Research Article
BibTex RIS Cite

Module-A Sensor Performance Tests Used In Laboratory-Type Silage Production, Data Acquisition and Control System

Year 2025, Volume: 8 Issue: 1, 248 - 265, 17.01.2025
https://doi.org/10.47495/okufbed.1483856

Abstract

The primary objective of this study is to investigate the performance of sensors integrated into the laboratory-type silage production, data acquisition, and control system. The system is a PLC-controlled and multi-sensor based system designed to enable numerous studies aimed at improving silage quality. It consists of grinding, weighing, silo, data acquisition, and control units. It provides the capability to apply/change/simulate various parameters during the silage production process. The silo unit is composed of two modules, module-A (compression principle) and module-B (vacuum principle). This research focuses on measurements conducted with plexiglass silos (24,5 cm3) in the module-A unit. This silos were equipped with oxygen sensor (±0-100 %), carbon dioxide sensor (0-5000 ppm), temperature sensor (±0.53 °C, -10 – 80 °C), humidity sensor (0-100 %), pH sensor (2-12), and pressure sensor (± 1000 mbar). The research utilized second-crop silage corn material with a dry matter content (DM) of 32%. Four different compaction forces were applied during the experiments. Sensor measurements were recorded as one data per second by connecting them to the data recording unit using analog sensors. Due to the abundance of data, average values were taken. The data were displayed and monitored on the HMI operator panel programmed with GOP HMI editor software and stored in Excel format. The measurements were carried out during the silage (aerobic) and post-silage (anaerobic) periods. According to the research results, it was observed that the six tested sensors performed accurate readings. However, issues related to the oxygen and carbon dioxide sensors were encountered. Due to the difficulty in reading at points with very low oxygen content, it was decided to be supported by controlling with sensors of different types and specifications. During measurements conducted at the compression stage in module-A, the pressure values varied between 0,34-0,67 bar with increasing compaction force. The temperature ranged from 16-33 °C, humidity from 60-100 %, pH from 5,8-5,6 O2 level from 8,1-0 mmol L-1, and CO2 level from 0-40 mmol L-1. The measured value ranges in silage varied depending on the duration of silage, and accurate measurements were obtained in the desired direction. Sensor placements were updated considering measurement accuracy.

