Research Article
BibTex RIS Cite

Analytical Solutions to the Generalized Couette Flow of a Microstretch Fluid in an Annulus

Year 2025, Volume: 8 Issue: 1, 31 - 44, 17.01.2025
https://doi.org/10.47495/okufbed.1471561

Abstract

In classical continuum mechanics, fluid particles are assumed to be material points. However, this assumption may lose its validity in micro-channels where the characteristic length is very small and/or in many applications where particle sizes are large, such as in polymer melts, suspensions, and biological fluids. In these cases, micro-motions such as rotation and deformation of fluid particles contribute to the macro motion of the fluid. In this study, the field equations of microstretch fluids are solved for the generalized Couette flow in an annulus, and exact analytical solutions are obtained for velocity, microrotation, and microstretch fields. Results are presented graphically for velocity, microrotation, and microstretch at various values of the pertinent parameters. Present solutions include velocity field solutions for the classical Newtonian fluid as a special case. For microstretch fluids, the velocity field takes on larger values compared to a Newtonian fluid. Increasing the micropolar parameters increases the velocity and microrotation fields while increasing the microstretch parameter increases the microstretch field.

References

  • Abramowitz M., Stegun IA. (ed.) Handbook of mathematical functions with formulas, graphs, and mathematical tables. US Government printing office, 1948.
  • Akbar NS., Rafiq M., Muhammad T., Alghamdi, M. Electro osmotically interactive biological study of thermally stratified micropolar nanofluid flow for Copper and Silver nanoparticles in a microchannel. Scientific Reports 2024; 14(1), 518.
  • Ariman, T. Fluids with microstretch. Rheologica Acta 1970; 9: 542–549.
  • Ariman T. On the analysis of blood flow. Journal of Biomechanics 1971; 4(3): 185–191.
  • Aydemir NU., Venart JES. Flow of a thermomicropolar fluid with stretch. International Journal of Engineering Science 1990; 28(12): 1211-1222.
  • Aydemir NU. Free-convection boundary-layer flow of a thermomicropolar fluid with stretch. International Journal of Engineering Science 1990; 28(12): 1223-1233.
  • Demir MS. Shear flow of a microstretch fluid with slip. 3rd International Conference on Environmental Science and Technology (ICOEST), 19-23 Ekim 2017, sayfa no:85-89, Budapeşte.
  • El-Sapa S. Effect of magnetic field on a microstretch fluid drop embedded in an unbounded another microstretch fluid. European Journal of Mechanics-B/Fluids 2021; 85: 169-180.
  • Eringen AC. Simple of micro-fluids. International Journal of Engineering Science 1964; 2(2): 205–217.
  • Eringen AC. Theory of micropolar fluids with stretch. International Journal of Engineering Science 1969; 7(1): 115–125.
  • Eringen AC. Theory of thermo microstretch fluids and bubbly liquids. International Journal of Engineering Science 1990; 28(2): 133-143.
  • Eringen AC. Microcontinuum field theories I: Foundations and solids. NY: Springer; 1999.
  • Eringen AC. Microcontinuum field theories II: Fluent media. NY: Springer-Verlag; 2001.
  • Goldsmith HL., Marlow JC. Flow behavior of erythrocytes, Journal of Colloid and Interface Science 1979; 71(2): 383-407.
  • Hoyt JW., Fabula AG. The effect of additivies on fluid friction. California: Technical report: US Naval Ordnance Test Station; 1964.
  • Moosaie A., Atefi G. Microstretch continuum mechanical description of concentrated suspension flow. Journal of Dispersion Science and Technology 2009; 30(1): 124-130.
  • Narasimham MNL. A mathematical model of pulsatile flows of microstretch fluids in circular tubes. International Journal of Engineering Science 2003; 41(3-5): 231-247.
  • Patil PM., Goudar B., Momoniat E. Magnetized bioconvective micropolar nanofluid flow over a wedge in the presence of oxytactic microorganisms. Case Studies in Thermal Engineering 2023; 49: 103284.
  • Philip J. Magnetic nanofluids (Ferrofluids): Recent advances, applications, challenges, and future directions. Advances in Colloid and Interface Science 2023; 311: 102810.
  • Sherief HH., Faltas MS., Ashmawy EA. Galerkin representations and fundamental solutions for an axisymmetric microstretch fluid flow. Journal of Fluid Mechanics 2009; 619: 277-293.
  • Sherief HH., Faltas MS., Ashmawy EA. Fundamental solutions for axi-symmetric translational motion of a microstretch fluid. Acta Mechanica Sinica 2012; 28: 605-611.
  • Sherief HH., Faltas MS., El-Sapa S. Slow motion of a slightly deformed spherical droplet in a microstretch fluid. Microsystem Technologies 2018; 24(8): 3245-3259. Slayi S., Ashmawy EA. Unsteady flow of a microstretch fluid through state space approach with slip conditions. Applied Mathematics and Information Sciences 2018; 12(4): 841-850.

