Research Article
BibTex RIS Cite

Production of Planar Electrolyte Supported Single Chamber Solid Oxide Fuel Cell by Single Step Co-Sintering Method and Its Effect on Electrical Performance

Year 2024, Volume: 7 Issue: 5, 2026 - 2052, 10.12.2024
https://doi.org/10.47495/okufbed.1432502

Abstract

This study investigates the applicability of the single step co-sintering method developed for the production of cathode and anode supported planar single chamber solid oxide fuel cells (SC-SOFCs), which we presented in previous studies, to the production of electrolyte-supported planar SC-SOFCs. In addition, the energy conversion capabilities of electrolyte-supported planar SC-COFCs obtained by this method were tested. The materials used for the anode, electrolyte and cathode layers of cells consist of nickel oxide (NiO)-gadolinium-doped ceria (CGO), CGO and lanthanum strontium cobalt ferrite (LSCF)-CGO, respectively. It has been demonstrated that an electrolyte supported planar SC-SOFC with well-defined thickness ratio and thickness along with well-adjusted hot pressing and sintering settings can be produced by the single step co-sintering method. It was detected that there was no cracking or delamination during sintering, but there was curvature at the cell’s edges. By using porous alumina plates of a certain mass placed on the cell during sintering, as is done in other support types of the cell, curvature formation is prevented and an almost completely planar cell is obtained. The performance test was applied to the obtained cells in a single chamber at 600°C in methane-oxygen-nitrogen gas mixtures with different fuel/oxygen ratios. Increasing electrolyte thickness had negative effects on cell performance in spite of enhanced the cell’s single step co-sinterability. The maximum power density and open circuit voltage (OCV) of the final planar cell (thickness 60-300-40 µm, anode-electrolyte-cathode) were found to be 14,4 mW cm-2 and 0,55 V, respectively, in a fuel rich condition (gas mixture 7, CH4-O2-N2, 100-38-100 ml min-1, R:2,6). The maximum power density and OCV were obtained from cell 1, which has a thinner electrolyte than the final planar cell but has curvature at the edges, as 29,39 mW cm-2 and 0,55 V, respectively, in the same gas mixture.