Project Number

TÜBİTAK 119O161

References

  • Craig PH., Roth G. Penn State University bunker silo density study summary report 2004-2005”. Pennsylvania State University, 2005.
  • D'Amours L., Savoie P. Density profile of corn silage in bunker silo. Can. Biosyst. Eng., 2005; 47, 21-28.
  • Hoffmann T., Geyer S. Determination of silage density in bunker silos using a radiometric method. Agronomy Research 2014;12(1): 65-72.
  • Holmes BJ., Muck RE. Managing and designing bunker and trench silo (AED-43). MidWest Plan Service. Ames, IA 2004.
  • Jones CM., Heinrichs AJ., Roth GW., Ishler VA. From harvest to feed: understanding silage management. PennState College of Agricultural Sciences, Agricultural Research and Cooperative Extention 2004; 6-18.
  • Latsch R., Sauter J. Comparison of methods for determining the density of grass silage. Agricultural and Food Science 2013; 22: 189-193.
  • Li M., Jungbluth KH., Sun Y., Cheng Q., Maack C., Buescher W., Lin J., Zhou H., Wang Z. Developing a Penetrometer -based mapping system for visualizing silage bulk density from the bunker silo face. Sensors 2016;16, 1038; doi: 10.3390 / s16071038
  • Li M., Shan G., Zhou H., Buescher W., Maack C., Jungbluth KH., Lipski A., Grantz DA., Fan Y., Ma D., Wang Z., Cheng Q., Sun Y. CO2 production, dissolution and pressure dynamics during silage production: multi-sensor-based insight into parameter interactions. Scientific Reports 2017;| 7: 14721.
  • Muck RE., Holmes BJ. Factors affecting bunker silo densities. St. Joseph, MI: ASAE 1999; ASAE Paper No. 991016
  • Muck RE., Holmes BJ. Factors affecting bunker silo densities. Applied Engineering in Agriculture 2000; 16(6): 613-619.
  • Muck RE., Savoie P., Holmes BJ. Laboratory assessment of bunker silo density, part I: Alfalfa and grass. Applied Engineering in Agriculture 2004; 20 (2): 157-164.
  • Oelberg T., Harms C., Ohman D., Hinen J., Defrain J. Survey shows more packing of bunkers and piles needed. Monsanto Dairy Business and Hubbard Dairy Services 2005; 47-54.
  • Roy MB., Treblay Y., Pomerleau P., Savoie P. Compaction and density of forage in bunker silo. ASAE Annual International Meeting, 2001; Paper No. 01-1089.
  • Ruppel KA. Bunker silo management and its effects on hay crop quality. In proceedings from the national silage production conference: 1993;67-82. NRAES publication 67, cooperative extension, Ithaca, NY.
  • Ruppel KA., Pitt RE., Chase LE., Dalton DM. Bunker silo management and its relationship to forage preservation on dairy farms”. J. Dairy Sci. 1995; 78(1): 141-153.
  • Ruppel KA. Economics of silage management practices: what can ı do to improve the bottom line in my ensiling business? silage: Field to Feedbunk (NRAES-99) 1997; Northeast Regional Agricultural Engineering Service, Ithaca, NY.
  • Shan G., Sun Y., Li M., Jungbluth KH., Maack C., Buescher W., Schütt KB., Boeker P., Lammers PS., Zhou H., Cheng Q., Ma D. An assessment of three different ın situ oxygen sensors for monitoring silage production and storage. Sensors 2016; 16, 91; doi:10.3390/s16010091
  • Shaver RD. Forage particle length in dairy rations. 1990;Pages 58–64 in Proc. Dairy Feeding Systems Symp., NRAES, Ithaca, NY.
  • Savoie P., Muck RE., Holmes BJ. Laboratory assessment of bunker silo density, part ıı: whole-plant corn. Applied Engineering in Agriculture 2004; 20(2): 165-171.
  • Shinners KJ., Muck RE., Koegel RG., Straub RJ. Silage characteristics as affected by length-of-cut. 1994;ASAE Paper No. 94-1524. St. Joseph, Mich. :ASAE.
  • Sun YR., Buescher W., Lin JH., Schulze Lammers P., Ross F., Maack C., Cheng Q., Sun W. An improved penetrometer technique for determining bale density. Biosyst. Eng. 2010;105: 273–277. doi: 10.1016/j.biosystemseng.2009.09.020.
  • Tan F., Kayısoglu B., Okur E. Effects of compaction pressure on the temperature distribution in bunker type silage silo. Indian Journal of Animal Sciences 2018; 88 (1): 116-120.
  • Tan F., Dalmış İS., Dalmış F., Okur E. Laboratuvar tipi silaj yapım ve veri toplama sisteminin geliştirilmesi. 2020;TÜBİTAK 1002-191O161 Nolu Proje Sonuç Raporu.
  • Visser B. Forage density and fermentation variation: A survey of bunkers, piles and bags across minnesota and wisconsin dairy farms. Four-State Dairy Nutrition and Management Conference 2005; MWPS-4SD18. Ames, IA.
  • Wang R. Estimation of silage density in bunker silos by drilling. Master Thesis, Swedish University of Agricultural Sciences, 2012; Department of Animal Nutrition and Management.
  • NKU TR2021 009131 B Patent certificate 2022; Tan F., Dalmıs S.I., Okur E., Dalmıs F.

