Review
BibTex RIS Cite

A Review of Anaerobic Digestion Method Using Food Waste as Fermentation Medium

Year 2023, Volume: 6 Issue: 2, 1713 - 1741, 05.07.2023

Abstract

Anaerobic digestion (AD) is an innovative and sustainable technology that has the potential to convert organic wastes into bioenergy, while providing solutions to the energy crisis and waste disposal problem, also providing environmental pollution control. Today, food waste treated with traditional disposal methods creates a serious environmental problem and cost. Although food waste is an ideal substrate for biogas production, its complex chemical structure and heterogeneity make biotransformation difficult in the AD process, and due to the technical problems it creates in the process, it does not allow it to be fully implemented in food waste management yet. The necessity of developing the basic biological and physicochemical processes of food wastes in the AD process is of vital importance both for the sustainable use of these wastes in this method and for the development of the process. In this study, the place of food waste among biomass sources was pointed out and the quantity, composition, and methane potential of this waste were discussed. The efficiency of one- and two-stage AD processes in the presence of food waste was compared in the presence of different strategies including co-digestion, the addition of micronutrients, control of foaming, and process design.

References

  • Ahmed B., Tyagi VK., Aboudi K., Naseem A., Álvarez-Güelfo CJ., Kazmi AA., Romero-García LI. Thermally enhanced solubilization and anaerobic digestion of organic fraction of municipal solid waste. Chemosphere 2021; 282: 131-136.
  • Ardıç İ., Taner F. Biyokütleden biyogaz üretimi,” (2021, 29 Eylül). [Çevrimiçi]. Erişim: http://www.emo.org.tr/ekler/14101ec47c52b48 _ek.pdf.
  • Banks JC., Chesshire M., Heaven S., Arnold R. anaerobic digestion of source-segregated domestic food waste: performance assessment by mass and energy balance. Bioresource Technology 2011; 102: 612-620.
  • Banks JC., Zhang Y., Jiang Y., Heaven S. Trace elements requirements for stable food waste digestion at elevated ammonia concentrations. Bioresource Technology 2012; 104: 127-135.
  • Bilgili MY. Katı atık yönetiminde kullanılan bazı kavramlar ve açıklamaları. Avrasya Terim Dergisi 2020; 8(2): 88-97.
  • Bouallagui H., Rachdi B., Gannoun H., Hamdi M. Mesophilic and thermophilic anaerobic co-digestion of abattoir wastewater and fruit and vegetable waste in anaerobic sequencing batch reactors. Biodegradation 2009; 20(3): 401-409.
  • Braguglia CM., Gallipoli A., Gianico A., Pagliaccia P. Anaerobic bioconversion of food waste into energy: a critical review. Bioresource Technology 2018; 248: 37-56.
  • Carrère H., Dumas C., Battimelli A., Batstone DJ., Delgenès JP., Steyer JP., Ferre I. Pretreatment methods to ımprove sludge anaerobic degradability: a review. Journal of Hazardous Mater 2010; 183: 1-15.
  • Capson-Tojo G., Trably E., Rouez M., Crest M., Steyer J., Escudié R. Dry anaerobic digestion of food waste and cardboard at different substrate loads, solid contents and co-digestion proportions. Bioresource Technology 2017; 233: 166-175.
  • Chen Y., Cheng JJ., Creamer KS. Inhibition of anaerobic digestion process: a review. Bioresource Technology 2008; 99(10): 4044-4064.
  • De-Gioannis D., Muntoni A., Polettini A., Pomi R, Spiga D. Energy recovery from one- and two-stage anaerobic digestion of food waste. Waste Management 2017; 68: 595-602.
  • Demirarslan KO. Katı atık yönetiminden meydana gelebilecek sera gazları ile matematiksel tahminleri üzerine literatür araştırması. Düzce Üniversitesi Bilim ve Teknoloji Dergisi 2020; 8: 363-380.
  • Deng W. Turning food waste into biofuel. Springer Science+Business Media:357-375, 2016, Singapore.
  • Donoso-Bravo A., Fdz-Polanco M. Anaerobic co-digestion of sewage sludge and grease trap: assessment of enzyme addition. Process Biochemistry 2013; 48(5-6): 936-940.
  • Dung TNB., Sen B., Chen CC., Kumar G., Lin CY. Food waste to bioenergy via anaerobic processes. Energy Procedia 2014; 61: 307-312.
  • Dursun S., Özdemir ZÖ. Anaerobik bakteriler kullanılarak atıklardan biyogaz üretimi. Kimya & Sanayi 2016; 2(6): 7-22.
  • EC, 2011. A Road Map for Moving to a Competitive Low Carbon Economy in 2050, COM (2011) 112 Final, Brussels.
  • Forster-Carneiro T., Pérez M., Romero LI. Influence of total solid and ınoculum contents on performance of anaerobic reactors treating food waste. Bioresource Technology 2008; 99: 6994-7002.
  • Godfray HCJ., BeddingtonJR., Crute IR., Haddad L., Lawrence D., Muir JF., Pretty J., Robinson S., Thomas SM., Toulmin C. Food security: the challenge of feeding 9 billion people. Science 2010; 327: 812-818.
