Research Article
BibTex RIS Cite

An Investigation of Four-Point Bending Behavior for Personalized Humerus Bone Plate

Year 2025, Volume: 8 Issue: 1, 167 - 181, 17.01.2025
https://doi.org/10.47495/okufbed.1475223

Abstract

The reverse engineering method has been beneficial for personalized implant designs in the medical field due to its flexible use feature that allows it to be applied in many areas. The method of anatomical features (MAF) is commonly used for fractures of the bone for the development of plate fixation. To improve the geometrical fitting between plate and bone, high-quality image data is the most important factor for computer aided design (CAD ) modelling. This study aims to use MAF for humerus bone plate design that would alternate the fracture region and decrease the stress-shielding effect depending on bending strength. For this purpose, the personalized plate implant (PPI) was designed according to MAF and fabricated using the multi jet fusion (MJF) technique, finally the four-point bending finite element analysis was applied and tested. The results indicated that the PPI structure has higher bending strength than the flat plate design and a much greater surface area.

References

  • Ahmad M., Nanda R., Bajwa AS., Candal-Couto J., Green S., Hui AC. Biomechanical testing of the locking compression plate: when does the distance between bone and implant significantly reduce construct stability?. Injury 2007; 38(3): 358-364.
  • An Z., Zeng B., He X., Chen Q., Hu S. Plating osteosynthesis of mid-distal humeral shaft fractures: minimally invasive versus conventional open reduction technique. International Orthopaedics 2010; 34: 131-135.
  • Arvier JF., Barker TM., Yau YY., D'Urso PS., Atkinson RL., McDermant GR. Maxillofacial biomodelling. British Journal of Oral and Maxillofacial Surgery 1994; 32(5): 276-283.
  • ASTM F382-14, Standard specification and test method for metallic bone plates. ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959, United States 2014.
  • Chen X. Parametric design of patient-specific fixation plates for distal femur fractures. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine 2018; 232(9): 901-911.
  • Cousley RR., Bainbridge M., Rossouw PE. The accuracy of maxillary positioning using digital model planning and 3D printed wafers in bimaxillary orthognathic surgery. Journal of Orthodontics 2017;44(4): 256-267.
  • Huotilainen E., Paloheimo M., Salmi M., Paloheimo KS., Björkstrand R., Tuomi, J., Mäkitie A. Imaging requirements for medical applications of additive manufacturing. Acta Radiologica 2014; 55(1): 78-85.
  • Jabran A., Peach C., Zou Z., Ren L. Parametric design optimisation of proximal humerus plates based on finite element method. Annals of Biomedical Engineering 2019; 47: 601-614.
  • Jian Z., Ao R., Zhou J., Jiang X., Zhang D., Yu BA. new anatomic locking plate for the treatment of posterolateral tibial plateau fractures. BMC Musculoskeletal Disorders 2018; 19: 1-6.
  • Kumar C., Gupta AK., Nath R., Ahmad J. Open reduction and locking plate fixation of displaced proximal humerus fractures. Indian journal of orthopedics 2013; 47: 156-160.
  • Le C., Kolasangiani K., Nayyeri P., Bougherara H. Experimental and numerical investigation of 3D-Printed bone plates under four-point bending load utilizing machine learning techniques. Journal of the Mechanical Behavior of Biomedical Materials 2023; 143, 105885.
  • Liang X., Jacobs R., Hassan B., Li L., Pauwels R., Corpas L., Lambrichts I. A comparative evaluation of cone beam computed tomography (CBCT) and multi-slice CT (MSCT): Part I. On subjective image quality. European journal of radiology 2010a; 75(2): 265-269.