Mikrogermeli Bir Akışkanın Halka Kesitli Kanalda Genelleştirilmiş Couette Akımına ait Analitik Çözümler

Year 2025, Volume: 8 Issue: 1, 31 - 44, 17.01.2025
https://doi.org/10.47495/okufbed.1471561

Abstract

Klasik sürekli ortamlar mekaniğinde akışkanı oluşturan parçacıkların maddesel nokta olduğu varsayılmaktadır. Ancak, karakteristik uzunluğun çok küçük olduğu mikrokanallarda ve/veya parçacık boyutlarının büyük olduğu, polimer eriyikler, süspansiyonlar ve biyolojik akışkanlar gibi birçok uygulamada bu varsayım geçerliliğini yitirmektedir. Bu durumlarda akışkan parçacıklarının dönmesi ve deformasyonu gibi mikro hareketleri önem kazanmakta ve akışkanın makro hareketine katkı sağlamaktadır. Bu çalışmada, mikrogermeli bir akışkanın alan denklemleri halka kesitli bir kanalda, genelleştirilmiş Couette akımı için çözülmüş ve hız, mikro açısal hız ve mikro genleme alanlarına ait analitik çözümler elde edilmiştir. Hız, mikro açısal hız ve mikro genleme alanları için elde edilen çözümler; parametrelerin farklı değerlerinde grafik olarak sunulmuştur. Elde edilen çözümler, klasik Newtonian akışkan için geçerli hız alanı çözümlerini özel hal olarak içermektedir. Mikrogermeli akışkanlarda, hız alanı, Newtonian akışkanlara kıyasla daha yüksek değerler almaktadır. Mikropolar parametrelerin artması, hem hız hem de mikro açısal hız alanlarını artırırken, mikro genleme parametresinin artması da mikro genleme alanını artırmaktadır.

References

  • Abramowitz M., Stegun IA. (ed.) Handbook of mathematical functions with formulas, graphs, and mathematical tables. US Government printing office, 1948.
  • Akbar NS., Rafiq M., Muhammad T., Alghamdi, M. Electro osmotically interactive biological study of thermally stratified micropolar nanofluid flow for Copper and Silver nanoparticles in a microchannel. Scientific Reports 2024; 14(1), 518.
  • Ariman, T. Fluids with microstretch. Rheologica Acta 1970; 9: 542–549.
  • Ariman T. On the analysis of blood flow. Journal of Biomechanics 1971; 4(3): 185–191.
  • Aydemir NU., Venart JES. Flow of a thermomicropolar fluid with stretch. International Journal of Engineering Science 1990; 28(12): 1211-1222.
  • Aydemir NU. Free-convection boundary-layer flow of a thermomicropolar fluid with stretch. International Journal of Engineering Science 1990; 28(12): 1223-1233.
  • Demir MS. Shear flow of a microstretch fluid with slip. 3rd International Conference on Environmental Science and Technology (ICOEST), 19-23 Ekim 2017, sayfa no:85-89, Budapeşte.
  • El-Sapa S. Effect of magnetic field on a microstretch fluid drop embedded in an unbounded another microstretch fluid. European Journal of Mechanics-B/Fluids 2021; 85: 169-180.
  • Eringen AC. Simple of micro-fluids. International Journal of Engineering Science 1964; 2(2): 205–217.
  • Eringen AC. Theory of micropolar fluids with stretch. International Journal of Engineering Science 1969; 7(1): 115–125.
  • Eringen AC. Theory of thermo microstretch fluids and bubbly liquids. International Journal of Engineering Science 1990; 28(2): 133-143.
  • Eringen AC. Microcontinuum field theories I: Foundations and solids. NY: Springer; 1999.
  • Eringen AC. Microcontinuum field theories II: Fluent media. NY: Springer-Verlag; 2001.
  • Goldsmith HL., Marlow JC. Flow behavior of erythrocytes, Journal of Colloid and Interface Science 1979; 71(2): 383-407.
  • Hoyt JW., Fabula AG. The effect of additivies on fluid friction. California: Technical report: US Naval Ordnance Test Station; 1964.
  • Moosaie A., Atefi G. Microstretch continuum mechanical description of concentrated suspension flow. Journal of Dispersion Science and Technology 2009; 30(1): 124-130.
  • Narasimham MNL. A mathematical model of pulsatile flows of microstretch fluids in circular tubes. International Journal of Engineering Science 2003; 41(3-5): 231-247.
  • Patil PM., Goudar B., Momoniat E. Magnetized bioconvective micropolar nanofluid flow over a wedge in the presence of oxytactic microorganisms. Case Studies in Thermal Engineering 2023; 49: 103284.
  • Philip J. Magnetic nanofluids (Ferrofluids): Recent advances, applications, challenges, and future directions. Advances in Colloid and Interface Science 2023; 311: 102810.
  • Sherief HH., Faltas MS., Ashmawy EA. Galerkin representations and fundamental solutions for an axisymmetric microstretch fluid flow. Journal of Fluid Mechanics 2009; 619: 277-293.
  • Sherief HH., Faltas MS., Ashmawy EA. Fundamental solutions for axi-symmetric translational motion of a microstretch fluid. Acta Mechanica Sinica 2012; 28: 605-611.
  • Sherief HH., Faltas MS., El-Sapa S. Slow motion of a slightly deformed spherical droplet in a microstretch fluid. Microsystem Technologies 2018; 24(8): 3245-3259. Slayi S., Ashmawy EA. Unsteady flow of a microstretch fluid through state space approach with slip conditions. Applied Mathematics and Information Sciences 2018; 12(4): 841-850.
There are 22 citations in total.

