Research Article
BibTex RIS Cite

Terahertz Frekanslarında Esnek Metamalzeme Emici Kullanarak Zehirli Gazların Tespiti

Year 2023, Volume: 6 Issue: 3, 1998 - 2008, 04.12.2023
https://doi.org/10.47495/okufbed.1187161

Abstract

Teknolojinin gelişimi, çevreye çeşitli gazların salınmasını beraberinde getirmektedir. Bu gazlar, özellikle zehirli olanları, insan yaşamı üzerinde birçok olumsuz etkiye sahip olup, insan sağlığını olumsuz yönde etkileyecek birçok hastalığa neden olmaktadır. Bu açıdan, bu gazların etkin ve doğru tespiti olası zararların önüne geçilmesi açısından önemlidir. Bu çalışmada, gigahertz frekans aralığında çalışan bir metamalzeme yapısı kullanılarak zehirli gazları algılayabilen bir sensör tasarımı sunulmaktadır. Doğada bulunmayan metamalzemeler yapay veya sentetik yapılar olarak tanımlanır ve negatif kırılma indeksleri sayesinde sensörler dahil birçok uygulamada kullanılabilir. Burada toksik bir gaz olan karbon monoksitin tespiti için metamalzeme tabanlı bir sensör uygulaması araştırılmaktadır. Önerilen yapıya %50 ve %100 zehirli gaz eklenerek sensör performansı analiz edilmiş ve sırasıyla rezonans frekansında 0.010 and 0.013 THz kayma elde edilmiştir. Bu kayma önerilen yapının karbon monoksit için sensör uygulamalarında kullanılabilir bir aday olduğunu göstermektedir.

References

  • Afridi A., Ullah S., Khan S., Ahmed A., Khalil AH., Tarar, MA. Design of dual band wearable antenna using metamaterials. The Journal of Microwave Power and Electromagnetic Energy 2013; 47(2): 126–137.
  • Akgol O., Altintas O., Dalkilinc EE., Unal E., Karaaslan M., Sabah, C. Metamaterial absorber-based multisensor applications using a meander-line resonator. Optical Engineering 2017; 56(8): 087104.
  • Al-Badri K. Design of perfect metamaetiral absorber for microwave applications. Wireless Personal Communications 2021; 121(1): 879–886.
  • Altintas O., Aksoy M., Akgol O., Unal E., Karaaslan M., Sabah C. Fluid, Strain and Rotation Sensing Applications by Using Metamaterial Based Sensor. Journal of The Electrochemical Society 2017; 164(12): B567.
  • Bakır M. Metamaterial based multiband energy harvesting application. Journal of Balikesir University Institute of Science and Technology 2018; 20(1): 517–538.
  • Karaaslan M., Bağmancı M., Ünal E., Akgol O., Sabah, C. Microwave energy harvesting based on metamaterial absorbers with multi-layered square split rings for wireless communications. Optics Communications 2017; 392(1): 31–38.
  • Landy NI., Sajuyigbe S., Mock JJ., Smith DR., Padilla WJ. Perfect metamaterial absorber. Physical Review Letters 2008; 100(20): 207402.
  • Ling X., Xiao Z., Zheng X. Tunable terahertz metamaterial absorber and the sensing application. Journal of Materials Science: Materials in Electronics 2018; 29: 1497–1503.
  • Park SJ., Hong JT., Choi SJ., Kim HS., Park WK., Han ST., Park JY., Lee S., Kim DS., Ahn YH. Detection of microorganisms using terahertz metamaterials. Scientific Reports 2014; 4: 4988.
  • Pendry JB. Negative refraction makes a perfect lens. Physical Review Letters 2000; 85(18): 3966–3969.
  • Pendry JB., Holden A., Robbins D., Stewart W. Low Frequency Plasmons in Thin Wire Structures. Journal of Physics: Condensed Matter 1998; 10(22): 4785–4809.
  • Ramahi OM., Almoneef TS., Alshareef M., Boybay MS. Metamaterial particles for electromagnetic energy harvesting. Applied Physics Letters 2012; 101: 173903.
  • Shelby RA., Smith DR., Schultz S. Experimental verification of a negative index of refraction. Science 2001; 292(5514): 77–79.
  • Smith DR., Padilla WJ., Vier DC., Nemat-Nasser SC., Schultz S. Composite medium with simultaneously negative permeability and permittivity. Physical Review Letters 2000; 84(18): 4184–4187.
  • Tetik E. The electronic properties of doped single walled carbon nanotubes and carbon nanotube sensors. Condensed Matter Physics 2014; 17(4): 43301.
  • Tetik E. Flexible perfect metamaterial absorber and sensor application at terahertz frequencies. Journal of Optoelectronics and Advanced Materials 2020; 22(5–6): 213–218.
  • Tetik E., Tetik G. The effect of a metamaterial based wearable monopole antenna on the human body. Celal Bayar Üniversitesi Fen Bilimleri Dergisi 2018; 14(1), 93–97.
  • Veselago VG. The Electrodynamics of Substances with Simultaneously Negative Values of  and μ. Soviet Physics Uspekhi 1968; 10(4) 509–514.
  • Wang BX., Wang GZ. Temperature tunable metamaterial absorber at THz frequencies. Journal of Materials Science: Materials in Electronics 2017; 28: 8487–8493.
  • Wang BX., Xie Q., Dong G., Zhu H. Broadband terahertz metamaterial absorber based on coplanar multi-strip resonators. Journal of Materials Science: Materials in Electronics 2017; 28: 17215–17220.
  • Xie J., Zhu W., Rukhlenko ID., Xiao F., He C., Geng J., Liang X., Jin R., Premaratne M. Water metamaterial for ultra-broadband and wide-angle absorption. Optics Express 2018; 26(4): 5052.
  • Xu R., Lin YS. Tunable infrared metamaterial emitter for gas sensing application. Nanomaterials 2020; 10(8): 1442.
  • Yang JJ., Huang M., Tang H., Zeng J., Dong L. Metamaterial Sensors. International Journal of Antennas and Propagation 2013; 2013(637270), 1–16.
  • Zhao X., Fan K., Zhang J., Seren HR., Metcalfe GD., Wraback M., Averitt RD., Zhang X. Optically tunable metamaterial perfect absorber on highly flexible substrate. Sensors and Actuators, A: Physical 2015; 231: 74–80.

