Research Article
BibTex RIS Cite

Efficient Detection of Tomato Leaf Conditions using Modified-InceptionResNetV2 Architecture

Year 2025, Volume: 8 Issue: 1, 375 - 392, 17.01.2025
https://doi.org/10.47495/okufbed.1443018

Abstract

Timely identification and treatment of diseases affecting tomato leaves are essential for enhancing plant productivity, operational efficiency, and overall quality. Tomato plants are highly vulnerable to a diverse range of diseases, and farmers' misdiagnosing of these ailments can lead to insufficient treatment strategies, causing harm to both the plants and the agroecosystem. Ensuring the quality of tomato crops relies significantly on prompt and accurate diagnoses. In contemporary times, deep learning techniques have demonstrated remarkable success across various applications, including classifying diseases in tomato plants. This study presents an approach for detecting tomato leaf conditions more precisely using a deep-learning architecture, namely the Modified-InceptionResNetV2 model, based on the InceptionResNetV2 transfer learning model. Our proposed architecture focuses on strengthening the classification block within the base model to achieve more accurate performance in identifying the condition of tomato leaves. Additionally, several preprocessing steps and augmentation techniques are employed to improve classification accuracy. Experimental analysis using a well-known, publicly available ten-class dataset achieves impressive training, validation, and testing accuracy rates of 99.74%, 99.79%, and 99.20%, respectively. The proposed model could serve as a vital tool for farmers, aiding in the efficient detection and prevention of tomato diseases and enabling rapid and simple early detection of plant diseases. Experimental results showcase its superiority over previous studies in tomato leaf disease classification.