  • Liang X., Lambrichts I., Sun Y., Denis K., Hassan B., Li L., Jacobs R. A comparative evaluation of cone beam computed tomography (CBCT) and multi-slice CT (MSCT). Part II: On 3D model accuracy. European journal of radiology 210b; 75(2): 270-274.
  • Liao B., Sun J., Xu C., Xia R., Li W., Lu D., Jin Z. A mechanical study of personalized Ti6Al4V tibial fracture fixation plates with grooved surface by finite element analysis. Biosurface and Biotribology 2021; 7(3): 142-153.
  • Malik HH., Darwood AR., Shaunak S., Kulatilake P., Abdulrahman A., Mulki, O., Baskaradas A. Three-dimensional printing in surgery: a review of current surgical applications. journal of surgical research 2015; 199(2); 512-522.
  • Majstorovic V., Trajanovic M., Vitkovic N., Stojkovic M. Reverse engineering of human bones by using the method of anatomical features. Cirp Annals 2013; 62(1); 167-170.
  • Marro A., Bandukwala T., Mak W. Three-dimensional printing and medical imaging: a review of the methods and applications. Current problems in diagnostic radiology 2016; 45(1): 2-9.
  • Nowak LL., Dehghan N., McKee MD., Schemitsch EH. Plate fixation for management of humerus fractures. Injury 2018; 49: S33-S38.
  • Rashid MM. Anatomical personalized plate implants (APIs) are the best choice for treating distal femur fractures. Al-Qadisiyah Journal for Engineering Sciences 2023; 16(1): 30-36.
  • Rashid MM., Husain KN., Vitković N., Manić M., Trajanović M., Mitković MB., Mitković MM. Geometrical model creation methods for human humerus bone and modified cloverleaf plate. Journal of Scientific & Industrial Research 2017; 76: 631-639.
  • Rashid MM., Husain KN., Alhasoon AA. Expert system for the production of personalized cloverleaf plate implant for human humerus. In IOP Conference Series: Materials Science and Engineering 2021; 1090(1); 012099.
  • Ren D., Liu Y., Lu J., Xu R., Wang P. A novel design of a plate for posterolateral tibial plateau fractures through traditional anterolateral approach. Scientific Reports 2018; 8(1): 16418.
  • Scolaro JA., Voleti P., Makani A., Namdari S., Mirza A., Mehta S. Surgical fixation of extra-articular distal humerus fractures with a posterolateral plate through a triceps-reflecting technique. Journal of shoulder and elbow surgery 2014; 23(2), 251-257.
  • Sholukha V., Chapman T., Salvia P., Moiseev F., Euran F., Rooze M., Jan SVS. Femur shape prediction by multiple regression based on quadric surface fitting. Journal of Biomechanics 2011; 44(4): 712-718.
  • Soni A., Singh B. Design and analysis of customized fixation plate for the femoral shaft. Indian Journal of Orthopaedics 2020; 54: 148-155.
  • Tilton M., Armstrong A., Sanville J., Chin M., Hast MW., Lewis GS., Manogharan, GP. Biomechanical testing of additive manufactured proximal humerus fracture fixation plates. Annals of Biomedical Engineering 2020; 48: 463-476.
  • Van Eijnatten M., van Dijk R., Dobbe J., Streekstra G., Koivisto J., Wolff J. CT image segmentation methods for bone used in medical additive manufacturing. Medical engineering & physics 2018: 51; 6-16.
  • Vitković N., Radović L., Trajanović M., Manić M. 3D point cloud model of human bio form created by applying geometric morphometrics and method of anatomical features: human tibia example. Filomat 2019; 33(4): 1217-1225.
  • Vitković N., Stojković M., Majstorović V., Trajanović M., Milovanović J. Novel design approach for the creation of 3D geometrical model of personalized bone scaffold. CIRP Annals 2018; 67(1): 177-180.
  • Vitković N., Stojković JR., Korunović N., Teuţan E., Pleşa A., Ianoşi-Andreeva-Dimitrova, A., Păcurar, R. Extra-Articular Distal Humerus Plate 3D Model Creation by Using the Method of Anatomical Features. Materials 2023; 16(15): 5409.
  • Webb PA. A review of rapid prototyping (RP) techniques in the medical and biomedical sector. Journal of medical engineering & technology 2000; 24(4): 149-153.

