Research Article
BibTex RIS Cite

PEME-PDMYH Sistemi Kaynaklı Oluşan Isı Kaynağının ORÇ Birleşeni ile Verimlilik ve Ekonomik Analizi

Year 2025, Volume: 8 Issue: 2, 773 - 793, 12.03.2025
https://doi.org/10.47495/okufbed.1444638

Abstract

Fosil yakıtların çevresel zararlarından dolayı temiz enerji dönüşüm sistemleri ve enerji depolama alanındaki çalışmalar yaygın hale gelmiştir. Enerji dönüşüm ve depolama sistemleri arasında en çok kullanılan sistemlerden biri de hidrojen temelli, Proton Elektrolit Membranlı Elektrolizör (PEME) ve Proton Değişim Membranlı Yakıt Hücresi (PDMYH) birleşimidir. Bu birleşimde PEME hidrojen üretiminde, PDMYH ise hidrojenden elektrik üretiminde kullanılan sistemlerdir. Bu çalışmada PEME-PDMYH birleşenine ek olarak PDMYH’den elde edilen atık ısı ile Organik Rankine Çevrimi (ORÇ) çevriminden de elektrik eldesi araştırılmıştır. Bu araştırma için PEME-PDMYH ve PEME-PDMYH-ORÇ sistemleri parametrik olarak karşılaştırılmıştır. Karşılaştırma parametreleri olarak PEME hücre sayısı, şarj süresi, deşarj süresi ve ORÇ evaporatör basıncı seçilmiştir. Bu parametrelere bağlı olarak PEME’de tüketilen, PDMYH ve ORÇ’de üretilen elektrik, çevrim verimi, Seviyelendirilmiş Elektrik Maliyeti (SEM) değerleri sistem çıktısı olarak seçilmiştir. Çalışma sonucunda en etkin parametre olan PEME hücre sayısına bağlı olarak PDMYH ve ORÇ’de üretilen elektrik, yaklaşık 3 kat artmıştır. Bunun yanında ORÇ kullanımı ile çevrim veriminin %1-2,5 arasında arttığı saptanmıştır. Son olarak ORÇ’li ve ORÇ’siz sistemler arasında SEM değerleri arasında büyük farklar olmadığı görülmüştür.