Laboratuvar Tipi Silaj Yapımı, Veri Toplama ve Kontrol Sisteminde Kullanılan Modül-A Sensör Performans Testleri

Year 2025, Volume: 8 Issue: 1, 248 - 265, 17.01.2025
https://doi.org/10.47495/okufbed.1483856

Abstract

Bu çalışmanın temel amacı laboratuvar tipi silaj yapımı, veri toplama ve control sistemine entegre edilen sensörlerin performanslarını incelemektir. Sistem, silaj kalitesinin iyileştirilmesine yönelik çok sayıda çalışmaya olanak sağlamak üzere tasarlanmış, PLC kontrollü ve çoklu sensör tabanlı bir sistemdir. Kıyma, tartım, silolama, veri toplama ve kontrol ünitelerinden oluşmaktadır. Silaj yapım prosesi sırasında çeşitli parametreleri uygulama/değiştirme/simüle etme yeteneği sağlar. Silolama ünitesi modül-A (sıkıştırma ilkesi) ve modül-B (vakum ilkesi) olmak üzere iki modülden oluşmaktadır. Bu araştırma, modül-A ünitesindeki pleksi silolar (24,5 cm3) ile yapılan ölçümlere ilişkin çalışmaları içermektedir. Bu silolar oksijen sensörü (%±0-100), karbondioksit sensörü (0-5000 ppm), sıcaklık sensörü (±0,53 °C, -10 – 80 °C), nem sensörü (%0-100), pH sensörü (2-12) ve basınç sensörü (± 1000 mbar) ile donatılmıştır. Araştırma ikinci ürün silajlık mısırda (%32 KM) yürütülmüştür. Denemelerde dört farklı sıkıştırma kuvveti uygulanmıştır. Sensör ölçümleri analog sensörler kullanılarak saniyede bir veri olarak kayıt alınmıştır. Verilerin çokluğundan dolayı ortalama değerler alınmıştır. Veriler, GOP HMI editör yazılımı ile programlanan HMI operatör panelinde görüntülenmiş ve Excel formatında kullanılmıştır. Ölçümler silaj (aerobik) ve silaj sonrası (anaerobik) dönemlerde gerçekleştirilmiştir. Araştırma sonuçlarına göre test edilen altı sensörün doğru okumalar yaptığı gözlenmiştir. Ancak oksijen ve karbondioksit sensörleriyle ilgili sorunlarla karşılaşılmıştır. Oksijen içeriği çok düşük olan noktalarda okuma zorluğu nedeniyle farklı tip ve özelliklerdeki sensörlerle kontrol edilerek desteklenmesine karar verilmiştir. Modül-A'da sıkıştırma aşamasında yapılan ölçümlerde, sıkıştırma kuvvetinin artmasıyla birlikte basınç değerleri 0,34-0,67 bar arasında değişmiştir. Sıcaklık 16-33 °C, nem %60-100, pH 5,8-5,6 O2 seviyesi 8,1-0 mmol L-1 ve CO2 seviyesi 0-40 mmol L-1 arasında değişim belirlenmiştir. Silajda ölçülen değer aralıkları silajın süresine göre değişiklik göstermiş ve istenilen yönde doğru ölçümler elde edilmiştir. Ölçüm doğruluğu dikkate alınarak sensör yerleşimleri güncellenmiştir.

Supporting Institution

TÜBİTAK

Project Number

TÜBİTAK 119O161

Thanks

This study was supported by Scientific and Technological Research Council of Turkey (TUBITAK) under the Grant Number 119O161 The authors thank to TUBITAK for their supports