Kişiselleştirilmiş Humerus Kemik Plakasının Dört Nokta Eğilme Davranışının İncelenmesi

Year 2025, Volume: 8 Issue: 1, 167 - 181, 17.01.2025
https://doi.org/10.47495/okufbed.1475223

Abstract

Tersine mühendislik yöntemi, birçok alanda uygulanmasına olanak sağlayan esnek kullanım özelliği nedeniyle tıp alanında kişiye özel implant tasarımlarında fayda sağlamıştır. Anatomik özellikler yöntemi (MAF), plak fiksasyonunun geliştirilmesi için kemik kırıklarında yaygın olarak kullanılır. Plaka ve kemik arasındaki geometrik uyumu iyileştirmek için yüksek kaliteli görüntü verileri CAD modellemede en önemli faktördür. Bu çalışma, kırık bölgesini değiştirecek ve bükülme mukavemetine bağlı olarak stres koruyucu etkiyi azaltacak humerus kemik plakası tasarımı için MAF'ın kullanılmasını amaçlamaktadır. Bu amaçla kişiselleştirilmiş plaka implant (PPI), MAF'a göre tasarlanıp, multi jet füzyon (MJF) tekniği kullanılarak üretildi, son olarak dört nokta bükme sonlu elemanlar analizi uygulanarak test edildi. Sonuçlar, PPI yapısının düz plaka tasarımına göre daha yüksek bükülme mukavemetine ve çok daha büyük bir yüzey alanına sahip olduğunu göstermiştir..

