Research Article
BibTex RIS Cite

Açısal Momentum Kontrolü İçin Rijit Dinamik Simülasyon Kullanılarak Mekanik Bir Jiroskop Volanının Tasarımı

Year 2024, Volume: 7 Issue: 5, 2094 - 2113, 10.12.2024

Abstract

Jiroskoplar, harici nesneyi referans almadan üç boyutlu uzayda dönüşü algılayan cihazlardır. Mekanik jiroskoplar ise tork üreten mekanizmalardır. Bu torka, jiroskopik tork da denmektedir. Kontrollü tork üretmek için kullanılan jiroskoplar, kontrol momenti jiroskopları olarak adlandırılmaktadır. Mekanik jiroskopların en hayati parçası ise volandır. Volan tasarımlarında boyut ve dönme hızı tasarım parametreleridir. Bu makalede, dikey yerleştirilmiş, ağırlık torku sayesinde çalışan, bir volanlı mekanik jiroskopun volanının tasarımı rijit cisim simülasyonu ile elde edilmiştir. Bu amaçla optimizasyon yöntemi kullanılmıştır. Optimizasyon için Latin Hypercube Sampling Design yöntemi kullanılarak yüz adet nokta oluşturulmuştur. Cevap fonksiyonunun elde edilmesinde non-parametrik regresyon metodu kullanılmıştır. Minimizasyon için genetik algoritma yöntemi kullanılmıştır. Nütasyonun ve harcanan enerjinin minimum olması, jiroskopik torkun en fazla olması amaçlanmıştır. Bu amaçları sağlayan optimum hız ω=164,3941 rad/s ve radyus ise r=0,143839 m olmaktadır.

