Research Article
BibTex RIS Cite

The Efficacy of Haar Wavelets in Addressing Discontinuities of McKean Equations with Heaviside Functions

Year 2025, Volume: 8 Issue: 1, 200 - 210, 17.01.2025
https://doi.org/10.47495/okufbed.1472092

Abstract

This study explores the application of Haar wavelets to solve the McKean equation, a reaction-diffusion equation with discontinuous Heaviside step function. Haar wavelets, with their compact support and orthogonality, offer straightforward but yet powerful tool for addressing the equation’s nonlinear dynamics. We focus on the time-independent solution of the McKean equation, which is crucial for understanding the threshold phenomenon that determines the system’s behavior. Despite the existence of analytical time-independent solution to the McKean equation, achieving such solutions in closed form is uncommon for more complicated systems, highlighting the utility of the Haar wavelet approach. The proposed method integrates the Haar series expansion of the highest order derivative, enabling systematic solution derivation. Through a detailed comparison with analytical solution, we validate the Haar wavelet approach as a robust and computationally feasible tool for solving complex reaction-diffusion system. The results also demonstrate the method’s accuracy and efficiency, offering insights into its broader applicability to more complex reaction-diffusion system, especially those with discontinuity and sharp transitions.

References

  • Alkan S., Aydin MN., Coban R. A numerical approach to solve the model of an electromechanical system. Mathematical Methods in the Applied Sciences 2019; 42(16): 5266–5273.
  • Bezekci B. Analytical and numerical approaches to initiation of excitation waves. Ph.D. thesis, University of Exeter 2017.
  • Bezekci B., Idris I., Simitev RD., Biktashev VN. Semi-analytical approach to criteria for ignition of excitation waves. Phys. Rev. E 2015; 92: 042917.
  • Chen CF., Hsiao CH. Haar wavelet method for solving lumped and distributed-parameter systems. IEE Proceedings: Control Theory and Applications 1997; 144(1): 87-94.
  • Cockburn B., Gopalakrishnan J., Lazarov R. Unified hybridization of discontinuous Galerkin, mixed, and continuous Galerkin methods for second order elliptic problems. SIAM Journal on Numerical Analysis 2009; 47(2): 1319-1365.
  • Deuflhard P., Weiser M. Adaptive numerical solution of PDEs. Walter de Gruyter Press 2012.
  • Flores G. Stability analysis for the slow travelling pulse of the FitzHugh-Nagumo system. SIAM Journal on Mathematical Analysis 1991; 22: 392–399.
  • Haar A. Zur theorie der orthogonalen funktionensysteme. Mathematische Annalen 1910; 69(3): 331–371.
  • Hodgkin AL., Huxley AF. A quantitative description of membrane current and its application to conduction and excitation in nerve. The Journal of Physiology 1952; 117: 500–544.
  • Karniadakis G., Spencer JS. Spectral/hp element methods for computational fluid dynamics. Oxford University Press 2005.
  • Lepik Ü. Numerical solution of evolution equations by the Haar wavelet method. Applied Mathematics and Computation 2007; 185(1): 695-704.
  • McKean HP. Nagumo’s equation. Advances in Mathematics 1970; 4: 209–223.
  • McKean HP., Moll V. Stabilization to the standing wave in a simple caricature of the nerve equation. Communications on Pure and Applied Mathematics 1986; 39: 485–529.
  • Moll V., Rosencrans S. Calculation of the threshold surface for nerve equations. SIAM Journal on Applied Mathematics 1990; 50:1419–1441.
  • Neu JC., Preissig RS., Krassowska W. Initiation of propagation in a one-dimensional excitable medium. Physica D: Nonlinear Phenomena 1997; 102: 285-299.
  • Shu CW. High order weighted essentially nonoscillatory schemes for convection dominated problems. SIAM Review 2009; 51(1): 82:126.
  • Strogatz SH. Nonlinear dynamics and chaos: with applications to physics, biology, chemistry, and engineering. CRC Press 2018.
  • Tonnelier A. The McKean's caricature of the FitzHugh-Nagumo model I. The space-clamped system. SIAM Journal on Applied Mathematics 2003; 63(2): 459–484.