References

  • Ahmad M., Nanda R., Bajwa AS., Candal-Couto J., Green S., Hui AC. Biomechanical testing of the locking compression plate: when does the distance between bone and implant significantly reduce construct stability?. Injury 2007; 38(3): 358-364.
  • An Z., Zeng B., He X., Chen Q., Hu S. Plating osteosynthesis of mid-distal humeral shaft fractures: minimally invasive versus conventional open reduction technique. International Orthopaedics 2010; 34: 131-135.
  • Arvier JF., Barker TM., Yau YY., D'Urso PS., Atkinson RL., McDermant GR. Maxillofacial biomodelling. British Journal of Oral and Maxillofacial Surgery 1994; 32(5): 276-283.
  • ASTM F382-14, Standard specification and test method for metallic bone plates. ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959, United States 2014.
  • Chen X. Parametric design of patient-specific fixation plates for distal femur fractures. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine 2018; 232(9): 901-911.
  • Cousley RR., Bainbridge M., Rossouw PE. The accuracy of maxillary positioning using digital model planning and 3D printed wafers in bimaxillary orthognathic surgery. Journal of Orthodontics 2017;44(4): 256-267.
  • Huotilainen E., Paloheimo M., Salmi M., Paloheimo KS., Björkstrand R., Tuomi, J., Mäkitie A. Imaging requirements for medical applications of additive manufacturing. Acta Radiologica 2014; 55(1): 78-85.
  • Jabran A., Peach C., Zou Z., Ren L. Parametric design optimisation of proximal humerus plates based on finite element method. Annals of Biomedical Engineering 2019; 47: 601-614.
  • Jian Z., Ao R., Zhou J., Jiang X., Zhang D., Yu BA. new anatomic locking plate for the treatment of posterolateral tibial plateau fractures. BMC Musculoskeletal Disorders 2018; 19: 1-6.
  • Kumar C., Gupta AK., Nath R., Ahmad J. Open reduction and locking plate fixation of displaced proximal humerus fractures. Indian journal of orthopedics 2013; 47: 156-160.
  • Le C., Kolasangiani K., Nayyeri P., Bougherara H. Experimental and numerical investigation of 3D-Printed bone plates under four-point bending load utilizing machine learning techniques. Journal of the Mechanical Behavior of Biomedical Materials 2023; 143, 105885.
  • Liang X., Jacobs R., Hassan B., Li L., Pauwels R., Corpas L., Lambrichts I. A comparative evaluation of cone beam computed tomography (CBCT) and multi-slice CT (MSCT): Part I. On subjective image quality. European journal of radiology 2010a; 75(2): 265-269.
  • Liang X., Lambrichts I., Sun Y., Denis K., Hassan B., Li L., Jacobs R. A comparative evaluation of cone beam computed tomography (CBCT) and multi-slice CT (MSCT). Part II: On 3D model accuracy. European journal of radiology 210b; 75(2): 270-274.
  • Liao B., Sun J., Xu C., Xia R., Li W., Lu D., Jin Z. A mechanical study of personalized Ti6Al4V tibial fracture fixation plates with grooved surface by finite element analysis. Biosurface and Biotribology 2021; 7(3): 142-153.
  • Malik HH., Darwood AR., Shaunak S., Kulatilake P., Abdulrahman A., Mulki, O., Baskaradas A. Three-dimensional printing in surgery: a review of current surgical applications. journal of surgical research 2015; 199(2); 512-522.
  • Majstorovic V., Trajanovic M., Vitkovic N., Stojkovic M. Reverse engineering of human bones by using the method of anatomical features. Cirp Annals 2013; 62(1); 167-170.
  • Marro A., Bandukwala T., Mak W. Three-dimensional printing and medical imaging: a review of the methods and applications. Current problems in diagnostic radiology 2016; 45(1): 2-9.
  • Nowak LL., Dehghan N., McKee MD., Schemitsch EH. Plate fixation for management of humerus fractures. Injury 2018; 49: S33-S38.
  • Rashid MM. Anatomical personalized plate implants (APIs) are the best choice for treating distal femur fractures. Al-Qadisiyah Journal for Engineering Sciences 2023; 16(1): 30-36.
  • Rashid MM., Husain KN., Vitković N., Manić M., Trajanović M., Mitković MB., Mitković MM. Geometrical model creation methods for human humerus bone and modified cloverleaf plate. Journal of Scientific & Industrial Research 2017; 76: 631-639.
  • Rashid MM., Husain KN., Alhasoon AA. Expert system for the production of personalized cloverleaf plate implant for human humerus. In IOP Conference Series: Materials Science and Engineering 2021; 1090(1); 012099.
  • Ren D., Liu Y., Lu J., Xu R., Wang P. A novel design of a plate for posterolateral tibial plateau fractures through traditional anterolateral approach. Scientific Reports 2018; 8(1): 16418.
  • Scolaro JA., Voleti P., Makani A., Namdari S., Mirza A., Mehta S. Surgical fixation of extra-articular distal humerus fractures with a posterolateral plate through a triceps-reflecting technique. Journal of shoulder and elbow surgery 2014; 23(2), 251-257.
  • Sholukha V., Chapman T., Salvia P., Moiseev F., Euran F., Rooze M., Jan SVS. Femur shape prediction by multiple regression based on quadric surface fitting. Journal of Biomechanics 2011; 44(4): 712-718.
  • Soni A., Singh B. Design and analysis of customized fixation plate for the femoral shaft. Indian Journal of Orthopaedics 2020; 54: 148-155.
  • Tilton M., Armstrong A., Sanville J., Chin M., Hast MW., Lewis GS., Manogharan, GP. Biomechanical testing of additive manufactured proximal humerus fracture fixation plates. Annals of Biomedical Engineering 2020; 48: 463-476.
  • Van Eijnatten M., van Dijk R., Dobbe J., Streekstra G., Koivisto J., Wolff J. CT image segmentation methods for bone used in medical additive manufacturing. Medical engineering & physics 2018: 51; 6-16.
  • Vitković N., Radović L., Trajanović M., Manić M. 3D point cloud model of human bio form created by applying geometric morphometrics and method of anatomical features: human tibia example. Filomat 2019; 33(4): 1217-1225.
  • Vitković N., Stojković M., Majstorović V., Trajanović M., Milovanović J. Novel design approach for the creation of 3D geometrical model of personalized bone scaffold. CIRP Annals 2018; 67(1): 177-180.
  • Vitković N., Stojković JR., Korunović N., Teuţan E., Pleşa A., Ianoşi-Andreeva-Dimitrova, A., Păcurar, R. Extra-Articular Distal Humerus Plate 3D Model Creation by Using the Method of Anatomical Features. Materials 2023; 16(15): 5409.
  • Webb PA. A review of rapid prototyping (RP) techniques in the medical and biomedical sector. Journal of medical engineering & technology 2000; 24(4): 149-153.
There are 31 citations in total.