  • Grimberg SJ., HilderbrandtD., Kinnunen M., Rogers M. Anaerobic digestion of food waste throughout the operation of a mesophilic two-phase digester-assessment of variable loadings on system performance. Bioresource Technology 2015; 178: 226-229.
  • Gustavsson J., Cederberg C., Sonesson U., Otterdijk R., Meybeck A. Global food losses and food waste, extent, causes and prevention. International Congress Save Food!, 2011, Rome-Italy
  • Gwak YR., Kim YB., Gwak IS., Lee SH. Economic evaluation of synthetic ethanol production by using domestic biowastes and coal mixture. Fuel 2018; 213: 115-129.
  • Hafid HS., Rahman NAA., Md Shah UK., Baharuddin AS., Arif AB. Feasibility of using kitchen waste as future substrate for bioethanol production: a review. Renewable and Sustainable Energy Reviews 2017; 74: 671-686.
  • Hans M., Kumar S. Biohytane production in two-stage anaerobic digestion system. International Journal of Hydrogen Energy 2019; 44: 17363-17380.
  • Hu Y., Kobayashi T., Zhen G., ShiC., Xu K. Effects of lipid concentration on thermophilic anaerobic co-digestion of food waste and grease waste in a siphon-driven self-agitated anaerobic reactor. Biotechnology Reports 2018; 19: e00269
  • Izumi K., Okishio Y., Nagao N., Niwa C., Yamamoto S., Toda T. Effects of particle size on anaerobic digestion of food waste. International Biodeterioration & Biodegradation 2010; 64: 601-608.
  • İlkılıç C., Deviren H. Biyogazın üretimi ve üretimi etkileyen faktörler. 6th International Advanced Technologies Symposium (IATS’11), 2011, Elazığ.
  • Kanchanasuta S., Sillaparassamee O. Enhancement of hydrogen and methane production from co-digestion of palm oil decanter cake and crude glycerol using two stage thermophilic and mesophilic fermentation. International Journal of Hydrogen Energy 2017; 42(5): 3440-3446.
  • Karthikeyan OP., Trably E., Mehariya S., Bernet N., Wong JWC., Carrere H. Pretreatment of food waste for methane and hydrogen recovery: a review. Bioresource Technology 2018; 249: 1025-1039.
  • Kazda M., Zak M., Kern M., Bengelsdorf F. Treatment of liquid and solid municipal waste in anaerobic digestion optimized for biogas production. Fresenius Environmental Bulletin 2013; 22(7a): 1-6.
  • Kırmızıkuşak D., Yücel R. Yiyecek içecek işletmelerindeki gıda kaybı ve israfının maliyete etkisi. Journal of Tourısm and Gastronomy Studies 2021; 9(1): 448-469.
  • Kim S., Han S., Shin H. Feasibility of biohydrogen production by anaerobic co-digestion of food waste and sewage sludge. International Journal of Hydrogen Energy 2004; 29: 1607-1616.
  • Kopsahelis A., Stavropoulos K., Zafiri C., Kornaros M. Anaerobic co-digestion of end-of-life dairy products with agroindustrial wastes in a mesophilic pilot-scale two-stage system: assessment of system’s performance. Energy Conversion and Management 2018; 165: 851-860.
  • Kougias P., Boe K., Tsapekos P., Angelidaki I. Foam suppression in overloaded manure-based biogas reactors using antifoaming agents. Bioresource Technology 2014; 153: 198-205.
  • Kumar CP., Rena, Meenakshi A., Khapre AS., Kumar S., Anshul A., Singh L., Kim S., Lee B., Kumar R. Bio-Hytane production from organic fraction of municipal solid waste in single and two stage anaerobic digestion processes. Bioresource Technology 2019; 294: 122220-122225.
  • Labatut R., Angenent L., Scott N. Biochemical methane potential and biodegradability of complex organic substrates. Bioresource Technology 2011; 102(3): 2255-2264.
  • Li Y., Jin Y., Li J., Li H., Yu Z., Nie Y. effects of thermal pretreatment on degradation kinetics of organics during kitchen waste anaerobic digestion. Energy 2017; 118: 377-386.
  • Lindner J., Zielonka S., Oechsner H., Lemmer A. Is the continuous two-stage anaerobic digestion process well suited for all substrates?. Bioresource Technology 2016; 200: 470-476.
  • Maina S., Kachrimanidou V., Koutinas A. A Roadmap towards a circular and sustainable bioeconomy through waste valorization. Current Opinion in Green and Sustainable Chemistry 2017; 8: 18-23.
  • Mao C., Feng Y., Wang X., Ren G. Review on research achievements of biogas from anaerobic digestion. Renewable & Sustainable Energy Reviews 2015; 45: 540-555.
  • Mata-Alvarez J., Macé S., Llabrés P. Anaerobic digestion of organic solid wastes. An overview of research achievements and perspectives. Bioresource Technology 2000; 74: 3-16.
  • Meng Y., Li S., Yuan H., Zou D., Liu Y., Zhu B., Chufo A., Jaffar M., Li X. Evaluating biomethane production from anaerobic mono- and co-digestion of food waste and floatable oil (FO) skimmed from food waste. Bioresource Technology 2015; 185: 7-13.