Detection of Toxic Gases Using Flexible Metamaterial Absorber at Terahertz Frequencies

Year 2023, Volume: 6 Issue: 3, 1998 - 2008, 04.12.2023
https://doi.org/10.47495/okufbed.1187161

Abstract

The development of technology implies the release of several gases to the environment. These gases, especially toxic ones, have many negative effects on human life and cause many diseases that will adversely affect human health. In this respect, effective and accurate identification of these gases are important in terms of preventing possible damages. In this study, a sensor design that can detect toxic gases using a metamaterial structure operating in the gigahertz frequency range is presented. Metamaterials not found in nature are defined as artificial or synthetic structures and can be used in many applications, including sensors, thanks to their negative index of refraction. Here a metamaterial-based sensor application for the detection of the carbon monoxide, a toxic gas, is investigated. The sensor performance was analyzed by adding 50% and 100% toxic gas to the suggested metamaterial design, and 0.010 and 0.013 THz shifts were obtained in the resonance frequency, respectively. This shift indicates that this structure is a viable candidate in sensor applications for the carbon monoxide.

References

  • Afridi A., Ullah S., Khan S., Ahmed A., Khalil AH., Tarar, MA. Design of dual band wearable antenna using metamaterials. The Journal of Microwave Power and Electromagnetic Energy 2013; 47(2): 126–137.
  • Akgol O., Altintas O., Dalkilinc EE., Unal E., Karaaslan M., Sabah, C. Metamaterial absorber-based multisensor applications using a meander-line resonator. Optical Engineering 2017; 56(8): 087104.
  • Al-Badri K. Design of perfect metamaetiral absorber for microwave applications. Wireless Personal Communications 2021; 121(1): 879–886.
  • Altintas O., Aksoy M., Akgol O., Unal E., Karaaslan M., Sabah C. Fluid, Strain and Rotation Sensing Applications by Using Metamaterial Based Sensor. Journal of The Electrochemical Society 2017; 164(12): B567.
  • Bakır M. Metamaterial based multiband energy harvesting application. Journal of Balikesir University Institute of Science and Technology 2018; 20(1): 517–538.
  • Karaaslan M., Bağmancı M., Ünal E., Akgol O., Sabah, C. Microwave energy harvesting based on metamaterial absorbers with multi-layered square split rings for wireless communications. Optics Communications 2017; 392(1): 31–38.
  • Landy NI., Sajuyigbe S., Mock JJ., Smith DR., Padilla WJ. Perfect metamaterial absorber. Physical Review Letters 2008; 100(20): 207402.
  • Ling X., Xiao Z., Zheng X. Tunable terahertz metamaterial absorber and the sensing application. Journal of Materials Science: Materials in Electronics 2018; 29: 1497–1503.
  • Park SJ., Hong JT., Choi SJ., Kim HS., Park WK., Han ST., Park JY., Lee S., Kim DS., Ahn YH. Detection of microorganisms using terahertz metamaterials. Scientific Reports 2014; 4: 4988.
  • Pendry JB. Negative refraction makes a perfect lens. Physical Review Letters 2000; 85(18): 3966–3969.
  • Pendry JB., Holden A., Robbins D., Stewart W. Low Frequency Plasmons in Thin Wire Structures. Journal of Physics: Condensed Matter 1998; 10(22): 4785–4809.
  • Ramahi OM., Almoneef TS., Alshareef M., Boybay MS. Metamaterial particles for electromagnetic energy harvesting. Applied Physics Letters 2012; 101: 173903.
  • Shelby RA., Smith DR., Schultz S. Experimental verification of a negative index of refraction. Science 2001; 292(5514): 77–79.
  • Smith DR., Padilla WJ., Vier DC., Nemat-Nasser SC., Schultz S. Composite medium with simultaneously negative permeability and permittivity. Physical Review Letters 2000; 84(18): 4184–4187.
  • Tetik E. The electronic properties of doped single walled carbon nanotubes and carbon nanotube sensors. Condensed Matter Physics 2014; 17(4): 43301.
  • Tetik E. Flexible perfect metamaterial absorber and sensor application at terahertz frequencies. Journal of Optoelectronics and Advanced Materials 2020; 22(5–6): 213–218.
  • Tetik E., Tetik G. The effect of a metamaterial based wearable monopole antenna on the human body. Celal Bayar Üniversitesi Fen Bilimleri Dergisi 2018; 14(1), 93–97.
  • Veselago VG. The Electrodynamics of Substances with Simultaneously Negative Values of  and μ. Soviet Physics Uspekhi 1968; 10(4) 509–514.
  • Wang BX., Wang GZ. Temperature tunable metamaterial absorber at THz frequencies. Journal of Materials Science: Materials in Electronics 2017; 28: 8487–8493.
  • Wang BX., Xie Q., Dong G., Zhu H. Broadband terahertz metamaterial absorber based on coplanar multi-strip resonators. Journal of Materials Science: Materials in Electronics 2017; 28: 17215–17220.
  • Xie J., Zhu W., Rukhlenko ID., Xiao F., He C., Geng J., Liang X., Jin R., Premaratne M. Water metamaterial for ultra-broadband and wide-angle absorption. Optics Express 2018; 26(4): 5052.
  • Xu R., Lin YS. Tunable infrared metamaterial emitter for gas sensing application. Nanomaterials 2020; 10(8): 1442.
  • Yang JJ., Huang M., Tang H., Zeng J., Dong L. Metamaterial Sensors. International Journal of Antennas and Propagation 2013; 2013(637270), 1–16.
  • Zhao X., Fan K., Zhang J., Seren HR., Metcalfe GD., Wraback M., Averitt RD., Zhang X. Optically tunable metamaterial perfect absorber on highly flexible substrate. Sensors and Actuators, A: Physical 2015; 231: 74–80.
There are 24 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section RESEARCH ARTICLES
Authors