Details

Primary Language Turkish
Subjects General Physics, Applied Mathematics (Other)
Journal Section RESEARCH ARTICLES
Authors

Mehmet Şirin Demir 0000-0002-3965-4760

Early Pub Date January 15, 2025
Publication Date January 17, 2025
Submission Date April 21, 2024
Acceptance Date July 21, 2024
Published in Issue Year 2025 Volume: 8 Issue: 1

Cite

APA Demir, M. Ş. (2025). Mikrogermeli Bir Akışkanın Halka Kesitli Kanalda Genelleştirilmiş Couette Akımına ait Analitik Çözümler. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 8(1), 31-44. https://doi.org/10.47495/okufbed.1471561
AMA Demir MŞ. Mikrogermeli Bir Akışkanın Halka Kesitli Kanalda Genelleştirilmiş Couette Akımına ait Analitik Çözümler. Osmaniye Korkut Ata University Journal of The Institute of Science and Techno. January 2025;8(1):31-44. doi:10.47495/okufbed.1471561
Chicago Demir, Mehmet Şirin. “Mikrogermeli Bir Akışkanın Halka Kesitli Kanalda Genelleştirilmiş Couette Akımına Ait Analitik Çözümler”. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi 8, no. 1 (January 2025): 31-44. https://doi.org/10.47495/okufbed.1471561.
EndNote Demir MŞ (January 1, 2025) Mikrogermeli Bir Akışkanın Halka Kesitli Kanalda Genelleştirilmiş Couette Akımına ait Analitik Çözümler. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi 8 1 31–44.
IEEE M. Ş. Demir, “Mikrogermeli Bir Akışkanın Halka Kesitli Kanalda Genelleştirilmiş Couette Akımına ait Analitik Çözümler”, Osmaniye Korkut Ata University Journal of The Institute of Science and Techno, vol. 8, no. 1, pp. 31–44, 2025, doi: 10.47495/okufbed.1471561.
ISNAD Demir, Mehmet Şirin. “Mikrogermeli Bir Akışkanın Halka Kesitli Kanalda Genelleştirilmiş Couette Akımına Ait Analitik Çözümler”. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi 8/1 (January 2025), 31-44. https://doi.org/10.47495/okufbed.1471561.
JAMA Demir MŞ. Mikrogermeli Bir Akışkanın Halka Kesitli Kanalda Genelleştirilmiş Couette Akımına ait Analitik Çözümler. Osmaniye Korkut Ata University Journal of The Institute of Science and Techno. 2025;8:31–44.
MLA Demir, Mehmet Şirin. “Mikrogermeli Bir Akışkanın Halka Kesitli Kanalda Genelleştirilmiş Couette Akımına Ait Analitik Çözümler”. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi, vol. 8, no. 1, 2025, pp. 31-44, doi:10.47495/okufbed.1471561.
Vancouver Demir MŞ. Mikrogermeli Bir Akışkanın Halka Kesitli Kanalda Genelleştirilmiş Couette Akımına ait Analitik Çözümler. Osmaniye Korkut Ata University Journal of The Institute of Science and Techno. 2025;8(1):31-44.

23487


196541947019414

19433194341943519436 1960219721 197842261021238 23877

*This journal is an international refereed journal 

*Our journal does not charge any article processing fees over publication process.

* This journal is online publishes 5 issues per year (January, March, June, September, December)

*This journal published in Turkish and English as open access. 

19450 This work is licensed under a Creative Commons Attribution 4.0 International License.