  • McKendry P. Energy production from biomass (part 1): overview of biomass. Bioresource Technology 2002; 83: 37–46.
  • McKendry P. Energy production from biomass (part 2): conversion Technologies. Bioresource Technology 2002; 83: 47-54.
  • Nayak A., Bhushan B. An overview of the recent trends on the waste valorization techniques for food wastes. Journal of Environmental Management 2019; 233: 352-370.
  • Pham TPT., Kaushik R., Parshetti GK., Mahmood R., Balasubramanian R. Food waste-to-energy conversion technologies: current status and future directions. Waste Management 2015; 38: 399-408.
  • Rasi S., Veijanen A., Rintala J. Trace compounds of biogas from different biogas production plants. Energy 2007; 32: 1375-1380.
  • Ren Y., Yu M., Wu C., Wang Q., Gao M., Huang Q., Liu Y. A comprehensive review on food waste anaerobic digestion: research updates and tendencies. Bioresource Technology 2018; 247: 1069-1076.
  • Romero-Güiza MS., Vila J., Mata-Alvarez J., Chimenos JM., Astals S. The role of additives on anaerobic digestion: a review. Renewable and Sustainable Energy Reviews 2016; 58: 1486-1499.
  • Scarlat N., Dallemand JF, Monforti-Ferrario F., Nita V. The role of biomass and bioenergy in a future bioeconomy: policies and facts. Environmental Development 2015; 15: 3-34.
  • Srisowmeya G., Chakravarthy M., Nandhini Devi G. Critical considerations in two-stage anaerobic digestion of food waste – a review. Renewable and Sustainable Energy Reviews 2020; 119: 109587-109601.
  • Suksong W., Kongjan P., O-Thong S. Biohythane production from co-digestion of palm oil mill effluent with solid residues by two-stage solid-state anaerobic digestion process. Energy Procedia 2015; 79: 943-949.
  • Tekiner İH., Mercan NN., Kahraman A., Özel M. Dünya ve Türkiye’de gıda israfı ve kaybına genel bir bakış. İstanbul Sabahattin Zaim Üniversitesi Fen Bilimleri Dergisi 2021; 3(2): 123-128.
  • Thi DNB., Kumar G., Lin CY. An overview of food waste management in developing countries: current status and future perspective. Journal of Environmental Management 2015; 157: 220-2295.
  • Trisakti B., Irvan, Mahdalena, Taslim, Turmuzi M. Effect of temperature on methanogenesis stage of two-stage anaerobic digestion of palm oil mill effluent (POME) into biogas. IOP Conference Series: Materials Science and Engineering 2017; 206: 012027.
  • Uçkun Kıran E., Trzcinski AP., Ng WJ., Liu Y. Bioconversion of food waste to energy, a review. Fuel 2014; 134: 389-399.
  • Uçkun Kıran E., Trzcinski AP., Liu Y. Enhancing the hydrolysis and methane production potential of mixed food waste by an effective enzymatic pretreatment. Bioresource Technology 2015; 183: 47-52.
  • Vea EB., Romeo D., Thomsen M. Biowaste valorization in a future circular bioecenomy. 25th CIRP Life Cycle Engineering (LCE) Conference, 30 April-2 May 2018, Copenhagen, Denmark.
  • Venkata M., Nikhil GN., Chiranjeevi P., Nagendranatha RC., Rohit MV., Naresh KA., Sarkar O. Waste biorefinery models towards sustainable circular bioeconomy: critical review and future perspectives. Bioresource Technology 2016; 215: 2-12.
  • WuC., Wang Q., Xiang J., Yu M., Chang Q, Gao M., Sonomoto K. Enhanced productions and recoveries of ethanol and methane from food waste by a three-stage process. Energy & Fuels 2015; 29: 6494-6500.
  • Xiao B., Qin Y., Wu J., Chen H., Yu., Liu J., Li Y. Comparision of single-stage and two-stage thermophilic anaerobic digestion of food waste: performance, energy balance and reaction process. Energy Conversion and Management 2018; 156: 215-223.
  • Xu F., Li Y., Ge X., Yang L., Li Y. Anaerobic digestion of food waste–challenges and opportunities. Bioresource Technology 2018; 247: 1047-1058.
  • Yang F., Li GX., Yang QY., Luo WH. Effect of bulking agents on maturity and gaseous emissions during kitchen waste composting. Chemosphere 2013; 93: 1393–1399.
  • Yıldız Ş., Saltabaş F., Balahorli V., Sezer K., Yağmur K. Organik atıklardan biyogaz üretimi (biyometanizasyon) projesi-İstanbul örneği,” Türkiye’de Katı Atık Yönetimi Sempozyumu (TÜRKAY 2009), 2019, İstanbul.
  • Zhang L., Jahng D. Long-term anaerobic digestion of food waste stabilized by trace elements. Waste Management 2012; 32: 1509-1515.
  • Zhang J., Loh KC., Li W., Lim JW., Dai Y., Tong YW. Three-stage anaerobic digester for food waste. Applied Energy 2017; 194: 287-295.
  • Zou H., Chen Y., Shi J., Zhao T., Yu Q., Yu S., Shi D., Chai H., Gu L., He Q., Ai H. Mesophilic anaerobic co-digestion of residual sludge with different lignocellulosic wastes in the batch digester. Bioresource Technology 2018268: 371-381.
  • Zupancic G., Jemec A. Anaerobic digestion of tannery waste: semi-continuous and anaerobic sequencing batch reactor processes. Bioresource Technology 2010; 101: 26-33.