References

  • Ao G., Yan Y., Zhao P., Pan Z., Lv Z. ve Wang, Z. Enhanced redox and reoxidation tolerances of Ce0.8Gd0.2O1.9 electrolyte for Ni cermet anodes in single-chamber SOFCs. Journal of Solid State Electrochemistry 2022; 26(3): 865–873. doi:10.1007/s10008-022-05130-0
  • Bedon A., Viricelle JP., Rieu M., Mascotto S. ve Glisenti A. Single chamber solid oxide fuel cells selective electrodes: A real chance with brownmillerite-based nanocomposites. International Journal of Hydrogen Energy 2021; 46(27): 14735–14747. doi:10.1016/j.ijhydene.2021.01.220
  • Briault P., Rieu M., Laucournet R., Morel B., Viricelle JP. Anode supported single chamber solid oxide fuel cells operating in exhaust gases of thermal engine. Journal of Power Sources 2014; 268: 356–364. doi:10.1016/j.jpowsour.2014.06.061
  • Buccheri MA., Singh A., Hill JM. Anode- versus electrolyte-supported Ni-YSZ/YSZ/Pt SOFCs: Effect of cell design on OCV, performance and carbon formation for the direct utilization of dry methane. Journal of Power Sources 2011; 196(3): 968–976. doi:10.1016/j.jpowsour.2010.08.073
  • Bukhari M., Mohsin M., Kayani ZN., Rasool S., Raza R. The La+3-, Nd+3-, Bi+3-doped ceria as mixed conductor materials for conventional and single-component solid oxide fuel cells. Energies 2023; 16(14). doi:10.3390/en16145308
  • Catalano M., Taurino A., Zhu J., Crozier PA., Dal Zilio S., Amati M., Mele C. Dy- and Tb-doped CeO2-Ni cermets for solid oxide fuel cell anodes: electrochemical fabrication, structural characterization, and electrocatalytic performance. Journal of Solid State Electrochemistry 2018; 22(12): 3761–3773. doi:10.1007/s10008-018-4064-2
  • Choi I. Fabrication of wavy type via in-situ observation of curvature evolution during Fabrication of wavy type porous triple-layer SC-SOFC via in-situ observation of curvature evolution during co-sintering. Loughborough University, Loughborough, United Kingdom, 2015. https://dspace.lboro.ac.uk/dspace-jspui/bitstream/2134/18668/1/Thesis-2015-Choi.pdf adresinden erişildi.
  • Deepi AS., Dharani Priya S., Samson Nesaraj A., Selvakumar AI. Component fabrication techniques for solid oxide fuel cell (SOFC)–A comprehensive review and future prospects. International Journal of Green Energy 2022; 19(14): 1600–1612. doi:10.1080/15435075.2021.2018320
  • Ding C., Lin H., Sato K., Amezawa K., Kawada T., Mizusaki J., Hashida, T. Effect of thickness of Gd0.1Ce0.9O1.95 electrolyte films on electrical performance of anode-supported solid oxide fuel cells. Journal of Power Sources 2010; 195(17): 5487–5492. doi:10.1016/j.jpowsour.2010.03.075
  • Gu B., Sunarso J., Zhang Y., Song Y., Yang G., Zhou W., Shao Z. A high performance composite cathode with enhanced CO2 resistance for low and intermediate-temperature solid oxide fuel cells. Journal of Power Sources 2018; 405(July): 124–131. doi:10.1016/j.jpowsour.2018.10.025
  • Hussain S., Yangping L. Review of solid oxide fuel cell materials: cathode, anode, and electrolyte. Energy Transitions 2020; 4(2): 113–126. doi:10.1007/s41825-020-00029-8
  • Kamvar M., Ghassemi M., Steinberger-Wilckens R. The numerical investigation of a planar single chamber solid oxide fuel cell performance with a focus on the support types. International Journal of Hydrogen Energy 2020; 45(11): 7077–7087. doi:10.1016/j.ijhydene.2019.12.220
  • Kuhn M., Napporn TW. Single-chamber solid oxide fuel cell technology-from its origins to today’s state of the art. Energies 2010; 3(1): 57–134. doi:10.3390/en3010057
  • Lyu Y., Xie J., Wang D., Wang J. Review of cell performance in solid oxide fuel cells. Journal of Materials Science 2020; 55(17): 7184–7207. doi:10.1007/s10853-020-04497-7
  • Mahmud LS., Muchtar A., Somalu MR. Challenges in fabricating planar solid oxide fuel cells: A review. Renewable and Sustainable Energy Reviews 2017; 72(January): 105–116. doi:10.1016/j.rser.2017.01.019
  • Mariño M., Breuil P., Rieu M., Jamon D., Rampnoux JM., Viricelle JP., Garrelie F. Simulation of nanosecond IR laser annealing of cerium gadolinium oxide. Journal of the European Ceramic Society 2018; 38(11): 3875–3880. doi:10.1016/j.jeurceramsoc.2018.04.035
  • Mariño M., Rieu M., Viricelle JP., Garrelie F. Laser induced densification of cerium gadolinium oxide: Application to single-chamber solid oxide fuel cells. Applied Surface Science 2016; 374: 370–374. doi:10.1016/j.apsusc.2015.12.220