References

  • Agarwal, M., Singh, A., Arjaria, S., Sinha, A., and Gupta, S. ToLeD: Tomato leaf disease detection using convolution neural network. Procedia Computer Science 2020; 167: 293-301.
  • Aggarwal, S., Gupta, S., Gupta, D., Gulzar, Y., Juneja, S., Alwan, A.A., and Nauman, A. An artificial intelligence- based stacked ensemble approach for prediction of protein subcellular localization in confocal microscopy images. Sustainability 2023; 15(2): 1695.
  • Bhandari, M., Shahi, T.B., Neupane, A., and Walsh, K.B. Botanicx-ai: Identification of tomato leaf diseases using an explanation-driven deep-learning model. Journal of Imaging 2023; 9(2): 53.
  • Bouni, M., Hssina, B., Douzi, K., and Douzi, S. Impact of pretrained deep neural networks for tomato leaf disease prediction. Journal of Electrical and Computer Engineering 2023; 2023(1): 5051005.
  • Chakraborty, S., Paul, S., and Rahat-uz-zaman, Md. Prediction of apple leaf diseases using multiclass support vector machine. In: 2021 2Nd international conference on robotics, electrical and signal processing techniques (ICREST). IEEE 2021; 147-151.
  • Deng, Y., Xi, H., Zhou, G., Chen, A., Wang, Y., Li, L., and Hu, Y. An effective image-based tomato leaf disease segmentation method using MC-UNet. Plant Phenomics 2023; 5: 0049.
  • Erika, C., Griebel, S., Naumann, M., and Pawelzik, E. Biodiversity in tomatoes: Is it reflected in nutrient density and nutritional yields under organic outdoor production?. Frontiers in plant science 2020; 11: 589692.
  • Gulzar, Y. Fruit image classification model based on MobileNetV2 with deep transfer learning technique. Sustainability 2023; 15(3): 1906.
  • Gulzar, Y., Hamid, Y., Soomro, A.B., Alwan, A.A., and Journax, L. A convolution neural network-based seed classification system. Symmetry 2020; 12(12): 2018.
  • Hossain, S., Reza, M.T., Chakrabarty, A., and Jung, Y.J. Aggregating different scales of attention on feature variants for tomato leaf disease diagnosis from image data: a transformer driven study. Sensors 2023; 23(7): 3751.
  • Huang, X., Chen, A., Zhou, G., Zhang, X., Wang, J., Peng, N., Yan, N., and Jiang, C. Tomato leaf disease detection system based on FC-SNDPN. Multimedia tools and applications 2023; 82(2): 2121-2144.
  • Kumar, B.A., Bansal, M., Sharma, R. Caffe-mobilenetv2 based tomato leaf disease detection. In: 2023 3rd International conference on Artificial Intelligence and Signal Processing (AISP). IEEE 2023; 1-6.
  • Panchal, P., Raman, V.C., Mantri, S. Plant diseases detection and classification using machine learning models. In: 2019 4th international conference on computational systems and information technology for sustainable solution (CSITSS). IEEE 2019; 1-6.
  • Parvez, S., Uddin, M.A., Islam M., Bharman, P., and Talukder, M.A. Tomato leaf disease detection using convolutional neural network. 2023.
  • Paul, S.G., Biswas, A.A., Saha, A., Zulfikar, M.S., Ritu, N.A., Zahan, I., Rahman, M., and Islam, M.A. A real-time application-based convolutional neural network approach for tomato leaf disease classification. Array 2023; 19: 100313.
  • Peng, D., Li, W., Zhao, H., Zhou, G., and Cai, C. Recognition of tomato leaf diseases based on DIMPCNET. Agronomy 2023; 13(7): 1812.
  • Qin, F., Liu, D., Sun, B., Ruan, B., Ma, Z., and Wang, H. Identification of alfalfa leaf diseases using image recognition technology. PloS one 2016; 11(12): e0168274.
  • Rahman, S.U., Alam, F., Ahmad, N., and Arshad, S. Image processing based system for the detection, identification and treatment of tomato leaf diseases. Multimedia Tools and Applications 2023; 82(6): 9431-9445.
  • Deepa, Rashmi, N.,and Shetty, C. A machine learning technique for identification of plant diseases in leaves. In: 2021 6th international conference on inventive computation technologies (ICICT). IEEE 2021; 481-484.
  • Reza, Z.N., Nuzhat, F., Mahsa, N.A., Ali, H. Detecting jute plant disease using image processing and machine learning. In: 2016 3rd international conference on electrical engineering and information communication technology (ICEEICT). IEEE 2016; 1-6.
  • Saeed, A., Aziz, A.A.A., Mossad, A., Abdelhamid, M.A., Alkhaled, A.Y., and Mayhoub, M. Smart detection of tomato leaf diseases using transfer learning-based convolutional neural networks. Agriculture 2023; 13(1): 139.
  • Sun, J., Wenjun, T., Hanping, M., Xiaohong, W., Yong, C., and Long, W. Recognition of multiple plant leaf diseases based on improved convolutional neural network. Transactions of the Chinese Society of Agricultural Engineering 2017; 33(19): 209-215.
  • Szegedy, C., Ioffe, S., Vanhoucke, V., and Alemi, A. Inception-v4, inception-resnet and the impact of residual connections on learning. In: Proceedings of the AAAI conference on artificial intelligence 2017; 31(1).
  • Tang, Z., He, X., Zhou, G., Chen, A., Wang, Y., Li, L., and Hu, Y. A precise image-based tomato leaf disease detection approach using PLPNet. Plant Phenomics 2023; 5: 0042.
  • Tomato leaf disease detection. (n.d.). Date Accessed: 23/02/2024 Https://Www.Kaggle.Com/Datasets/Kaustubhb999/Tomato. Retrieved February 23, 2024, from https://www.kaggle.com/datasets/kaustubhb999/tomatoleaf
  • Trivedi, N.K., Gautam, V., Anand, A., Aljahdali, H.M., Villar, S.G., Anand, D., Goyal, N., and Kadry, S. Early detection and classification of tomato leaf disease using high-performance deep neural network. Sensors 2021; 21(23): 7987.
  • Xie, C. and He, Y. Spectrum and image texture features analysis for early blight disease detection on eggplant leaves. Sensors 2016; 16(5): 676.
  • Wu, Y. Identification of maize leaf diseases based on convolutional neural network. In: Journal of physics: Conference series. IOP Publishing 2021; 032004.
  • Zhang, Y., Huang, S., Zhou, G., Hu, Y., and Li, L. Identification of tomato leaf diseases based on multi-channel automatic orientation recurrent attention network. Computers and Electronics in Agriculture 2023; 205: 107605.