Gıda Atıklarının Fermentasyon Ortamı Olarak Kullanıldığı Anaerobik Parçalanma Yöntemi Üzerine Bir İnceleme

Year 2023, Volume: 6 Issue: 2, 1713 - 1741, 05.07.2023

Abstract

Anaerobik çürütme (AD), organik atıkları biyoenerjiye dönüştürme potansiyeline sahip, enerji krizi ve atık imha sorununa çözüm üretirken çevre kirliliği kontrolünü de sağlayan yenilikçi ve sürdürülebilir bir teknolojidir. Günümüzde geleneksel imha yöntemleri ile muamele edilen gıda atıkları ciddi bir çevre problemi ve maliyet oluşturmaktadırlar. Gıda atıkları biyogaz üretimi için ideal substrat olmakla birlikte, karışık kimyasal yapısı ve heterojenitesi AD prosesinde biyo-dönüşümünü zorlaştırmakta, süreçte yarattığı teknik problemler nedeniyle de gıda atık yönetiminde henüz tam olarak uygulamaya geçirilmesine olanak vermemektedir. Gıda atıklarının AD sürecinde yer alan temel biyolojik ve fizikokimyasal süreçlerin geliştirilmesinin gerekliliği hem bu atıkların sürdürülebilir şekilde yöntemde kullanılabilmesi hem de prosesin geliştirilebilmesi amacıyla hayati önem taşımaktadır. Bu çalışmada, gıda atıklarının biyokütle kaynakları arasındaki yeri işaret edilerek bu atığın miktar, bileşim ve metan üretim potansiyeli tartışılmıştır. Birlikte çürütme, mikro-besin ilavesi, köpük kontrolü ve proses dizaynı gibi değişik stratejiler varlığında gerçekleştirilen gıda atıkları varlığındaki tek- ve çift-aşamalı AD süreçlerinin verimliliği karşılaştırılmıştır.