  • Maryland Tape Casting 2016. http://www.marylandtapecasting.com/ adresinden erişildi.
  • Meunier M. Performance and ageing of an anode-supported SOFC operated in single-chamber conditions. Journal of Power Sources 2016; 153(1): 108–113. doi:10.1016/j.jpowsour.2005.03.138
  • Milcarek RJ., Garrett MJ., Welles TS., Ahn, J. Performance investigation of a micro-tubular flame-assisted fuel cell stack with 3,000 rapid thermal cycles. Journal of Power Sources 2018; 394(May): 86–93. doi:10.1016/j.jpowsour.2018.05.060
  • Minh N. Solid oxide fuel cell technology features and applications. Solid State Ionics 2004; 174(1–4): 271–277. doi:10.1016/j.ssi.2004.07.042
  • Morales M., Piñol S., Segarra M. Intermediate temperature single-chamber methane fed SOFC based on Gd doped ceria electrolyte and La0.5Sr0.5CoO3-δ as cathode. Journal of Power Sources 2009; 194(2): 961–966. doi:10.1016/j.jpowsour.2009.05.027
  • Nurk G., Kooser K., Urpelainen S., Käämbre T., Joost U., Kodu M., Lust E. Near ambient pressure X-ray photoelectron - and impedance spectroscopy study of NiO - Ce0.9Gd0.1O2-Δ anode reduction using a novel dual-chamber spectroelectrochemical cell. Journal of Power Sources 2018; 378(January): 589–596. doi:10.1016/j.jpowsour.2017.12.080
  • Özel S., Aslan K. Investigation of the effect of Cr2O3 particles on al-si matrix composites produced by powder metallurgy. Bitlis Eren Üniversitesi Fen Bilimleri Dergisi 2023; 12(2): 387–395. doi:10.17798/bitlisfen.1223482
  • Özel S., Hamidli, T. Investigation of ZrO2-Y2O3 added al matrix composites produced by T/M method. Bitlis Eren Üniversitesi Fen Bilimleri Dergisi 2022; 11(4): 1042–1049. doi:10.17798/bitlisfen.1169380
  • Sayan Y., Kim JS., Wu H. Performance of anode supported single chamber solid oxide fuel cells produced in various thicknesses by single-step co-sintering. International Journal of Engineering Research and Development 2023; 15(1): 195–211.
  • Sayan Y., Venkatesan V., Guk E., Wu H., Kim, JS. Single-step fabrication of an anode supported planar single-chamber solid oxide fuel cell. International Journal of Applied Ceramic Technology 2018; 15(6): 1375–1387. doi:10.1111/ijac.13012
  • Singhal SC., Kendall K. High temperature solid oxide fuel cells:fundementals, design and applications. Oxford: Elsevier Advanced Technology; 2003.
  • Su H., Hu YH. Progress in low-temperature solid oxide fuel cells with hydrocarbon fuels. Chemical Engineering Journal 2020a; 402(April): 126235. doi:10.1016/j.cej.2020.126235
  • Su H., Hu YH. Progress in low-temperature solid oxide fuel cells with hydrocarbon fuels. Chemical Engineering Journal 2020b; 402(June): 126235. doi:10.1016/j.cej.2020.126235
  • Tian Y., Lü Z., Wang Z., Wei B., Guo X., Wu P. Effect of the angle between gas flow direction and electrode on single-chamber SOFC stacks. Journal of Solid State Electrochemistry 2019; 23(6): 1651–1657. doi:10.1007/s10008-019-04266-w
  • Tian Y., Wu P., Zhang X., Guo X., Ding L. Performance of a linear array solid oxide fuel cell micro-stack operated in single-chamber conditions. Ionics 2020; 26(12): 6217–6224. doi:10.1007/s11581-020-03780-6
  • Timurkutluk B., Timurkutluk C., Mat MD., Kaplan Y. A review on cell/stack designs for high performance solid oxide fuel cells. Renewable and Sustainable Energy Reviews 2016; 56: 1101–1121. doi:10.1016/j.rser.2015.12.034
  • Wang ZH., Lü Z., Chen KF., Wei B., Zhu XB., Huang XQ., Su WH. Redox tolerance of thin and thick Ni/YSZ anodes of electrolyte-supported single-chamber solid oxide fuel cells under methane oxidation conditions. Fuel Cells 2013; 13(6): 1109–1115. doi:10.1002/fuce.201200050
  • Wei L., Zhang J., Yu F., Zhang W., Meng X., Yang N., Liu S. A novel fabrication of yttria-stabilized-zirconia dense electrolyte for solid oxide fuel cells by 3D printing technique. International Journal of Hydrogen Energy 2019; 44(12): 6182–6191. doi:10.1016/j.ijhydene.2019.01.071
  • Yusenko MV., Belyaev VD., Demin AK., Bronin DI., Salanov AN., Sobyanin VA., Potemkin DI. Performance of single-chamber solid oxide fuel cells based on Ni and Ni–Cu alloy anodes and fed with a methane–air mixture. Kinetics and Catalysis 2022; 63(1): 123–128. doi:10.1134/S0023158422010116