References

  • Ahmed A., Adnaik I., Bhavsar D., Sargar TS. Design and analysis of gyro wheel for stabilization of a bicycle, International Journal for Scientific Research Development, 2016; 4(04): 349-351.
  • Anonimouse. Nutation Wikipedia®, en.wikipedia.org: Wikimedia Foundation, Inc., 2023.
  • Ansys®. Academic research mechanical products, 2021 R2, Help system, ANSYS Mechanical User's Guide: ANSYS, Inc., 2023.
  • Arena L., Piergentili F., Santoni F. Design, manufacturing, and ground testing of a control-moment gyro for agile microsatellites, Journal of Aerospace Engineering, 2017; 30(5): 04017039. doi: 10.1061/(ASCE)AS.1943-5525.0000754
  • Bayram H. Design and implementation of autonomous surface vehicle for inland water, Iğdır Üniversitesi Fen Bilimleri Enstitüsü Dergisi 2020; 10(1): 101-111. doi: 10.21597/jist.642503
  • Boyce MP. 5 - Rotor dynamics. In M. P. Boyce (Ed.), Gas Turbine Engineering Handbook (Fourth Edition), Oxford: Butterworth-Heinemann, 2012; 215-250.
  • Han B., Zheng S., Wang Z., Le Y. Design, modeling, fabrication, and test of a large-scale single-gimbal magnetically suspended control moment gyro. IEEE Transactions on Industrial Electronics 2015; 62(12): 7424-7435. doi: 10.1109/TIE.2015.2459052
  • Hu Q., Guo C., Zhang J. Singularity and steering logic for control moment gyros on flexible space structures, Acta Astronautica, 2012; 137, 261-273. doi: 10.1016/j.actaastro.2017.04.030
  • Kacar İ., Eroğlu MA., Yalçın MK. Design and development of an autonomous bicycle, Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 2021; 10(1): 364-372. doi: 10.28948/ngumuh.628580
  • Kostyuchenko T., Indygasheva N. Computer-aided design system for control moment gyroscope. MATEC Web Conf., 2018; 158, 01021.
  • Leve FA., Hamilton, BJ., Peck, MA. Spacecraft momentum control systems (1st ed. 2015 edition ed. Vol. 1010), Springer-Verlag GmbH, Heidelberg: Springer, Cham, 2015.
  • Margulies G., Aubrun J. Geometric theory of single-gimbal control moment gyro systems. Journal of the Astronautical Sciences, 1978; 26.
  • Osman MOM., Sankar S., Dukkipati RV. Design synthesis of a gyrogrinder using direct search optimization. Mechanism and Machine Theory, 1982; 17(1): 33-45. doi: 10.1016/0094-114X(82)90022-2
  • Şahin HA., Önder H. The use of genetic algorithm and particle swarm algorithm in determining egg freshness. Black Sea Journal of Engineering and Science, 2020; 3(3): 81-88. doi: 10.34248/bsengineering.684613
  • Somov YI. Nonlinear synthesis, optimization and design of the spacecraft gyromoment attitude control systems, IFAC Proceedings Volumes 2020; 33(16): 337-342. doi: 10.1016/S1474-6670(17)39653-2
  • Sucuoglu HS., Bogrekci I., Gultekin A., Demircioglu P. Design, analysis and development of mobile robot with flip-flop motion ability. IFAC-PapersOnLine 2018; 51(30): 436-440. doi: https://doi.org/10.1016/j.ifacol.2018.11.323
  • Sun J., Cai Z., Sun J., Jin D. Dynamic analysis of a rigid-flexible inflatable space structure coupled with control moment gyroscopes. Nonlinear Dynamics 2023; 111(9): 8061-8081. doi: 10.1007/s11071-023-08254-8.
  • Ünker F., Çuvalcı O. Vibration control of a column using a gyroscope. Procedia - Social and Behavioral Sciences 2015; 195, 2306-2315. doi: 10.1016/j.sbspro.2015.06.182
  • Viana FAC. A tutorial on Latin Hypercube design of experiments. Quality and Reliability Engineering International 2016, 32(5): 1975-1985. doi: https://doi.org/10.1002/qre.1924
  • Ye X., Xu X., Wen T., Han B. Design and optimization of repeatable locking/unlocking device for magnetically suspended control moment gyro. Acta Astronautica 2021; 186, 24-32. doi: 10.1016/j.actaastro.2021.05.025
  • Yildiz N., Topal M. Nonparametrik regresyon metodlarının incelenmesi. Atatürk Üniversitesi Ziraat Fakültesi Dergisi 2021; 32(4): 429-435.
  • Zhang PF., Hao JH., Chen Q. Gyro-less angular velocity estimation and intermittent attitude control of spacecraft using coarse-sensors based on geometric analysis. Aerospace Science and Technology, 2020; 103, 105900. doi: 10.1016/j.ast.2020.105900
  • Zhang Y., Zhao G., Li H. Multibody dynamic modeling and controlling for unmanned bicycle system. Isa Transactions 2021; 118, 174-188. doi: 10.1016/j.isatra.2021.02.014

Design of a Flywheel of a Mechanical Gyroscope Using Rigid Dynamic Simulation for Angular Momentum Control

Year 2024, Volume: 7 Issue: 5, 2094 - 2113, 10.12.2024

Abstract

Gyroscopes are devices that detect rotation in three-dimensional space without reference to an external object. Mechanical gyroscopes are mechanisms that produce torque. This torque is also called gyroscopic torque. Gyroscopes used to produce controlled torque are called control moment gyroscopes. The most vital part of mechanical gyroscopes is the flywheel. In flywheel designs, size and rotational speed are the design parameters. In this paper, the design of the flywheel of a vertically placed mechanical gyroscope with a flywheel operating by means of weight torque is obtained by rigid body simulation. Optimisation method is used for this purpose. One hundred points were generated using the Latin Hypercube Sampling Design method for optimisation. Non-parametric regression method was used to obtain the response function. Genetic algorithm method was used for minimisation. It is aimed to minimise the variation and the energy consumed and to maximise the gyroscopic torque. The optimum speed ω=164.3941 rad/s and radius r=0.143839 m.