Modifiye-InceptionResNetV2 Mimarisi Kullanarak Domates Yaprak Koşullarının Etkili Tespiti

Year 2025, Volume: 8 Issue: 1, 375 - 392, 17.01.2025
https://doi.org/10.47495/okufbed.1443018

Abstract

Domates yapraklarını etkileyen hastalıkların zamanında tespit edilmesi ve tedavi edilmesi, bitki üretkenliğini, operasyonel verimliliği ve genel kaliteyi artırmak için esastır. Domates bitkileri çeşitli hastalıklara oldukça duyarlıdır ve çiftçilerin bu hastalıkları yanlış teşhis etmeleri, yetersiz tedavi stratejilerine yol açarak hem bitkilere hem de tarım ekosistemine zarar verebilir. Domates mahsullerinin kalitesinin sağlanması, zamanında ve doğru teşhise büyük ölçüde bağlıdır. Günümüzde derin öğrenme teknikleri, domates bitkilerinde hastalıkları sınıflandırmak gibi çeşitli uygulamalarda önemli başarılar göstermiştir. Bu çalışma, Modifiye-InceptionResNetV2 modeli adlı bir derin öğrenme mimarisi kullanarak domates yaprak koşullarını daha hassas bir şekilde tespit etmek için bir yaklaşım sunmaktadır; bu model, InceptionResNetV2 transfer öğrenme modeline dayanmaktadır. Önerilen mimari, temel model içindeki sınıflandırma bloğunu güçlendirmeye odaklanarak domates yapraklarının durumunu daha doğru bir şekilde tanımlama performansı elde etmeyi amaçlamaktadır. Ayrıca, sınıflandırma doğruluğunu artırmak için çeşitli ön işleme adımları ve artırma teknikleri kullanılmaktadır. Bilinen bir kamu veritabanı olan on sınıflı bir veri seti kullanılarak yapılan deneysel analiz, sırasıyla etkileyici eğitim, doğrulama ve test doğruluk oranlarına ulaşmaktadır: %99.74, %99.79 ve %99.20. Önerilen model, çiftçiler için önemli bir araç olarak hizmet edebilir; domates hastalıklarının etkili bir şekilde tespit edilmesine ve önlenmesine yardımcı olarak bitki hastalıklarının hızlı ve basit erken teşhisini sağlar. Deneysel sonuçlar, domates yaprak hastalığı sınıflandırmasında önceki çalışmalara üstünlüğünü ortaya koymaktadır.