Düzlemsel Elektrolit Destekli Tek Odacıklı Katı Oksit Yakıt Pilinin Tek Aşamalı Ortak Sinterleme Yöntemiyle Üretimi ve Elektriksel Performansına Etkisi

Year 2024, Volume: 7 Issue: 5, 2026 - 2052, 10.12.2024
https://doi.org/10.47495/okufbed.1432502

Abstract

Bu çalışma, önceki çalışmalarda sunduğumuz katot ve anot destekli düzlemsel tek odacıklı katı oksit yakıt pillerinin (TO-KOYP) üretimi için geliştirilmiş tek adımlı ortak sinterleme yönteminin elektrolit destekli düzlemsel TO-KOYP’lerin üretimine uygulanabilirliğini araştırmaktadır. Ayrıca bu yöntemle elde edilen elektrolit destekli düzlemsel TO-KOYP’lerin enerji dönüşüm kabiliyetleri test edilmiştir. Pillerin anot, elektrolit ve katot katmanları için kullanılan malzemeler sırasıyla; nikel oksit (NiO)–gadolinyum katkılı ceria (CGO), CGO ve lantan stronsiyum kobalt ferrit (LSCF))–CGO’dan oluşmaktadır. Optimize edilmiş sıcak presleme ve sinterleme ayarlarıyla birlikte iyi tanımlanmış kalınlık oranı ve kalınlığa sahip elektrolit destekli düzlemsel bir TO-KOYP’nin tek aşamalı ortak sinterleme yöntemiyle üretebilirliği görülmüştür. Sinterleme sırasında çatlama ve delaminasyon olmadığı fakat pilin kenarlarında eğriliğin olduğu görülmüştür. Pilin diğer destek türlerinde yapıldığı gibi sinterleme sırasında pil üzerine yerleştirilen belirli kütleye sahip gözenekli alümina plakaları kullanılarak eğrilik oluşumu engellenmiş neredeyse tamamen düz bir pil elde edilmiştir. Elde edilen piller 600°C’de farklı yakıt/oksijen oranlarına sahip metan-oksijen-nitrojen gaz karışımlarında tek haznede test edilmiştir. Elektrolit kalınlığının arttırılması, pilin tek aşamada ortak sinterlenebilirliğinin artmasına yol açmasına rağmen pil performansı üzerinde olumsuz etkilere sebep olmuştur. Nihai düzlemsel pilin (kalınlık 60-300-40 µm, anot-elektrolit-katot) maksimum güç yoğunluğu ve açık devre voltajı (OCV) yakıt açısından zengin durumda (gaz karışımı 7, CH4-O2-N2 100-38-100 ml dk-1, R:2,6) sırasıyla; 14,4 mW cm-2 ve 0,55 V olarak bulunmuştur. Maksimum güç yoğunluğu ve OCV nihai düzlemsel pilden daha ince bir elektrolite sahip olan fakat kenarlarında eğrilik bulunan pil 1’den aynı gaz karışımında sırasıyla 29,39 mW cm-2 ve 0,55 V olarak elde edilmiştir.