Heaviside Fonksiyonu İçeren McKean Denklemindeki Süreksizliğin Haar Dalgacıkları ile Ele Alınması

Year 2025, Volume: 8 Issue: 1, 200 - 210, 17.01.2025
https://doi.org/10.47495/okufbed.1472092

Abstract

Bu çalışma süreksiz Heaviside adım fonksiyonunu sahip bir reaksiyon-difüzyon denklemi olan McKean denklemini çözmek için Haar dalgacıklarının uygulamasını araştırmaktadır. Kompakt destekleri ve ortogonallikleri ile Haar dalgacıkları denklemin lineer olmayan dinamiklerini ele almak için kullanılabilecek basit ama etkili bir araçtır. Burada, sistemin davranışını belirleyen eşik değeri kavramını anlamak için kritik olan McKean dekleminin zamandan bağımsız çözümüne odaklanıyoruz. McKean denkleminin zamandan bağımsız çözümünün analitik çözümü olmasına rağmen, daha karmaşık yapılar için bu tür çözümlerin kapalı formda elde edilmesi yaygın değildir ki bu durum Haar dalgacık yaklaşımının faydalılığını vurgular. Önerilen yöntem, en yüksek türevli ifadenin Haar serisi açılımını entegre ederek sistematik çözüm üretilmesini sağlar. Analitik çözümle ayrıntılı bir karşılaştırma yaparak Haar dalgacık yaklaşımının daha karmaşık reaksiyon-difüzyon sistemlerini çözmek için güvenilir ve hesaplama açısından uygun bir araç olduğunu gösteriyoruz. Ayrıca, sonuçlar yöntemin doğruluğunu ve verimliliğini göstermekte olup, özellikle süreksiz ve keskin geçişlere sahip olanlar olmak üzere, daha karmaşık reaksiyon-difüzyon sistemlerine daha geniş uygulanabilirliği hakkında bilgiler sunmaktadır.

References

  • Alkan S., Aydin MN., Coban R. A numerical approach to solve the model of an electromechanical system. Mathematical Methods in the Applied Sciences 2019; 42(16): 5266–5273.
  • Bezekci B. Analytical and numerical approaches to initiation of excitation waves. Ph.D. thesis, University of Exeter 2017.
  • Bezekci B., Idris I., Simitev RD., Biktashev VN. Semi-analytical approach to criteria for ignition of excitation waves. Phys. Rev. E 2015; 92: 042917.
  • Chen CF., Hsiao CH. Haar wavelet method for solving lumped and distributed-parameter systems. IEE Proceedings: Control Theory and Applications 1997; 144(1): 87-94.
  • Cockburn B., Gopalakrishnan J., Lazarov R. Unified hybridization of discontinuous Galerkin, mixed, and continuous Galerkin methods for second order elliptic problems. SIAM Journal on Numerical Analysis 2009; 47(2): 1319-1365.
  • Deuflhard P., Weiser M. Adaptive numerical solution of PDEs. Walter de Gruyter Press 2012.
  • Flores G. Stability analysis for the slow travelling pulse of the FitzHugh-Nagumo system. SIAM Journal on Mathematical Analysis 1991; 22: 392–399.
  • Haar A. Zur theorie der orthogonalen funktionensysteme. Mathematische Annalen 1910; 69(3): 331–371.
  • Hodgkin AL., Huxley AF. A quantitative description of membrane current and its application to conduction and excitation in nerve. The Journal of Physiology 1952; 117: 500–544.
  • Karniadakis G., Spencer JS. Spectral/hp element methods for computational fluid dynamics. Oxford University Press 2005.
  • Lepik Ü. Numerical solution of evolution equations by the Haar wavelet method. Applied Mathematics and Computation 2007; 185(1): 695-704.
  • McKean HP. Nagumo’s equation. Advances in Mathematics 1970; 4: 209–223.
  • McKean HP., Moll V. Stabilization to the standing wave in a simple caricature of the nerve equation. Communications on Pure and Applied Mathematics 1986; 39: 485–529.
  • Moll V., Rosencrans S. Calculation of the threshold surface for nerve equations. SIAM Journal on Applied Mathematics 1990; 50:1419–1441.
  • Neu JC., Preissig RS., Krassowska W. Initiation of propagation in a one-dimensional excitable medium. Physica D: Nonlinear Phenomena 1997; 102: 285-299.
  • Shu CW. High order weighted essentially nonoscillatory schemes for convection dominated problems. SIAM Review 2009; 51(1): 82:126.
  • Strogatz SH. Nonlinear dynamics and chaos: with applications to physics, biology, chemistry, and engineering. CRC Press 2018.
  • Tonnelier A. The McKean's caricature of the FitzHugh-Nagumo model I. The space-clamped system. SIAM Journal on Applied Mathematics 2003; 63(2): 459–484.
There are 18 citations in total.