References

  • Agarwal, M., Singh, A., Arjaria, S., Sinha, A., and Gupta, S. ToLeD: Tomato leaf disease detection using convolution neural network. Procedia Computer Science 2020; 167: 293-301.
  • Aggarwal, S., Gupta, S., Gupta, D., Gulzar, Y., Juneja, S., Alwan, A.A., and Nauman, A. An artificial intelligence- based stacked ensemble approach for prediction of protein subcellular localization in confocal microscopy images. Sustainability 2023; 15(2): 1695.
  • Bhandari, M., Shahi, T.B., Neupane, A., and Walsh, K.B. Botanicx-ai: Identification of tomato leaf diseases using an explanation-driven deep-learning model. Journal of Imaging 2023; 9(2): 53.
  • Bouni, M., Hssina, B., Douzi, K., and Douzi, S. Impact of pretrained deep neural networks for tomato leaf disease prediction. Journal of Electrical and Computer Engineering 2023; 2023(1): 5051005.
  • Chakraborty, S., Paul, S., and Rahat-uz-zaman, Md. Prediction of apple leaf diseases using multiclass support vector machine. In: 2021 2Nd international conference on robotics, electrical and signal processing techniques (ICREST). IEEE 2021; 147-151.
  • Deng, Y., Xi, H., Zhou, G., Chen, A., Wang, Y., Li, L., and Hu, Y. An effective image-based tomato leaf disease segmentation method using MC-UNet. Plant Phenomics 2023; 5: 0049.
  • Erika, C., Griebel, S., Naumann, M., and Pawelzik, E. Biodiversity in tomatoes: Is it reflected in nutrient density and nutritional yields under organic outdoor production?. Frontiers in plant science 2020; 11: 589692.
  • Gulzar, Y. Fruit image classification model based on MobileNetV2 with deep transfer learning technique. Sustainability 2023; 15(3): 1906.
  • Gulzar, Y., Hamid, Y., Soomro, A.B., Alwan, A.A., and Journax, L. A convolution neural network-based seed classification system. Symmetry 2020; 12(12): 2018.
  • Hossain, S., Reza, M.T., Chakrabarty, A., and Jung, Y.J. Aggregating different scales of attention on feature variants for tomato leaf disease diagnosis from image data: a transformer driven study. Sensors 2023; 23(7): 3751.
  • Huang, X., Chen, A., Zhou, G., Zhang, X., Wang, J., Peng, N., Yan, N., and Jiang, C. Tomato leaf disease detection system based on FC-SNDPN. Multimedia tools and applications 2023; 82(2): 2121-2144.
  • Kumar, B.A., Bansal, M., Sharma, R. Caffe-mobilenetv2 based tomato leaf disease detection. In: 2023 3rd International conference on Artificial Intelligence and Signal Processing (AISP). IEEE 2023; 1-6.
  • Panchal, P., Raman, V.C., Mantri, S. Plant diseases detection and classification using machine learning models. In: 2019 4th international conference on computational systems and information technology for sustainable solution (CSITSS). IEEE 2019; 1-6.
  • Parvez, S., Uddin, M.A., Islam M., Bharman, P., and Talukder, M.A. Tomato leaf disease detection using convolutional neural network. 2023.
  • Paul, S.G., Biswas, A.A., Saha, A., Zulfikar, M.S., Ritu, N.A., Zahan, I., Rahman, M., and Islam, M.A. A real-time application-based convolutional neural network approach for tomato leaf disease classification. Array 2023; 19: 100313.
  • Peng, D., Li, W., Zhao, H., Zhou, G., and Cai, C. Recognition of tomato leaf diseases based on DIMPCNET. Agronomy 2023; 13(7): 1812.
  • Qin, F., Liu, D., Sun, B., Ruan, B., Ma, Z., and Wang, H. Identification of alfalfa leaf diseases using image recognition technology. PloS one 2016; 11(12): e0168274.
  • Rahman, S.U., Alam, F., Ahmad, N., and Arshad, S. Image processing based system for the detection, identification and treatment of tomato leaf diseases. Multimedia Tools and Applications 2023; 82(6): 9431-9445.
  • Deepa, Rashmi, N.,and Shetty, C. A machine learning technique for identification of plant diseases in leaves. In: 2021 6th international conference on inventive computation technologies (ICICT). IEEE 2021; 481-484.
  • Reza, Z.N., Nuzhat, F., Mahsa, N.A., Ali, H. Detecting jute plant disease using image processing and machine learning. In: 2016 3rd international conference on electrical engineering and information communication technology (ICEEICT). IEEE 2016; 1-6.
  • Saeed, A., Aziz, A.A.A., Mossad, A., Abdelhamid, M.A., Alkhaled, A.Y., and Mayhoub, M. Smart detection of tomato leaf diseases using transfer learning-based convolutional neural networks. Agriculture 2023; 13(1): 139.
  • Sun, J., Wenjun, T., Hanping, M., Xiaohong, W., Yong, C., and Long, W. Recognition of multiple plant leaf diseases based on improved convolutional neural network. Transactions of the Chinese Society of Agricultural Engineering 2017; 33(19): 209-215.
  • Szegedy, C., Ioffe, S., Vanhoucke, V., and Alemi, A. Inception-v4, inception-resnet and the impact of residual connections on learning. In: Proceedings of the AAAI conference on artificial intelligence 2017; 31(1).
  • Tang, Z., He, X., Zhou, G., Chen, A., Wang, Y., Li, L., and Hu, Y. A precise image-based tomato leaf disease detection approach using PLPNet. Plant Phenomics 2023; 5: 0042.
  • Tomato leaf disease detection. (n.d.). Date Accessed: 23/02/2024 Https://Www.Kaggle.Com/Datasets/Kaustubhb999/Tomato. Retrieved February 23, 2024, from https://www.kaggle.com/datasets/kaustubhb999/tomatoleaf
  • Trivedi, N.K., Gautam, V., Anand, A., Aljahdali, H.M., Villar, S.G., Anand, D., Goyal, N., and Kadry, S. Early detection and classification of tomato leaf disease using high-performance deep neural network. Sensors 2021; 21(23): 7987.
  • Xie, C. and He, Y. Spectrum and image texture features analysis for early blight disease detection on eggplant leaves. Sensors 2016; 16(5): 676.
  • Wu, Y. Identification of maize leaf diseases based on convolutional neural network. In: Journal of physics: Conference series. IOP Publishing 2021; 032004.
  • Zhang, Y., Huang, S., Zhou, G., Hu, Y., and Li, L. Identification of tomato leaf diseases based on multi-channel automatic orientation recurrent attention network. Computers and Electronics in Agriculture 2023; 205: 107605.
There are 29 citations in total.