Details

Primary Language English
Subjects Biomechanical Engineering, Additive Manufacturing
Journal Section RESEARCH ARTICLES
Authors

Hakan Burçin Erdoğuş 0000-0002-2947-7510

Early Pub Date January 15, 2025
Publication Date January 17, 2025
Submission Date April 29, 2024
Acceptance Date August 23, 2024
Published in Issue Year 2025 Volume: 8 Issue: 1

Cite

APA Erdoğuş, H. B. (2025). An Investigation of Four-Point Bending Behavior for Personalized Humerus Bone Plate. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 8(1), 167-181. https://doi.org/10.47495/okufbed.1475223
AMA Erdoğuş HB. An Investigation of Four-Point Bending Behavior for Personalized Humerus Bone Plate. Osmaniye Korkut Ata University Journal of The Institute of Science and Techno. January 2025;8(1):167-181. doi:10.47495/okufbed.1475223
Chicago Erdoğuş, Hakan Burçin. “An Investigation of Four-Point Bending Behavior for Personalized Humerus Bone Plate”. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi 8, no. 1 (January 2025): 167-81. https://doi.org/10.47495/okufbed.1475223.
EndNote Erdoğuş HB (January 1, 2025) An Investigation of Four-Point Bending Behavior for Personalized Humerus Bone Plate. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi 8 1 167–181.
IEEE H. B. Erdoğuş, “An Investigation of Four-Point Bending Behavior for Personalized Humerus Bone Plate”, Osmaniye Korkut Ata University Journal of The Institute of Science and Techno, vol. 8, no. 1, pp. 167–181, 2025, doi: 10.47495/okufbed.1475223.
ISNAD Erdoğuş, Hakan Burçin. “An Investigation of Four-Point Bending Behavior for Personalized Humerus Bone Plate”. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi 8/1 (January 2025), 167-181. https://doi.org/10.47495/okufbed.1475223.
JAMA Erdoğuş HB. An Investigation of Four-Point Bending Behavior for Personalized Humerus Bone Plate. Osmaniye Korkut Ata University Journal of The Institute of Science and Techno. 2025;8:167–181.
MLA Erdoğuş, Hakan Burçin. “An Investigation of Four-Point Bending Behavior for Personalized Humerus Bone Plate”. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi, vol. 8, no. 1, 2025, pp. 167-81, doi:10.47495/okufbed.1475223.
Vancouver Erdoğuş HB. An Investigation of Four-Point Bending Behavior for Personalized Humerus Bone Plate. Osmaniye Korkut Ata University Journal of The Institute of Science and Techno. 2025;8(1):167-81.

23487


196541947019414

19433194341943519436 1960219721 197842261021238 23877

*This journal is an international refereed journal 

*Our journal does not charge any article processing fees over publication process.

* This journal is online publishes 5 issues per year (January, March, June, September, December)

*This journal published in Turkish and English as open access. 

19450 This work is licensed under a Creative Commons Attribution 4.0 International License.