References

  • Ahmed B., Tyagi VK., Aboudi K., Naseem A., Álvarez-Güelfo CJ., Kazmi AA., Romero-García LI. Thermally enhanced solubilization and anaerobic digestion of organic fraction of municipal solid waste. Chemosphere 2021; 282: 131-136.
  • Ardıç İ., Taner F. Biyokütleden biyogaz üretimi,” (2021, 29 Eylül). [Çevrimiçi]. Erişim: http://www.emo.org.tr/ekler/14101ec47c52b48 _ek.pdf.
  • Banks JC., Chesshire M., Heaven S., Arnold R. anaerobic digestion of source-segregated domestic food waste: performance assessment by mass and energy balance. Bioresource Technology 2011; 102: 612-620.
  • Banks JC., Zhang Y., Jiang Y., Heaven S. Trace elements requirements for stable food waste digestion at elevated ammonia concentrations. Bioresource Technology 2012; 104: 127-135.
  • Bilgili MY. Katı atık yönetiminde kullanılan bazı kavramlar ve açıklamaları. Avrasya Terim Dergisi 2020; 8(2): 88-97.
  • Bouallagui H., Rachdi B., Gannoun H., Hamdi M. Mesophilic and thermophilic anaerobic co-digestion of abattoir wastewater and fruit and vegetable waste in anaerobic sequencing batch reactors. Biodegradation 2009; 20(3): 401-409.
  • Braguglia CM., Gallipoli A., Gianico A., Pagliaccia P. Anaerobic bioconversion of food waste into energy: a critical review. Bioresource Technology 2018; 248: 37-56.
  • Carrère H., Dumas C., Battimelli A., Batstone DJ., Delgenès JP., Steyer JP., Ferre I. Pretreatment methods to ımprove sludge anaerobic degradability: a review. Journal of Hazardous Mater 2010; 183: 1-15.
  • Capson-Tojo G., Trably E., Rouez M., Crest M., Steyer J., Escudié R. Dry anaerobic digestion of food waste and cardboard at different substrate loads, solid contents and co-digestion proportions. Bioresource Technology 2017; 233: 166-175.
  • Chen Y., Cheng JJ., Creamer KS. Inhibition of anaerobic digestion process: a review. Bioresource Technology 2008; 99(10): 4044-4064.
  • De-Gioannis D., Muntoni A., Polettini A., Pomi R, Spiga D. Energy recovery from one- and two-stage anaerobic digestion of food waste. Waste Management 2017; 68: 595-602.
  • Demirarslan KO. Katı atık yönetiminden meydana gelebilecek sera gazları ile matematiksel tahminleri üzerine literatür araştırması. Düzce Üniversitesi Bilim ve Teknoloji Dergisi 2020; 8: 363-380.
  • Deng W. Turning food waste into biofuel. Springer Science+Business Media:357-375, 2016, Singapore.
  • Donoso-Bravo A., Fdz-Polanco M. Anaerobic co-digestion of sewage sludge and grease trap: assessment of enzyme addition. Process Biochemistry 2013; 48(5-6): 936-940.
  • Dung TNB., Sen B., Chen CC., Kumar G., Lin CY. Food waste to bioenergy via anaerobic processes. Energy Procedia 2014; 61: 307-312.
  • Dursun S., Özdemir ZÖ. Anaerobik bakteriler kullanılarak atıklardan biyogaz üretimi. Kimya & Sanayi 2016; 2(6): 7-22.
  • EC, 2011. A Road Map for Moving to a Competitive Low Carbon Economy in 2050, COM (2011) 112 Final, Brussels.
  • Forster-Carneiro T., Pérez M., Romero LI. Influence of total solid and ınoculum contents on performance of anaerobic reactors treating food waste. Bioresource Technology 2008; 99: 6994-7002.
  • Godfray HCJ., BeddingtonJR., Crute IR., Haddad L., Lawrence D., Muir JF., Pretty J., Robinson S., Thomas SM., Toulmin C. Food security: the challenge of feeding 9 billion people. Science 2010; 327: 812-818.
  • Grimberg SJ., HilderbrandtD., Kinnunen M., Rogers M. Anaerobic digestion of food waste throughout the operation of a mesophilic two-phase digester-assessment of variable loadings on system performance. Bioresource Technology 2015; 178: 226-229.
  • Gustavsson J., Cederberg C., Sonesson U., Otterdijk R., Meybeck A. Global food losses and food waste, extent, causes and prevention. International Congress Save Food!, 2011, Rome-Italy
  • Gwak YR., Kim YB., Gwak IS., Lee SH. Economic evaluation of synthetic ethanol production by using domestic biowastes and coal mixture. Fuel 2018; 213: 115-129.
  • Hafid HS., Rahman NAA., Md Shah UK., Baharuddin AS., Arif AB. Feasibility of using kitchen waste as future substrate for bioethanol production: a review. Renewable and Sustainable Energy Reviews 2017; 74: 671-686.
  • Hans M., Kumar S. Biohytane production in two-stage anaerobic digestion system. International Journal of Hydrogen Energy 2019; 44: 17363-17380.