Details

Primary Language Turkish
Subjects Deep Learning, Neural Networks
Journal Section RESEARCH ARTICLES
Authors

Pınar Uskaner Hepsağ

Early Pub Date January 15, 2025
Publication Date January 17, 2025
Submission Date February 26, 2024
Acceptance Date August 4, 2024
Published in Issue Year 2025 Volume: 8 Issue: 1

Cite

APA Uskaner Hepsağ, P. (2025). Modifiye-InceptionResNetV2 Mimarisi Kullanarak Domates Yaprak Koşullarının Etkili Tespiti. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 8(1), 375-392. https://doi.org/10.47495/okufbed.1443018
AMA Uskaner Hepsağ P. Modifiye-InceptionResNetV2 Mimarisi Kullanarak Domates Yaprak Koşullarının Etkili Tespiti. Osmaniye Korkut Ata University Journal of The Institute of Science and Techno. January 2025;8(1):375-392. doi:10.47495/okufbed.1443018
Chicago Uskaner Hepsağ, Pınar. “Modifiye-InceptionResNetV2 Mimarisi Kullanarak Domates Yaprak Koşullarının Etkili Tespiti”. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi 8, no. 1 (January 2025): 375-92. https://doi.org/10.47495/okufbed.1443018.
EndNote Uskaner Hepsağ P (January 1, 2025) Modifiye-InceptionResNetV2 Mimarisi Kullanarak Domates Yaprak Koşullarının Etkili Tespiti. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi 8 1 375–392.
IEEE P. Uskaner Hepsağ, “Modifiye-InceptionResNetV2 Mimarisi Kullanarak Domates Yaprak Koşullarının Etkili Tespiti”, Osmaniye Korkut Ata University Journal of The Institute of Science and Techno, vol. 8, no. 1, pp. 375–392, 2025, doi: 10.47495/okufbed.1443018.
ISNAD Uskaner Hepsağ, Pınar. “Modifiye-InceptionResNetV2 Mimarisi Kullanarak Domates Yaprak Koşullarının Etkili Tespiti”. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi 8/1 (January 2025), 375-392. https://doi.org/10.47495/okufbed.1443018.
JAMA Uskaner Hepsağ P. Modifiye-InceptionResNetV2 Mimarisi Kullanarak Domates Yaprak Koşullarının Etkili Tespiti. Osmaniye Korkut Ata University Journal of The Institute of Science and Techno. 2025;8:375–392.
MLA Uskaner Hepsağ, Pınar. “Modifiye-InceptionResNetV2 Mimarisi Kullanarak Domates Yaprak Koşullarının Etkili Tespiti”. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi, vol. 8, no. 1, 2025, pp. 375-92, doi:10.47495/okufbed.1443018.
Vancouver Uskaner Hepsağ P. Modifiye-InceptionResNetV2 Mimarisi Kullanarak Domates Yaprak Koşullarının Etkili Tespiti. Osmaniye Korkut Ata University Journal of The Institute of Science and Techno. 2025;8(1):375-92.

23487


196541947019414

19433194341943519436 1960219721 197842261021238 23877

*This journal is an international refereed journal 

*Our journal does not charge any article processing fees over publication process.

* This journal is online publishes 5 issues per year (January, March, June, September, December)

*This journal published in Turkish and English as open access. 

19450 This work is licensed under a Creative Commons Attribution 4.0 International License.