Supporting Institution

Türkiye Cumhuriyeti Milli Eğitim Bakanlığı, Loughborough University, Bitlis Eren Üniversitesi

Thanks

Çalışma, Türkiye Cumhuriyeti Milli Eğitim Bakanlığı ile birlikte EPSRC’nin Hindistan-İngiltere İşbirliğine Dayalı Yakıt Pilleri Araştırma Girişimi Projesi tarafından desteklenen “Katı Oksit Yakıt Pillerinin Hızlandırılmış Yaşlanması ve Bozunmasının Modellenmesi” (EP/I037059/1) projesi ile desteklenmiştir. Ayrıca Birleşik Krallık-Kore İşbirlikçi Araştırma Etkinliği Projesi (EP/M02346X/1) EPSRC'nin Yakıt Pillerinde "SOFC Yığınlarının İzlenmesi ve Kontrolü İçin Yeni Teşhis Araçları ve Teknikleri" konulu projesi ile destek vermiştir. Yazarlar yukarıda adı geçen tüm destekçilere sağladıkları finansmandan dolayı minnetle teşekkür ederler.

References

  • Ao G., Yan Y., Zhao P., Pan Z., Lv Z. ve Wang, Z. Enhanced redox and reoxidation tolerances of Ce0.8Gd0.2O1.9 electrolyte for Ni cermet anodes in single-chamber SOFCs. Journal of Solid State Electrochemistry 2022; 26(3): 865–873. doi:10.1007/s10008-022-05130-0
  • Bedon A., Viricelle JP., Rieu M., Mascotto S. ve Glisenti A. Single chamber solid oxide fuel cells selective electrodes: A real chance with brownmillerite-based nanocomposites. International Journal of Hydrogen Energy 2021; 46(27): 14735–14747. doi:10.1016/j.ijhydene.2021.01.220
  • Briault P., Rieu M., Laucournet R., Morel B., Viricelle JP. Anode supported single chamber solid oxide fuel cells operating in exhaust gases of thermal engine. Journal of Power Sources 2014; 268: 356–364. doi:10.1016/j.jpowsour.2014.06.061
  • Buccheri MA., Singh A., Hill JM. Anode- versus electrolyte-supported Ni-YSZ/YSZ/Pt SOFCs: Effect of cell design on OCV, performance and carbon formation for the direct utilization of dry methane. Journal of Power Sources 2011; 196(3): 968–976. doi:10.1016/j.jpowsour.2010.08.073
  • Bukhari M., Mohsin M., Kayani ZN., Rasool S., Raza R. The La+3-, Nd+3-, Bi+3-doped ceria as mixed conductor materials for conventional and single-component solid oxide fuel cells. Energies 2023; 16(14). doi:10.3390/en16145308
  • Catalano M., Taurino A., Zhu J., Crozier PA., Dal Zilio S., Amati M., Mele C. Dy- and Tb-doped CeO2-Ni cermets for solid oxide fuel cell anodes: electrochemical fabrication, structural characterization, and electrocatalytic performance. Journal of Solid State Electrochemistry 2018; 22(12): 3761–3773. doi:10.1007/s10008-018-4064-2
  • Choi I. Fabrication of wavy type via in-situ observation of curvature evolution during Fabrication of wavy type porous triple-layer SC-SOFC via in-situ observation of curvature evolution during co-sintering. Loughborough University, Loughborough, United Kingdom, 2015. https://dspace.lboro.ac.uk/dspace-jspui/bitstream/2134/18668/1/Thesis-2015-Choi.pdf adresinden erişildi.
  • Deepi AS., Dharani Priya S., Samson Nesaraj A., Selvakumar AI. Component fabrication techniques for solid oxide fuel cell (SOFC)–A comprehensive review and future prospects. International Journal of Green Energy 2022; 19(14): 1600–1612. doi:10.1080/15435075.2021.2018320