  • Hu Y., Kobayashi T., Zhen G., ShiC., Xu K. Effects of lipid concentration on thermophilic anaerobic co-digestion of food waste and grease waste in a siphon-driven self-agitated anaerobic reactor. Biotechnology Reports 2018; 19: e00269
  • Izumi K., Okishio Y., Nagao N., Niwa C., Yamamoto S., Toda T. Effects of particle size on anaerobic digestion of food waste. International Biodeterioration & Biodegradation 2010; 64: 601-608.
  • İlkılıç C., Deviren H. Biyogazın üretimi ve üretimi etkileyen faktörler. 6th International Advanced Technologies Symposium (IATS’11), 2011, Elazığ.
  • Kanchanasuta S., Sillaparassamee O. Enhancement of hydrogen and methane production from co-digestion of palm oil decanter cake and crude glycerol using two stage thermophilic and mesophilic fermentation. International Journal of Hydrogen Energy 2017; 42(5): 3440-3446.
  • Karthikeyan OP., Trably E., Mehariya S., Bernet N., Wong JWC., Carrere H. Pretreatment of food waste for methane and hydrogen recovery: a review. Bioresource Technology 2018; 249: 1025-1039.
  • Kazda M., Zak M., Kern M., Bengelsdorf F. Treatment of liquid and solid municipal waste in anaerobic digestion optimized for biogas production. Fresenius Environmental Bulletin 2013; 22(7a): 1-6.
  • Kırmızıkuşak D., Yücel R. Yiyecek içecek işletmelerindeki gıda kaybı ve israfının maliyete etkisi. Journal of Tourısm and Gastronomy Studies 2021; 9(1): 448-469.
  • Kim S., Han S., Shin H. Feasibility of biohydrogen production by anaerobic co-digestion of food waste and sewage sludge. International Journal of Hydrogen Energy 2004; 29: 1607-1616.
  • Kopsahelis A., Stavropoulos K., Zafiri C., Kornaros M. Anaerobic co-digestion of end-of-life dairy products with agroindustrial wastes in a mesophilic pilot-scale two-stage system: assessment of system’s performance. Energy Conversion and Management 2018; 165: 851-860.
  • Kougias P., Boe K., Tsapekos P., Angelidaki I. Foam suppression in overloaded manure-based biogas reactors using antifoaming agents. Bioresource Technology 2014; 153: 198-205.
  • Kumar CP., Rena, Meenakshi A., Khapre AS., Kumar S., Anshul A., Singh L., Kim S., Lee B., Kumar R. Bio-Hytane production from organic fraction of municipal solid waste in single and two stage anaerobic digestion processes. Bioresource Technology 2019; 294: 122220-122225.
  • Labatut R., Angenent L., Scott N. Biochemical methane potential and biodegradability of complex organic substrates. Bioresource Technology 2011; 102(3): 2255-2264.
  • Li Y., Jin Y., Li J., Li H., Yu Z., Nie Y. effects of thermal pretreatment on degradation kinetics of organics during kitchen waste anaerobic digestion. Energy 2017; 118: 377-386.
  • Lindner J., Zielonka S., Oechsner H., Lemmer A. Is the continuous two-stage anaerobic digestion process well suited for all substrates?. Bioresource Technology 2016; 200: 470-476.
  • Maina S., Kachrimanidou V., Koutinas A. A Roadmap towards a circular and sustainable bioeconomy through waste valorization. Current Opinion in Green and Sustainable Chemistry 2017; 8: 18-23.
  • Mao C., Feng Y., Wang X., Ren G. Review on research achievements of biogas from anaerobic digestion. Renewable & Sustainable Energy Reviews 2015; 45: 540-555.
  • Mata-Alvarez J., Macé S., Llabrés P. Anaerobic digestion of organic solid wastes. An overview of research achievements and perspectives. Bioresource Technology 2000; 74: 3-16.
  • Meng Y., Li S., Yuan H., Zou D., Liu Y., Zhu B., Chufo A., Jaffar M., Li X. Evaluating biomethane production from anaerobic mono- and co-digestion of food waste and floatable oil (FO) skimmed from food waste. Bioresource Technology 2015; 185: 7-13.
  • McKendry P. Energy production from biomass (part 1): overview of biomass. Bioresource Technology 2002; 83: 37–46.
  • McKendry P. Energy production from biomass (part 2): conversion Technologies. Bioresource Technology 2002; 83: 47-54.
  • Nayak A., Bhushan B. An overview of the recent trends on the waste valorization techniques for food wastes. Journal of Environmental Management 2019; 233: 352-370.
  • Pham TPT., Kaushik R., Parshetti GK., Mahmood R., Balasubramanian R. Food waste-to-energy conversion technologies: current status and future directions. Waste Management 2015; 38: 399-408.