Details

Primary Language English
Subjects Mathematical Methods and Special Functions, Dynamical Systems in Applications
Journal Section RESEARCH ARTICLES
Authors

Burhan Bezekçi

Early Pub Date January 15, 2025
Publication Date January 17, 2025
Submission Date April 22, 2024
Acceptance Date September 7, 2024
Published in Issue Year 2025 Volume: 8 Issue: 1

Cite

APA Bezekçi, B. (2025). The Efficacy of Haar Wavelets in Addressing Discontinuities of McKean Equations with Heaviside Functions. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 8(1), 200-210. https://doi.org/10.47495/okufbed.1472092
AMA Bezekçi B. The Efficacy of Haar Wavelets in Addressing Discontinuities of McKean Equations with Heaviside Functions. Osmaniye Korkut Ata University Journal of The Institute of Science and Techno. January 2025;8(1):200-210. doi:10.47495/okufbed.1472092
Chicago Bezekçi, Burhan. “The Efficacy of Haar Wavelets in Addressing Discontinuities of McKean Equations With Heaviside Functions”. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi 8, no. 1 (January 2025): 200-210. https://doi.org/10.47495/okufbed.1472092.
EndNote Bezekçi B (January 1, 2025) The Efficacy of Haar Wavelets in Addressing Discontinuities of McKean Equations with Heaviside Functions. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi 8 1 200–210.
IEEE B. Bezekçi, “The Efficacy of Haar Wavelets in Addressing Discontinuities of McKean Equations with Heaviside Functions”, Osmaniye Korkut Ata University Journal of The Institute of Science and Techno, vol. 8, no. 1, pp. 200–210, 2025, doi: 10.47495/okufbed.1472092.
ISNAD Bezekçi, Burhan. “The Efficacy of Haar Wavelets in Addressing Discontinuities of McKean Equations With Heaviside Functions”. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi 8/1 (January 2025), 200-210. https://doi.org/10.47495/okufbed.1472092.
JAMA Bezekçi B. The Efficacy of Haar Wavelets in Addressing Discontinuities of McKean Equations with Heaviside Functions. Osmaniye Korkut Ata University Journal of The Institute of Science and Techno. 2025;8:200–210.
MLA Bezekçi, Burhan. “The Efficacy of Haar Wavelets in Addressing Discontinuities of McKean Equations With Heaviside Functions”. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi, vol. 8, no. 1, 2025, pp. 200-1, doi:10.47495/okufbed.1472092.
Vancouver Bezekçi B. The Efficacy of Haar Wavelets in Addressing Discontinuities of McKean Equations with Heaviside Functions. Osmaniye Korkut Ata University Journal of The Institute of Science and Techno. 2025;8(1):200-1.

23487


196541947019414

19433194341943519436 1960219721 197842261021238 23877

*This journal is an international refereed journal 

*Our journal does not charge any article processing fees over publication process.

* This journal is online publishes 5 issues per year (January, March, June, September, December)

*This journal published in Turkish and English as open access. 

19450 This work is licensed under a Creative Commons Attribution 4.0 International License.