References

  • Alirahmi SM., Rostami M., Farajollahi AH. Multi-criteria design optimization and thermodynamic analysis of a novel multi-generation energy system for hydrogen, cooling, heating, power, and freshwater. International Journal of Hydrogen Energy 2020; 45(30): 15047-15062.
  • Ayou DS., Eveloy V. Energy, exergy and exergoeconomic analysis of an ultra low-grade heat-driven ammonia-water combined absorption power-cooling cycle for district space cooling, sub-zero refrigeration, power and LNG regasification. Energy Conversion and Management 2020; 213(112790): 1-25.
  • Azad A., Fakhari I., Ahmadi P., Javani N. Analysis and optimization of a fuel cell integrated with series two-stage organic Rankine cycle with zeotropic mixtures. International Journal of Hydrogen Energy 2022; 47(5): 3449-3472.
  • Baniasadi E., Toghyani S., Afshari E. Exergetic and exergoeconomic evaluation of a trigeneration system based on natural gas-PEM fuel cell. International Journal of Hydrogen Energy 2017; 42(8): 5327-5339.
  • Bedakhanian A., Assareh E. Exploring an innovative approach to hydrogen generation for fuel cell energy production by integrating a dual organic Rankine system with an absorption chiller powered by geothermal energy. Energy Nexus 2024;13(100267): 1-19.
  • Chen X., Chen L., Guo J., Chen J. An available method exploiting the waste heat in a proton exchange membrane fuel cell system. International Journal of Hydrogen Energy 2011; 36(10): 6099-6104.
  • Chitsaz A., Haghghi MA., Hosseinpour J. Thermodynamic and exergoeconomic analyses of a proton exchange membrane fuel cell (PEMFC) system and the feasibility evaluation of integrating with a proton exchange membrane electrolyzer (PEME). Energy Conversion and Management 2019; 186: 487-499.
  • Hassan AH., O’Donoghue L., Sánchez-Canales V., Corberán JM., Payá J., Jockenhöfer H. Thermodynamic analysis of high-temperature pumped thermal energy storage systems: Refrigerant selection, performance and limitations. Energy Reports 2020; 6: 147-159.
  • Ioroi T., Yasuda K., Siroma Z., Fujiwara N., Miyazaki Y. Thin film electrocatalyst layer for unitized regenerative polymer electrolyte fuel cells. Journal of Power Sources 2002; 112(2): 583-587.
  • Keshavarzzadeh AH., Ahmadi P., Safaei MR. Assessment and optimization of an integrated energy system with electrolysis and fuel cells for electricity, cooling and hydrogen production using various optimization techniques. International Journal of Hydrogen Energy 2019; 44(39): 21379-21396.
  • Kosmadakis G., Manolakos D., Papadakis G. Simulation and economic analysis of a CPV/thermal system coupled with an organic Rankine cycle for increased power generation. Solar Energy 2011; 85(2): 308-324.
  • Kunusch C., Puleston P., Mayosky M. Sliding-mode control of PEM fuel cells. Springer Science ve Business Media 2012.
  • Kurşun B., Ökten K. Thermodynamic analysis of a Rankine cycle coupled with a concentrated photovoltaic thermal system for hydrogen production by a proton exchange membrane electrolyzer plant. International Journal of Hydrogen Energy 2019; 44(41): 22863-22875.
  • Larminie J., Dicks A. Fuel cell systems explained. John Wiley 2003; 3: 61-69.
  • Liu G., Qin Y., Wang J., Liu C., Yin Y., Zhao J., Yin Y., Zhang J., Otoo ON. Thermodynamic modeling and analysis of a novel PEMFC-ORC combined power system. Energy Conversion and Management 2020; 217(112998): 1-25.
  • Mahabunphachai S., Cora ÖN., Koç M. Effect of manufacturing processes on formability and surface topography of proton exchange membrane fuel cell metallic bipolar plates. Journal of Power Sources 2010; 195(16): 5269-5277.
  • Marshall A., Børresen B., Hagen G., Tsypkin M., Tunold R. Hydrogen production by advanced proton exchange membrane (PEM) water electrolysers—Reduced energy consumption by improved electrocatalysis. Energy 2007; 32(4): 431-436.
  • Midilli A., Ay M., Dincer I., Rosen MA. On hydrogen and hydrogen energy strategies: I: current status and needs. Renewable and Sustainable Energy Reviews 2005; 9(3): 255-271.
  • Momirlan M., Veziroglu TN. The properties of hydrogen as fuel tomorrow in sustainable energy system for a cleaner planet. International Journal of Hydrogen Energy 2005; 30(7): 795-802.
  • Nasser M., Hassan H. Assessment of hydrogen production from waste heat using hybrid systems of Rankine cycle with proton exchange membrane/solid oxide electrolyzer. International Journal of Hydrogen Energy 2023; 48(20): 7135-7153.
  • Nel WP., Cooper CJ. Implications of fossil fuel constraints on economic growth and global warming. Energy Policy 2009; 37(1): 166-180.
  • Ni M., Leung MK., Leung DY. Energy and exergy analysis of hydrogen production by a proton exchange membrane (PEM) electrolyzer plant. Energy Conversion and Management 2008; 49(10): 2748-2756.
  • Ozen DN., Timurkutluk B., Altinisik K. Effects of operation temperature and reactant gas humidity levels on performance of PEM fuel cells. Renewable and Sustainable Energy Reviews 2016; 59: 1298-1306.
  • Rahimi-Esbo M., Firouzjaee MR., Farahabadi HB., Alizadeh E. Performance investigation of a standalone renewable energy system using response surface methodology (RSM): 4E analysis and multi-objective optimization. Energy Conversion and Management 2024; 299(117752): 1-15.
  • Razmi AR., Alirahmi SM., Nabat MH., Assareh E., Shahbakhti M. A green hydrogen energy storage concept based on parabolic trough collector and proton exchange membrane electrolyzer/fuel cell: thermodynamic and exergoeconomic analyses with multi-objective optimization. International Journal of Hydrogen Energy 2022; 47(62): 26468-26489.
  • Sabbaghi MA., Soltani M., Fraser R., Dusseault M. Emergy-based exergoeconomic and exergoenvironmental assessment of a novel CCHP system integrated with PEME and PEMFC for a residential building. Energy 2024; 305(132301): 1-17.
  • Saeed E.W., Warkozek EG. Modeling and analysis of renewable PEM fuel cell system. Energy Procedia 2015; 74: 87-101.
  • Sarma U., Ganguly S. Determination of the component sizing for the PEM fuel cell-battery hybrid energy system for locomotive application using particle swarm optimization. Journal of Energy Storage 2018; 19: 247-259.
  • Satterthwaite D. Cities' contribution to global warming: notes on the allocation of greenhouse gas emissions. Environment and Urbanization, 2008; 20(2): 539-549.
  • Sazali N. Emerging technologies by hydrogen: A review. International Journal of Hydrogen Energy 2020; 45(38): 18753-18771.
  • Singla MK., Nijhawan P., Oberoi AS. Hydrogen fuel and fuel cell technology for cleaner future: a review. Environmental Science and Pollution Research 2021; 28: 15607-15626.
  • Taner T. Energy and exergy analyze of PEM fuel cell: A case study of modeling and simulations. Energy 2018; 143: 284-294.
  • Turan C., Cora ÖN., Koç M. Effect of manufacturing processes on contact resistance characteristics of metallic bipolar plates in PEM fuel cells. International Journal of Hydrogen Energy 2011; 36(19): 12370-12380.
  • Turan C., Cora ÖN., Koç M. Investigation of the effects of process sequence on the contact resistance characteristics of coated metallic bipolar plates for polymer electrolyte membrane fuel cells. Journal of Power Sources 2013; 243: 925-934.
  • Wang D., Dhahad HA., Ali MA., Almojil, SF., Almohana AI., Alali AF., Alyousuf FQA., Almoalimi K. T. Environmental/Economic assessment and multi-aspect optimization of a poly-generation system based on waste heat recovery of PEM fuel cells. Applied Thermal Engineering 2023; 223 (119946):1-14.
  • Zhao P., Wang J., Gao L., Dai Y. Parametric analysis of a hybrid power system using organic Rankine cycle to recover waste heat from proton exchange membrane fuel cell. International Journal of Hydrogen Energy 2012; 37(4): 3382-3391.
  • Zuliani N., Taccani R. Microcogeneration system based on HTPEM fuel cell fueled with natural gas: Performance analysis. Applied Energy 2012; 97: 802-808.