  • Ding C., Lin H., Sato K., Amezawa K., Kawada T., Mizusaki J., Hashida, T. Effect of thickness of Gd0.1Ce0.9O1.95 electrolyte films on electrical performance of anode-supported solid oxide fuel cells. Journal of Power Sources 2010; 195(17): 5487–5492. doi:10.1016/j.jpowsour.2010.03.075
  • Gu B., Sunarso J., Zhang Y., Song Y., Yang G., Zhou W., Shao Z. A high performance composite cathode with enhanced CO2 resistance for low and intermediate-temperature solid oxide fuel cells. Journal of Power Sources 2018; 405(July): 124–131. doi:10.1016/j.jpowsour.2018.10.025
  • Hussain S., Yangping L. Review of solid oxide fuel cell materials: cathode, anode, and electrolyte. Energy Transitions 2020; 4(2): 113–126. doi:10.1007/s41825-020-00029-8
  • Kamvar M., Ghassemi M., Steinberger-Wilckens R. The numerical investigation of a planar single chamber solid oxide fuel cell performance with a focus on the support types. International Journal of Hydrogen Energy 2020; 45(11): 7077–7087. doi:10.1016/j.ijhydene.2019.12.220
  • Kuhn M., Napporn TW. Single-chamber solid oxide fuel cell technology-from its origins to today’s state of the art. Energies 2010; 3(1): 57–134. doi:10.3390/en3010057
  • Lyu Y., Xie J., Wang D., Wang J. Review of cell performance in solid oxide fuel cells. Journal of Materials Science 2020; 55(17): 7184–7207. doi:10.1007/s10853-020-04497-7
  • Mahmud LS., Muchtar A., Somalu MR. Challenges in fabricating planar solid oxide fuel cells: A review. Renewable and Sustainable Energy Reviews 2017; 72(January): 105–116. doi:10.1016/j.rser.2017.01.019
  • Mariño M., Breuil P., Rieu M., Jamon D., Rampnoux JM., Viricelle JP., Garrelie F. Simulation of nanosecond IR laser annealing of cerium gadolinium oxide. Journal of the European Ceramic Society 2018; 38(11): 3875–3880. doi:10.1016/j.jeurceramsoc.2018.04.035
  • Mariño M., Rieu M., Viricelle JP., Garrelie F. Laser induced densification of cerium gadolinium oxide: Application to single-chamber solid oxide fuel cells. Applied Surface Science 2016; 374: 370–374. doi:10.1016/j.apsusc.2015.12.220
  • Maryland Tape Casting 2016. http://www.marylandtapecasting.com/ adresinden erişildi.
  • Meunier M. Performance and ageing of an anode-supported SOFC operated in single-chamber conditions. Journal of Power Sources 2016; 153(1): 108–113. doi:10.1016/j.jpowsour.2005.03.138
  • Milcarek RJ., Garrett MJ., Welles TS., Ahn, J. Performance investigation of a micro-tubular flame-assisted fuel cell stack with 3,000 rapid thermal cycles. Journal of Power Sources 2018; 394(May): 86–93. doi:10.1016/j.jpowsour.2018.05.060
  • Minh N. Solid oxide fuel cell technology features and applications. Solid State Ionics 2004; 174(1–4): 271–277. doi:10.1016/j.ssi.2004.07.042
  • Morales M., Piñol S., Segarra M. Intermediate temperature single-chamber methane fed SOFC based on Gd doped ceria electrolyte and La0.5Sr0.5CoO3-δ as cathode. Journal of Power Sources 2009; 194(2): 961–966. doi:10.1016/j.jpowsour.2009.05.027
  • Nurk G., Kooser K., Urpelainen S., Käämbre T., Joost U., Kodu M., Lust E. Near ambient pressure X-ray photoelectron - and impedance spectroscopy study of NiO - Ce0.9Gd0.1O2-Δ anode reduction using a novel dual-chamber spectroelectrochemical cell. Journal of Power Sources 2018; 378(January): 589–596. doi:10.1016/j.jpowsour.2017.12.080