Olcay Altıntaş 0000-0003-3237-4392

Erkan Tetik

Publication Date December 4, 2023
Submission Date October 10, 2022
Acceptance Date January 30, 2023
Published in Issue Year 2023 Volume: 6 Issue: 3

Cite

APA Altıntaş, O., & Tetik, E. (2023). Detection of Toxic Gases Using Flexible Metamaterial Absorber at Terahertz Frequencies. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 6(3), 1998-2008. https://doi.org/10.47495/okufbed.1187161
AMA Altıntaş O, Tetik E. Detection of Toxic Gases Using Flexible Metamaterial Absorber at Terahertz Frequencies. Osmaniye Korkut Ata University Journal of Natural and Applied Sciences. December 2023;6(3):1998-2008. doi:10.47495/okufbed.1187161
Chicago Altıntaş, Olcay, and Erkan Tetik. “Detection of Toxic Gases Using Flexible Metamaterial Absorber at Terahertz Frequencies”. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi 6, no. 3 (December 2023): 1998-2008. https://doi.org/10.47495/okufbed.1187161.
EndNote Altıntaş O, Tetik E (December 1, 2023) Detection of Toxic Gases Using Flexible Metamaterial Absorber at Terahertz Frequencies. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi 6 3 1998–2008.
IEEE O. Altıntaş and E. Tetik, “Detection of Toxic Gases Using Flexible Metamaterial Absorber at Terahertz Frequencies”, Osmaniye Korkut Ata University Journal of Natural and Applied Sciences, vol. 6, no. 3, pp. 1998–2008, 2023, doi: 10.47495/okufbed.1187161.
ISNAD Altıntaş, Olcay - Tetik, Erkan. “Detection of Toxic Gases Using Flexible Metamaterial Absorber at Terahertz Frequencies”. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi 6/3 (December 2023), 1998-2008. https://doi.org/10.47495/okufbed.1187161.
JAMA Altıntaş O, Tetik E. Detection of Toxic Gases Using Flexible Metamaterial Absorber at Terahertz Frequencies. Osmaniye Korkut Ata University Journal of Natural and Applied Sciences. 2023;6:1998–2008.
MLA Altıntaş, Olcay and Erkan Tetik. “Detection of Toxic Gases Using Flexible Metamaterial Absorber at Terahertz Frequencies”. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi, vol. 6, no. 3, 2023, pp. 1998-0, doi:10.47495/okufbed.1187161.
Vancouver Altıntaş O, Tetik E. Detection of Toxic Gases Using Flexible Metamaterial Absorber at Terahertz Frequencies. Osmaniye Korkut Ata University Journal of Natural and Applied Sciences. 2023;6(3):1998-200.

23487


196541947019414

19433194341943519436 1960219721 197842261021238 23877

*This journal is an international refereed journal 

*Our journal does not charge any article processing fees over publication process.

* This journal is online publishes 5 issues per year (January, March, June, September, December)

*This journal published in Turkish and English as open access. 

19450 This work is licensed under a Creative Commons Attribution 4.0 International License.