Standart Askeri Yüklerin Askerlerin Görev Performansı Üzerindeki Etkilerini Belirlemek için Kullanılan Biyomekanik Test Yöntemleri
Year 2024,
Volume: 7 Issue: 1, 440 - 462, 22.01.2024
Çağlar Betgül
,
Mustafa Ünal
Abstract
Bu derleme makalesinin amacı, askerlerin alt uzuvlarının kuvvet ve gücünün belirlenerek görev performansının tahmin edilmesine yönelik kullanılan biyomekanik testleri içeren çalışmaları sistematik olarak değerlendirip paylaşmaktır. Elde edilen veriler, askerlerin alt-uzuv kuvvetinin, yük taşıma kapasiteleri ve dayanıklılıklarıyla doğrudan ilişkili olduğunu göstermiştir. Mevcut biyomekanik testlerin daha çok statik olarak yapıldığı göz önüne alındığında, gelecekte bu testlerin belirli bir operasyon senaryosu altında dinamik ve gerçek zamanlı olarak daha da geliştirilmesi, askerlerin performansının anlık olarak izlenmesi ve değerlendirilmesi hususunda daha güvenilir ve objektif verilenlerin elde edilmesi açısından faydalı olacaktır. Ayrıca bu testlerden elde edilen veriler ışığında standart askeri yükler yeniden tasarlanabilir ve sonuçta askerin performansını artıracak daha verimli egzersizler belirlenebilir.
References
- Abdul Razak AH., Zayegh A., Begg RK., Wahab Y. Foot plantar pressure measurement system: A review. Sensors 2012; 12(7): 9884-9912.
- Adesida Y., Papi E., McGregor AH. Exploring the role of wearable technology in sport kinematics and kinetics: A systematic review. Sensors 2019; 19(7): 1597-1623.
- Andersen KA., Grimshaw PN., Kelso RM., Bentley DJ. Musculoskeletal lower limb injury risk in army populations. Sports Medicine-open 2016; 2(1): 1-9.
- Aroganam G., Manivannan N., Harrison D. Review on wearable technology sensors used in consumer sport applications. Sensors 2019; 19(9): 1983.
- Bäckman E., Johansson V., Häger B., Sjöblom P., Henriksson K. Isometric muscle strength and muscular endurance in normal persons aged between 17 and 70 years. Scandinavian Journal of Rehabilitation Medicine 1995; 27(2): 109-117.
- Baltzopoulos V., Brodie D. Isokinetic dynamometry. Sports Medicine-open 1989; 8(2): 101-116.
- Barrett S., Midgley A., Lovell R. Playerload™: Reliability, convergent validity, and influence of unit position during treadmill running. International Journal of Sports Physiology and Performance 2014; 9(6): 945-952.
- Beckett MB., Hodgdon JA. Lifting and carrying capacities relative to physical fitness measures. Naval Health Research Center 1987.
- Billing DC., Silk AJ., Tofari PJ., Hunt AP. Effects of military load carriage on susceptibility to enemy fire during tactical combat movements. The Journal of Strength Conditioning Research 2015; 29: S134-S138.
- Boyd LJ., Ball K., Aughey RJ. Quantifying external load in australian football matches and training using accelerometers. International Journal of Sports Physiology and Performance 2013; 8(1): 44-51.
- Brady C., Lush D., Chapman T. A review of the soldier's equipment burden. Defense Technical Information Center 2011; 15(169): 1-54.
- Breeze MJ., Watson CH., Horsfall I., Clasper CJ. Comparing the comfort and potential military performance restriction of neck collars from the body armor of six different countries. Military Medicine 2011; 176(11): 1274-1277.
- Brown SA., McNamara JA., Blake Mitchell K. Dynamic marksmanship: A novel methodology to evaluate the effects of clothing and individual equipment on mission performance. Proceedings of the Human Factors and Ergonomics Society Annual Meeting, 2017.