  • Özel S., Aslan K. Investigation of the effect of Cr2O3 particles on al-si matrix composites produced by powder metallurgy. Bitlis Eren Üniversitesi Fen Bilimleri Dergisi 2023; 12(2): 387–395. doi:10.17798/bitlisfen.1223482
  • Özel S., Hamidli, T. Investigation of ZrO2-Y2O3 added al matrix composites produced by T/M method. Bitlis Eren Üniversitesi Fen Bilimleri Dergisi 2022; 11(4): 1042–1049. doi:10.17798/bitlisfen.1169380
  • Sayan Y., Kim JS., Wu H. Performance of anode supported single chamber solid oxide fuel cells produced in various thicknesses by single-step co-sintering. International Journal of Engineering Research and Development 2023; 15(1): 195–211.
  • Sayan Y., Venkatesan V., Guk E., Wu H., Kim, JS. Single-step fabrication of an anode supported planar single-chamber solid oxide fuel cell. International Journal of Applied Ceramic Technology 2018; 15(6): 1375–1387. doi:10.1111/ijac.13012
  • Singhal SC., Kendall K. High temperature solid oxide fuel cells:fundementals, design and applications. Oxford: Elsevier Advanced Technology; 2003.
  • Su H., Hu YH. Progress in low-temperature solid oxide fuel cells with hydrocarbon fuels. Chemical Engineering Journal 2020a; 402(April): 126235. doi:10.1016/j.cej.2020.126235
  • Su H., Hu YH. Progress in low-temperature solid oxide fuel cells with hydrocarbon fuels. Chemical Engineering Journal 2020b; 402(June): 126235. doi:10.1016/j.cej.2020.126235
  • Tian Y., Lü Z., Wang Z., Wei B., Guo X., Wu P. Effect of the angle between gas flow direction and electrode on single-chamber SOFC stacks. Journal of Solid State Electrochemistry 2019; 23(6): 1651–1657. doi:10.1007/s10008-019-04266-w
  • Tian Y., Wu P., Zhang X., Guo X., Ding L. Performance of a linear array solid oxide fuel cell micro-stack operated in single-chamber conditions. Ionics 2020; 26(12): 6217–6224. doi:10.1007/s11581-020-03780-6
  • Timurkutluk B., Timurkutluk C., Mat MD., Kaplan Y. A review on cell/stack designs for high performance solid oxide fuel cells. Renewable and Sustainable Energy Reviews 2016; 56: 1101–1121. doi:10.1016/j.rser.2015.12.034
  • Wang ZH., Lü Z., Chen KF., Wei B., Zhu XB., Huang XQ., Su WH. Redox tolerance of thin and thick Ni/YSZ anodes of electrolyte-supported single-chamber solid oxide fuel cells under methane oxidation conditions. Fuel Cells 2013; 13(6): 1109–1115. doi:10.1002/fuce.201200050
  • Wei L., Zhang J., Yu F., Zhang W., Meng X., Yang N., Liu S. A novel fabrication of yttria-stabilized-zirconia dense electrolyte for solid oxide fuel cells by 3D printing technique. International Journal of Hydrogen Energy 2019; 44(12): 6182–6191. doi:10.1016/j.ijhydene.2019.01.071
  • Yusenko MV., Belyaev VD., Demin AK., Bronin DI., Salanov AN., Sobyanin VA., Potemkin DI. Performance of single-chamber solid oxide fuel cells based on Ni and Ni–Cu alloy anodes and fed with a methane–air mixture. Kinetics and Catalysis 2022; 63(1): 123–128. doi:10.1134/S0023158422010116
There are 36 citations in total.