References

  • Ahmed A., Adnaik I., Bhavsar D., Sargar TS. Design and analysis of gyro wheel for stabilization of a bicycle, International Journal for Scientific Research Development, 2016; 4(04): 349-351.
  • Anonimouse. Nutation Wikipedia®, en.wikipedia.org: Wikimedia Foundation, Inc., 2023.
  • Ansys®. Academic research mechanical products, 2021 R2, Help system, ANSYS Mechanical User's Guide: ANSYS, Inc., 2023.
  • Arena L., Piergentili F., Santoni F. Design, manufacturing, and ground testing of a control-moment gyro for agile microsatellites, Journal of Aerospace Engineering, 2017; 30(5): 04017039. doi: 10.1061/(ASCE)AS.1943-5525.0000754
  • Bayram H. Design and implementation of autonomous surface vehicle for inland water, Iğdır Üniversitesi Fen Bilimleri Enstitüsü Dergisi 2020; 10(1): 101-111. doi: 10.21597/jist.642503
  • Boyce MP. 5 - Rotor dynamics. In M. P. Boyce (Ed.), Gas Turbine Engineering Handbook (Fourth Edition), Oxford: Butterworth-Heinemann, 2012; 215-250.
  • Han B., Zheng S., Wang Z., Le Y. Design, modeling, fabrication, and test of a large-scale single-gimbal magnetically suspended control moment gyro. IEEE Transactions on Industrial Electronics 2015; 62(12): 7424-7435. doi: 10.1109/TIE.2015.2459052
  • Hu Q., Guo C., Zhang J. Singularity and steering logic for control moment gyros on flexible space structures, Acta Astronautica, 2012; 137, 261-273. doi: 10.1016/j.actaastro.2017.04.030
  • Kacar İ., Eroğlu MA., Yalçın MK. Design and development of an autonomous bicycle, Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 2021; 10(1): 364-372. doi: 10.28948/ngumuh.628580
  • Kostyuchenko T., Indygasheva N. Computer-aided design system for control moment gyroscope. MATEC Web Conf., 2018; 158, 01021.
  • Leve FA., Hamilton, BJ., Peck, MA. Spacecraft momentum control systems (1st ed. 2015 edition ed. Vol. 1010), Springer-Verlag GmbH, Heidelberg: Springer, Cham, 2015.
  • Margulies G., Aubrun J. Geometric theory of single-gimbal control moment gyro systems. Journal of the Astronautical Sciences, 1978; 26.
  • Osman MOM., Sankar S., Dukkipati RV. Design synthesis of a gyrogrinder using direct search optimization. Mechanism and Machine Theory, 1982; 17(1): 33-45. doi: 10.1016/0094-114X(82)90022-2
  • Şahin HA., Önder H. The use of genetic algorithm and particle swarm algorithm in determining egg freshness. Black Sea Journal of Engineering and Science, 2020; 3(3): 81-88. doi: 10.34248/bsengineering.684613
  • Somov YI. Nonlinear synthesis, optimization and design of the spacecraft gyromoment attitude control systems, IFAC Proceedings Volumes 2020; 33(16): 337-342. doi: 10.1016/S1474-6670(17)39653-2
  • Sucuoglu HS., Bogrekci I., Gultekin A., Demircioglu P. Design, analysis and development of mobile robot with flip-flop motion ability. IFAC-PapersOnLine 2018; 51(30): 436-440. doi: https://doi.org/10.1016/j.ifacol.2018.11.323
  • Sun J., Cai Z., Sun J., Jin D. Dynamic analysis of a rigid-flexible inflatable space structure coupled with control moment gyroscopes. Nonlinear Dynamics 2023; 111(9): 8061-8081. doi: 10.1007/s11071-023-08254-8.
  • Ünker F., Çuvalcı O. Vibration control of a column using a gyroscope. Procedia - Social and Behavioral Sciences 2015; 195, 2306-2315. doi: 10.1016/j.sbspro.2015.06.182
  • Viana FAC. A tutorial on Latin Hypercube design of experiments. Quality and Reliability Engineering International 2016, 32(5): 1975-1985. doi: https://doi.org/10.1002/qre.1924
  • Ye X., Xu X., Wen T., Han B. Design and optimization of repeatable locking/unlocking device for magnetically suspended control moment gyro. Acta Astronautica 2021; 186, 24-32. doi: 10.1016/j.actaastro.2021.05.025
  • Yildiz N., Topal M. Nonparametrik regresyon metodlarının incelenmesi. Atatürk Üniversitesi Ziraat Fakültesi Dergisi 2021; 32(4): 429-435.
  • Zhang PF., Hao JH., Chen Q. Gyro-less angular velocity estimation and intermittent attitude control of spacecraft using coarse-sensors based on geometric analysis. Aerospace Science and Technology, 2020; 103, 105900. doi: 10.1016/j.ast.2020.105900
  • Zhang Y., Zhao G., Li H. Multibody dynamic modeling and controlling for unmanned bicycle system. Isa Transactions 2021; 118, 174-188. doi: 10.1016/j.isatra.2021.02.014
There are 23 citations in total.