- Brunetti F., Moreno JC., Ruiz A., Rocon E., Pons JL. A new platform based on ieee802. 15.4 wireless inertial sensors for motion caption and assessment. International Conference of the IEEE Engineering in Medicine and Biology Society, 2006.
Biomechanical Testing Methods Used to Determine the Effects of Standard Military Loads on the Mission Performance of Soldiers
Year 2024,
Volume: 7 Issue: 1, 440 - 462, 22.01.2024
Çağlar Betgül
,
Mustafa Ünal
Abstract
The purpose of this review article was to systematically evaluate and share the studies involving biomechanical tests used to predict mission performance by determining the lower-extremity strength and power of soldiers. The data obtained from such biomechanical tests showed that the lower-extremity strength of the soldiers was directly related to their load-bearing capacity and endurance. Considering that the current biomechanical tests are mostly performed statically, in the future, further development of these tests dynamically and simultaneously under a certain operation scenario would be useful in terms of obtaining more reliable and objective data for the instant monitoring and evaluation of the performance of the soldiers. Moreover, in the light of the data obtained from these tests, the standard military loads could be redesigned, and more efficient exercises could be determined that would eventually increase the performance of the soldier.
References
- Abdul Razak AH., Zayegh A., Begg RK., Wahab Y. Foot plantar pressure measurement system: A review. Sensors 2012; 12(7): 9884-9912.
- Adesida Y., Papi E., McGregor AH. Exploring the role of wearable technology in sport kinematics and kinetics: A systematic review. Sensors 2019; 19(7): 1597-1623.
- Andersen KA., Grimshaw PN., Kelso RM., Bentley DJ. Musculoskeletal lower limb injury risk in army populations. Sports Medicine-open 2016; 2(1): 1-9.
- Aroganam G., Manivannan N., Harrison D. Review on wearable technology sensors used in consumer sport applications. Sensors 2019; 19(9): 1983.
- Bäckman E., Johansson V., Häger B., Sjöblom P., Henriksson K. Isometric muscle strength and muscular endurance in normal persons aged between 17 and 70 years. Scandinavian Journal of Rehabilitation Medicine 1995; 27(2): 109-117.
- Baltzopoulos V., Brodie D. Isokinetic dynamometry. Sports Medicine-open 1989; 8(2): 101-116.
- Barrett S., Midgley A., Lovell R. Playerload™: Reliability, convergent validity, and influence of unit position during treadmill running. International Journal of Sports Physiology and Performance 2014; 9(6): 945-952.
- Beckett MB., Hodgdon JA. Lifting and carrying capacities relative to physical fitness measures. Naval Health Research Center 1987.
- Billing DC., Silk AJ., Tofari PJ., Hunt AP. Effects of military load carriage on susceptibility to enemy fire during tactical combat movements. The Journal of Strength Conditioning Research 2015; 29: S134-S138.
- Boyd LJ., Ball K., Aughey RJ. Quantifying external load in australian football matches and training using accelerometers. International Journal of Sports Physiology and Performance 2013; 8(1): 44-51.
- Brady C., Lush D., Chapman T. A review of the soldier's equipment burden. Defense Technical Information Center 2011; 15(169): 1-54.
- Breeze MJ., Watson CH., Horsfall I., Clasper CJ. Comparing the comfort and potential military performance restriction of neck collars from the body armor of six different countries. Military Medicine 2011; 176(11): 1274-1277.
- Brown SA., McNamara JA., Blake Mitchell K. Dynamic marksmanship: A novel methodology to evaluate the effects of clothing and individual equipment on mission performance. Proceedings of the Human Factors and Ergonomics Society Annual Meeting, 2017.
- Brunetti F., Moreno JC., Ruiz A., Rocon E., Pons JL. A new platform based on ieee802. 15.4 wireless inertial sensors for motion caption and assessment. International Conference of the IEEE Engineering in Medicine and Biology Society, 2006.