References

  • Craig PH., Roth G. Penn State University bunker silo density study summary report 2004-2005”. Pennsylvania State University, 2005.
  • D'Amours L., Savoie P. Density profile of corn silage in bunker silo. Can. Biosyst. Eng., 2005; 47, 21-28.
  • Hoffmann T., Geyer S. Determination of silage density in bunker silos using a radiometric method. Agronomy Research 2014;12(1): 65-72.
  • Holmes BJ., Muck RE. Managing and designing bunker and trench silo (AED-43). MidWest Plan Service. Ames, IA 2004.
  • Jones CM., Heinrichs AJ., Roth GW., Ishler VA. From harvest to feed: understanding silage management. PennState College of Agricultural Sciences, Agricultural Research and Cooperative Extention 2004; 6-18.
  • Latsch R., Sauter J. Comparison of methods for determining the density of grass silage. Agricultural and Food Science 2013; 22: 189-193.
  • Li M., Jungbluth KH., Sun Y., Cheng Q., Maack C., Buescher W., Lin J., Zhou H., Wang Z. Developing a Penetrometer -based mapping system for visualizing silage bulk density from the bunker silo face. Sensors 2016;16, 1038; doi: 10.3390 / s16071038
  • Li M., Shan G., Zhou H., Buescher W., Maack C., Jungbluth KH., Lipski A., Grantz DA., Fan Y., Ma D., Wang Z., Cheng Q., Sun Y. CO2 production, dissolution and pressure dynamics during silage production: multi-sensor-based insight into parameter interactions. Scientific Reports 2017;| 7: 14721.
  • Muck RE., Holmes BJ. Factors affecting bunker silo densities. St. Joseph, MI: ASAE 1999; ASAE Paper No. 991016
  • Muck RE., Holmes BJ. Factors affecting bunker silo densities. Applied Engineering in Agriculture 2000; 16(6): 613-619.
  • Muck RE., Savoie P., Holmes BJ. Laboratory assessment of bunker silo density, part I: Alfalfa and grass. Applied Engineering in Agriculture 2004; 20 (2): 157-164.
  • Oelberg T., Harms C., Ohman D., Hinen J., Defrain J. Survey shows more packing of bunkers and piles needed. Monsanto Dairy Business and Hubbard Dairy Services 2005; 47-54.
  • Roy MB., Treblay Y., Pomerleau P., Savoie P. Compaction and density of forage in bunker silo. ASAE Annual International Meeting, 2001; Paper No. 01-1089.
  • Ruppel KA. Bunker silo management and its effects on hay crop quality. In proceedings from the national silage production conference: 1993;67-82. NRAES publication 67, cooperative extension, Ithaca, NY.
  • Ruppel KA., Pitt RE., Chase LE., Dalton DM. Bunker silo management and its relationship to forage preservation on dairy farms”. J. Dairy Sci. 1995; 78(1): 141-153.
  • Ruppel KA. Economics of silage management practices: what can ı do to improve the bottom line in my ensiling business? silage: Field to Feedbunk (NRAES-99) 1997; Northeast Regional Agricultural Engineering Service, Ithaca, NY.
  • Shan G., Sun Y., Li M., Jungbluth KH., Maack C., Buescher W., Schütt KB., Boeker P., Lammers PS., Zhou H., Cheng Q., Ma D. An assessment of three different ın situ oxygen sensors for monitoring silage production and storage. Sensors 2016; 16, 91; doi:10.3390/s16010091
  • Shaver RD. Forage particle length in dairy rations. 1990;Pages 58–64 in Proc. Dairy Feeding Systems Symp., NRAES, Ithaca, NY.
  • Savoie P., Muck RE., Holmes BJ. Laboratory assessment of bunker silo density, part ıı: whole-plant corn. Applied Engineering in Agriculture 2004; 20(2): 165-171.
  • Shinners KJ., Muck RE., Koegel RG., Straub RJ. Silage characteristics as affected by length-of-cut. 1994;ASAE Paper No. 94-1524. St. Joseph, Mich. :ASAE.
  • Sun YR., Buescher W., Lin JH., Schulze Lammers P., Ross F., Maack C., Cheng Q., Sun W. An improved penetrometer technique for determining bale density. Biosyst. Eng. 2010;105: 273–277. doi: 10.1016/j.biosystemseng.2009.09.020.
  • Tan F., Kayısoglu B., Okur E. Effects of compaction pressure on the temperature distribution in bunker type silage silo. Indian Journal of Animal Sciences 2018; 88 (1): 116-120.
  • Tan F., Dalmış İS., Dalmış F., Okur E. Laboratuvar tipi silaj yapım ve veri toplama sisteminin geliştirilmesi. 2020;TÜBİTAK 1002-191O161 Nolu Proje Sonuç Raporu.
  • Visser B. Forage density and fermentation variation: A survey of bunkers, piles and bags across minnesota and wisconsin dairy farms. Four-State Dairy Nutrition and Management Conference 2005; MWPS-4SD18. Ames, IA.
  • Wang R. Estimation of silage density in bunker silos by drilling. Master Thesis, Swedish University of Agricultural Sciences, 2012; Department of Animal Nutrition and Management.
  • NKU TR2021 009131 B Patent certificate 2022; Tan F., Dalmıs S.I., Okur E., Dalmıs F.
There are 26 citations in total.