Details

Primary Language Turkish
Subjects Energy, Energy Systems Engineering (Other)
Journal Section RESEARCH ARTICLES
Authors

Yunus Sayan 0000-0002-0871-6842

Jung-sik Kim 0000-0002-3696-7251

Houzheng Wu 0000-0002-7628-3890

Publication Date December 10, 2024
Submission Date February 6, 2024
Acceptance Date May 10, 2024
Published in Issue Year 2024 Volume: 7 Issue: 5

Cite

APA Sayan, Y., Kim, J.-s., & Wu, H. (2024). Düzlemsel Elektrolit Destekli Tek Odacıklı Katı Oksit Yakıt Pilinin Tek Aşamalı Ortak Sinterleme Yöntemiyle Üretimi ve Elektriksel Performansına Etkisi. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 7(5), 2026-2052. https://doi.org/10.47495/okufbed.1432502
AMA Sayan Y, Kim Js, Wu H. Düzlemsel Elektrolit Destekli Tek Odacıklı Katı Oksit Yakıt Pilinin Tek Aşamalı Ortak Sinterleme Yöntemiyle Üretimi ve Elektriksel Performansına Etkisi. Osmaniye Korkut Ata University Journal of The Institute of Science and Techno. December 2024;7(5):2026-2052. doi:10.47495/okufbed.1432502
Chicago Sayan, Yunus, Jung-sik Kim, and Houzheng Wu. “Düzlemsel Elektrolit Destekli Tek Odacıklı Katı Oksit Yakıt Pilinin Tek Aşamalı Ortak Sinterleme Yöntemiyle Üretimi Ve Elektriksel Performansına Etkisi”. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi 7, no. 5 (December 2024): 2026-52. https://doi.org/10.47495/okufbed.1432502.
EndNote Sayan Y, Kim J-s, Wu H (December 1, 2024) Düzlemsel Elektrolit Destekli Tek Odacıklı Katı Oksit Yakıt Pilinin Tek Aşamalı Ortak Sinterleme Yöntemiyle Üretimi ve Elektriksel Performansına Etkisi. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi 7 5 2026–2052.
IEEE Y. Sayan, J.-s. Kim, and H. Wu, “Düzlemsel Elektrolit Destekli Tek Odacıklı Katı Oksit Yakıt Pilinin Tek Aşamalı Ortak Sinterleme Yöntemiyle Üretimi ve Elektriksel Performansına Etkisi”, Osmaniye Korkut Ata University Journal of The Institute of Science and Techno, vol. 7, no. 5, pp. 2026–2052, 2024, doi: 10.47495/okufbed.1432502.
ISNAD Sayan, Yunus et al. “Düzlemsel Elektrolit Destekli Tek Odacıklı Katı Oksit Yakıt Pilinin Tek Aşamalı Ortak Sinterleme Yöntemiyle Üretimi Ve Elektriksel Performansına Etkisi”. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi 7/5 (December 2024), 2026-2052. https://doi.org/10.47495/okufbed.1432502.
JAMA Sayan Y, Kim J-s, Wu H. Düzlemsel Elektrolit Destekli Tek Odacıklı Katı Oksit Yakıt Pilinin Tek Aşamalı Ortak Sinterleme Yöntemiyle Üretimi ve Elektriksel Performansına Etkisi. Osmaniye Korkut Ata University Journal of The Institute of Science and Techno. 2024;7:2026–2052.
MLA Sayan, Yunus et al. “Düzlemsel Elektrolit Destekli Tek Odacıklı Katı Oksit Yakıt Pilinin Tek Aşamalı Ortak Sinterleme Yöntemiyle Üretimi Ve Elektriksel Performansına Etkisi”. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi, vol. 7, no. 5, 2024, pp. 2026-52, doi:10.47495/okufbed.1432502.
Vancouver Sayan Y, Kim J-s, Wu H. Düzlemsel Elektrolit Destekli Tek Odacıklı Katı Oksit Yakıt Pilinin Tek Aşamalı Ortak Sinterleme Yöntemiyle Üretimi ve Elektriksel Performansına Etkisi. Osmaniye Korkut Ata University Journal of The Institute of Science and Techno. 2024;7(5):2026-52.

23487


196541947019414

19433194341943519436 1960219721 197842261021238 23877

*This journal is an international refereed journal 

*Our journal does not charge any article processing fees over publication process.

* This journal is online publishes 5 issues per year (January, March, June, September, December)

*This journal published in Turkish and English as open access. 

19450 This work is licensed under a Creative Commons Attribution 4.0 International License.