Details

Primary Language Turkish
Subjects Energy Systems Engineering (Other)
Journal Section RESEARCH ARTICLES
Authors

Mehmet Kursat Yalcın 0000-0001-9484-1422

Publication Date December 10, 2024
Submission Date January 12, 2024
Acceptance Date May 23, 2024
Published in Issue Year 2024 Volume: 7 Issue: 5

Cite

APA Yalcın, M. K. (2024). Açısal Momentum Kontrolü İçin Rijit Dinamik Simülasyon Kullanılarak Mekanik Bir Jiroskop Volanının Tasarımı. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 7(5), 2094-2113.
AMA Yalcın MK. Açısal Momentum Kontrolü İçin Rijit Dinamik Simülasyon Kullanılarak Mekanik Bir Jiroskop Volanının Tasarımı. Osmaniye Korkut Ata University Journal of Natural and Applied Sciences. December 2024;7(5):2094-2113.
Chicago Yalcın, Mehmet Kursat. “Açısal Momentum Kontrolü İçin Rijit Dinamik Simülasyon Kullanılarak Mekanik Bir Jiroskop Volanının Tasarımı”. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi 7, no. 5 (December 2024): 2094-2113.
EndNote Yalcın MK (December 1, 2024) Açısal Momentum Kontrolü İçin Rijit Dinamik Simülasyon Kullanılarak Mekanik Bir Jiroskop Volanının Tasarımı. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi 7 5 2094–2113.
IEEE M. K. Yalcın, “Açısal Momentum Kontrolü İçin Rijit Dinamik Simülasyon Kullanılarak Mekanik Bir Jiroskop Volanının Tasarımı”, Osmaniye Korkut Ata University Journal of Natural and Applied Sciences, vol. 7, no. 5, pp. 2094–2113, 2024.
ISNAD Yalcın, Mehmet Kursat. “Açısal Momentum Kontrolü İçin Rijit Dinamik Simülasyon Kullanılarak Mekanik Bir Jiroskop Volanının Tasarımı”. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi 7/5 (December 2024), 2094-2113.
JAMA Yalcın MK. Açısal Momentum Kontrolü İçin Rijit Dinamik Simülasyon Kullanılarak Mekanik Bir Jiroskop Volanının Tasarımı. Osmaniye Korkut Ata University Journal of Natural and Applied Sciences. 2024;7:2094–2113.
MLA Yalcın, Mehmet Kursat. “Açısal Momentum Kontrolü İçin Rijit Dinamik Simülasyon Kullanılarak Mekanik Bir Jiroskop Volanının Tasarımı”. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi, vol. 7, no. 5, 2024, pp. 2094-13.
Vancouver Yalcın MK. Açısal Momentum Kontrolü İçin Rijit Dinamik Simülasyon Kullanılarak Mekanik Bir Jiroskop Volanının Tasarımı. Osmaniye Korkut Ata University Journal of Natural and Applied Sciences. 2024;7(5):2094-113.

23487


196541947019414

19433194341943519436 1960219721 197842261021238 23877

*This journal is an international refereed journal 

*Our journal does not charge any article processing fees over publication process.

* This journal is online publishes 5 issues per year (January, March, June, September, December)

*This journal published in Turkish and English as open access. 

19450 This work is licensed under a Creative Commons Attribution 4.0 International License.