Details

Primary Language English
Subjects Agricultural Machines
Journal Section RESEARCH ARTICLES
Authors

Fulya Tan

Figan Dalmış

Ersen Okur 0000-0003-1933-7642

İbrahim Dalmış 0000-0002-4401-9155

Project Number TÜBİTAK 119O161
Early Pub Date January 15, 2025
Publication Date January 17, 2025
Submission Date May 15, 2024
Acceptance Date September 7, 2024
Published in Issue Year 2025 Volume: 8 Issue: 1

Cite

APA Tan, F., Dalmış, F., Okur, E., Dalmış, İ. (2025). Module-A Sensor Performance Tests Used In Laboratory-Type Silage Production, Data Acquisition and Control System. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 8(1), 248-265. https://doi.org/10.47495/okufbed.1483856
AMA Tan F, Dalmış F, Okur E, Dalmış İ. Module-A Sensor Performance Tests Used In Laboratory-Type Silage Production, Data Acquisition and Control System. Osmaniye Korkut Ata University Journal of The Institute of Science and Techno. January 2025;8(1):248-265. doi:10.47495/okufbed.1483856
Chicago Tan, Fulya, Figan Dalmış, Ersen Okur, and İbrahim Dalmış. “Module-A Sensor Performance Tests Used In Laboratory-Type Silage Production, Data Acquisition and Control System”. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi 8, no. 1 (January 2025): 248-65. https://doi.org/10.47495/okufbed.1483856.
EndNote Tan F, Dalmış F, Okur E, Dalmış İ (January 1, 2025) Module-A Sensor Performance Tests Used In Laboratory-Type Silage Production, Data Acquisition and Control System. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi 8 1 248–265.
IEEE F. Tan, F. Dalmış, E. Okur, and İ. Dalmış, “Module-A Sensor Performance Tests Used In Laboratory-Type Silage Production, Data Acquisition and Control System”, Osmaniye Korkut Ata University Journal of The Institute of Science and Techno, vol. 8, no. 1, pp. 248–265, 2025, doi: 10.47495/okufbed.1483856.
ISNAD Tan, Fulya et al. “Module-A Sensor Performance Tests Used In Laboratory-Type Silage Production, Data Acquisition and Control System”. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi 8/1 (January 2025), 248-265. https://doi.org/10.47495/okufbed.1483856.
JAMA Tan F, Dalmış F, Okur E, Dalmış İ. Module-A Sensor Performance Tests Used In Laboratory-Type Silage Production, Data Acquisition and Control System. Osmaniye Korkut Ata University Journal of The Institute of Science and Techno. 2025;8:248–265.
MLA Tan, Fulya et al. “Module-A Sensor Performance Tests Used In Laboratory-Type Silage Production, Data Acquisition and Control System”. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi, vol. 8, no. 1, 2025, pp. 248-65, doi:10.47495/okufbed.1483856.
Vancouver Tan F, Dalmış F, Okur E, Dalmış İ. Module-A Sensor Performance Tests Used In Laboratory-Type Silage Production, Data Acquisition and Control System. Osmaniye Korkut Ata University Journal of The Institute of Science and Techno. 2025;8(1):248-65.

23487


196541947019414

19433194341943519436 1960219721 197842261021238 23877

*This journal is an international refereed journal 

*Our journal does not charge any article processing fees over publication process.

* This journal is online publishes 5 issues per year (January, March, June, September, December)

*This journal published in Turkish and English as open access. 

19450 This work is licensed under a Creative Commons Attribution 4.0 International License.