M.S., Rahman M.L. Heavy metals removal from water by efficient adsorbents. Water 2021; 13, 2659. DOI: https://doi.org/10.3390/w13192659.
  • Zhang J., Wang P., Zhang Z., Xiang P., Xia S. Biosorption characteristics of hg(II) from aqueous solution by the biopolymer from waste activated sludge. International Journal of Environmental Research and Public Health 2020; 17, 1488. DOI: 10.3390/ijerph17051488.
  • Zheng Z., Li Y., Zhang X., Liu P., Ren J., Wu G., Zhang Y., Chen Y., Li X. A Bacillus subtilis strain can reduce hexavalent chromium to trivalent and an nfrA gene is involved. International Biodeterioration & Biodegradation 2015; 97, 90-96. ISSN 0964-8305. DOI: https://doi.org/10.1016/j.ibiod.2014.10.017.
There are 106 citations in total.

Details

Primary Language Turkish
Subjects Structural Biology
Journal Section REVIEWS
Authors

Berat Çınar Acar

Zehranur Yuksekdag 0000-0002-0381-5876

Publication Date March 10, 2023
Submission Date March 18, 2022
Acceptance Date September 19, 2022
Published in Issue Year 2023 Volume: 6 Issue: 1

Cite

APA Çınar Acar, B., & Yuksekdag, Z. (2023). Deri Endüstrisinde Krom Kullanımı ve Biyolojik Yöntemlerle Krom Giderimi. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 6(1), 1006-1029. https://doi.org/10.47495/okufbed.1089874
AMA Çınar Acar B, Yuksekdag Z. Deri Endüstrisinde Krom Kullanımı ve Biyolojik Yöntemlerle Krom Giderimi. Osmaniye Korkut Ata University Journal of The Institute of Science and Techno. March 2023;6(1):1006-1029. doi:10.47495/okufbed.1089874
Chicago Çınar Acar, Berat, and Zehranur Yuksekdag. “Deri Endüstrisinde Krom Kullanımı Ve Biyolojik Yöntemlerle Krom Giderimi”. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi 6, no. 1 (March 2023): 1006-29. https://doi.org/10.47495/okufbed.1089874.
EndNote Çınar Acar B, Yuksekdag Z (March 1, 2023) Deri Endüstrisinde Krom Kullanımı ve Biyolojik Yöntemlerle Krom Giderimi. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi 6 1 1006–1029.
IEEE B. Çınar Acar and Z. Yuksekdag, “Deri Endüstrisinde Krom Kullanımı ve Biyolojik Yöntemlerle Krom Giderimi”, Osmaniye Korkut Ata University Journal of The Institute of Science and Techno, vol. 6, no. 1, pp. 1006–1029, 2023, doi: 10.47495/okufbed.1089874.
ISNAD Çınar Acar, Berat - Yuksekdag, Zehranur. “Deri Endüstrisinde Krom Kullanımı Ve Biyolojik Yöntemlerle Krom Giderimi”. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi 6/1 (March 2023), 1006-1029. https://doi.org/10.47495/okufbed.1089874.
JAMA Çınar Acar B, Yuksekdag Z. Deri Endüstrisinde Krom Kullanımı ve Biyolojik Yöntemlerle Krom Giderimi. Osmaniye Korkut Ata University Journal of The Institute of Science and Techno. 2023;6:1006–1029.
MLA Çınar Acar, Berat and Zehranur Yuksekdag. “Deri Endüstrisinde Krom Kullanımı Ve Biyolojik Yöntemlerle Krom Giderimi”. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi, vol. 6, no. 1, 2023, pp. 1006-29, doi:10.47495/okufbed.1089874.
Vancouver Çınar Acar B, Yuksekdag Z. Deri Endüstrisinde Krom Kullanımı ve Biyolojik Yöntemlerle Krom Giderimi. Osmaniye Korkut Ata University Journal of The Institute of Science and Techno. 2023;6(1):1006-29.

23487


196541947019414

19433194341943519436 1960219721 197842261021238 23877

*This journal is an international refereed journal 

*Our journal does not charge any article processing fees over publication process.

* This journal is online publishes 5 issues per year (January, March, June, September, December)

*This journal published in Turkish and English as open access. 

19450 This work is licensed under a Creative Commons Attribution 4.0 International License.