  • Rasi S., Veijanen A., Rintala J. Trace compounds of biogas from different biogas production plants. Energy 2007; 32: 1375-1380.
  • Ren Y., Yu M., Wu C., Wang Q., Gao M., Huang Q., Liu Y. A comprehensive review on food waste anaerobic digestion: research updates and tendencies. Bioresource Technology 2018; 247: 1069-1076.
  • Romero-Güiza MS., Vila J., Mata-Alvarez J., Chimenos JM., Astals S. The role of additives on anaerobic digestion: a review. Renewable and Sustainable Energy Reviews 2016; 58: 1486-1499.
  • Scarlat N., Dallemand JF, Monforti-Ferrario F., Nita V. The role of biomass and bioenergy in a future bioeconomy: policies and facts. Environmental Development 2015; 15: 3-34.
  • Srisowmeya G., Chakravarthy M., Nandhini Devi G. Critical considerations in two-stage anaerobic digestion of food waste – a review. Renewable and Sustainable Energy Reviews 2020; 119: 109587-109601.
  • Suksong W., Kongjan P., O-Thong S. Biohythane production from co-digestion of palm oil mill effluent with solid residues by two-stage solid-state anaerobic digestion process. Energy Procedia 2015; 79: 943-949.
  • Tekiner İH., Mercan NN., Kahraman A., Özel M. Dünya ve Türkiye’de gıda israfı ve kaybına genel bir bakış. İstanbul Sabahattin Zaim Üniversitesi Fen Bilimleri Dergisi 2021; 3(2): 123-128.
  • Thi DNB., Kumar G., Lin CY. An overview of food waste management in developing countries: current status and future perspective. Journal of Environmental Management 2015; 157: 220-2295.
  • Trisakti B., Irvan, Mahdalena, Taslim, Turmuzi M. Effect of temperature on methanogenesis stage of two-stage anaerobic digestion of palm oil mill effluent (POME) into biogas. IOP Conference Series: Materials Science and Engineering 2017; 206: 012027.
  • Uçkun Kıran E., Trzcinski AP., Ng WJ., Liu Y. Bioconversion of food waste to energy, a review. Fuel 2014; 134: 389-399.
  • Uçkun Kıran E., Trzcinski AP., Liu Y. Enhancing the hydrolysis and methane production potential of mixed food waste by an effective enzymatic pretreatment. Bioresource Technology 2015; 183: 47-52.
  • Vea EB., Romeo D., Thomsen M. Biowaste valorization in a future circular bioecenomy. 25th CIRP Life Cycle Engineering (LCE) Conference, 30 April-2 May 2018, Copenhagen, Denmark.
  • Venkata M., Nikhil GN., Chiranjeevi P., Nagendranatha RC., Rohit MV., Naresh KA., Sarkar O. Waste biorefinery models towards sustainable circular bioeconomy: critical review and future perspectives. Bioresource Technology 2016; 215: 2-12.
  • WuC., Wang Q., Xiang J., Yu M., Chang Q, Gao M., Sonomoto K. Enhanced productions and recoveries of ethanol and methane from food waste by a three-stage process. Energy & Fuels 2015; 29: 6494-6500.
  • Xiao B., Qin Y., Wu J., Chen H., Yu., Liu J., Li Y. Comparision of single-stage and two-stage thermophilic anaerobic digestion of food waste: performance, energy balance and reaction process. Energy Conversion and Management 2018; 156: 215-223.
  • Xu F., Li Y., Ge X., Yang L., Li Y. Anaerobic digestion of food waste–challenges and opportunities. Bioresource Technology 2018; 247: 1047-1058.
  • Yang F., Li GX., Yang QY., Luo WH. Effect of bulking agents on maturity and gaseous emissions during kitchen waste composting. Chemosphere 2013; 93: 1393–1399.
  • Yıldız Ş., Saltabaş F., Balahorli V., Sezer K., Yağmur K. Organik atıklardan biyogaz üretimi (biyometanizasyon) projesi-İstanbul örneği,” Türkiye’de Katı Atık Yönetimi Sempozyumu (TÜRKAY 2009), 2019, İstanbul.
  • Zhang L., Jahng D. Long-term anaerobic digestion of food waste stabilized by trace elements. Waste Management 2012; 32: 1509-1515.
  • Zhang J., Loh KC., Li W., Lim JW., Dai Y., Tong YW. Three-stage anaerobic digester for food waste. Applied Energy 2017; 194: 287-295.
  • Zou H., Chen Y., Shi J., Zhao T., Yu Q., Yu S., Shi D., Chai H., Gu L., He Q., Ai H. Mesophilic anaerobic co-digestion of residual sludge with different lignocellulosic wastes in the batch digester. Bioresource Technology 2018268: 371-381.
  • Zupancic G., Jemec A. Anaerobic digestion of tannery waste: semi-continuous and anaerobic sequencing batch reactor processes. Bioresource Technology 2010; 101: 26-33.
There are 68 citations in total.

Details

Primary Language Turkish
Subjects Chemical Engineering
Journal Section REVIEWS
Authors

Mine Nazan Kerimak Öner 0000-0003-2286-6289

Publication Date July 5, 2023
Submission Date September 2, 2022
Acceptance Date December 20, 2022
Published in Issue Year 2023 Volume: 6 Issue: 2

Cite

APA Kerimak Öner, M. N. (2023). Gıda Atıklarının Fermentasyon Ortamı Olarak Kullanıldığı Anaerobik Parçalanma Yöntemi Üzerine Bir İnceleme. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 6(2), 1713-1741.
AMA Kerimak Öner MN. Gıda Atıklarının Fermentasyon Ortamı Olarak Kullanıldığı Anaerobik Parçalanma Yöntemi Üzerine Bir İnceleme. Osmaniye Korkut Ata University Journal of Natural and Applied Sciences. July 2023;6(2):1713-1741.
Chicago Kerimak Öner, Mine Nazan. “Gıda Atıklarının Fermentasyon Ortamı Olarak Kullanıldığı Anaerobik Parçalanma Yöntemi Üzerine Bir İnceleme”. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi 6, no. 2 (July 2023): 1713-41.
EndNote Kerimak Öner MN (July 1, 2023) Gıda Atıklarının Fermentasyon Ortamı Olarak Kullanıldığı Anaerobik Parçalanma Yöntemi Üzerine Bir İnceleme. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi 6 2 1713–1741.
IEEE M. N. Kerimak Öner, “Gıda Atıklarının Fermentasyon Ortamı Olarak Kullanıldığı Anaerobik Parçalanma Yöntemi Üzerine Bir İnceleme”, Osmaniye Korkut Ata University Journal of Natural and Applied Sciences, vol. 6, no. 2, pp. 1713–1741, 2023.
ISNAD Kerimak Öner, Mine Nazan. “Gıda Atıklarının Fermentasyon Ortamı Olarak Kullanıldığı Anaerobik Parçalanma Yöntemi Üzerine Bir İnceleme”. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi 6/2 (July 2023), 1713-1741.
JAMA Kerimak Öner MN. Gıda Atıklarının Fermentasyon Ortamı Olarak Kullanıldığı Anaerobik Parçalanma Yöntemi Üzerine Bir İnceleme. Osmaniye Korkut Ata University Journal of Natural and Applied Sciences. 2023;6:1713–1741.
MLA Kerimak Öner, Mine Nazan. “Gıda Atıklarının Fermentasyon Ortamı Olarak Kullanıldığı Anaerobik Parçalanma Yöntemi Üzerine Bir İnceleme”. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi, vol. 6, no. 2, 2023, pp. 1713-41.
Vancouver Kerimak Öner MN. Gıda Atıklarının Fermentasyon Ortamı Olarak Kullanıldığı Anaerobik Parçalanma Yöntemi Üzerine Bir İnceleme. Osmaniye Korkut Ata University Journal of Natural and Applied Sciences. 2023;6(2):1713-41.

23487


196541947019414

19433194341943519436 1960219721 197842261021238 23877

*This journal is an international refereed journal 

*Our journal does not charge any article processing fees over publication process.

* This journal is online publishes 5 issues per year (January, March, June, September, December)

*This journal published in Turkish and English as open access. 

19450 This work is licensed under a Creative Commons Attribution 4.0 International License.