Efficiency and Economic Analysis of the Heat Source Originated from the PEME-PDMYH System with the ORC Component

Year 2025, Volume: 8 Issue: 2, 773 - 793, 12.03.2025
https://doi.org/10.47495/okufbed.1444638

Abstract

Due to the environmental damage of fossil fuels, studies in the field of clean energy production systems and energy storage have become widespread. One of the most used systems among energy production and storage systems is the combination of hydrogen-based, Proton Exchange Membrane Electrolyzer (PEME) and Proton Exchange Membrane Fuel Cell (PEMFC). In this combination, PEME is the system used in hydrogen production and PEMFC is the system used in the production of electricity from hydrogen. In this study, in addition to the PEME-PEMFC compound, the generation of electricity from the ORC (Organic Rankine cycle) with the waste heat obtained from PEMFC was investigated. For this research, PEME-PEMFC and PEME-PEMFC-ORC systems were compared parametrically. Number of PEME cells, charging time, discharge time and ORC evaporator pressure were selected as comparison parameters. Depending on these parameters, the electricity consumed in PEME and produced in PEMYH and ORC, cycle efficiency and Levelized Cost of Electricity (LCOS) values were selected as system output. As a result of the study, depending on the number of PEME cells, which is the most effective parameter, the electricity production produced in PEMFC and ORC increased approximately 3 times, and it was determined that the cycle efficiency increased by 1-2,5% with the use of ORC. Finally, it has been observed that there are no major differences in LCOS values between systems with and without ORC.

References

  • Alirahmi SM., Rostami M., Farajollahi AH. Multi-criteria design optimization and thermodynamic analysis of a novel multi-generation energy system for hydrogen, cooling, heating, power, and freshwater. International Journal of Hydrogen Energy 2020; 45(30): 15047-15062.
  • Ayou DS., Eveloy V. Energy, exergy and exergoeconomic analysis of an ultra low-grade heat-driven ammonia-water combined absorption power-cooling cycle for district space cooling, sub-zero refrigeration, power and LNG regasification. Energy Conversion and Management 2020; 213(112790): 1-25.
  • Azad A., Fakhari I., Ahmadi P., Javani N. Analysis and optimization of a fuel cell integrated with series two-stage organic Rankine cycle with zeotropic mixtures. International Journal of Hydrogen Energy 2022; 47(5): 3449-3472.
  • Baniasadi E., Toghyani S., Afshari E. Exergetic and exergoeconomic evaluation of a trigeneration system based on natural gas-PEM fuel cell. International Journal of Hydrogen Energy 2017; 42(8): 5327-5339.
  • Bedakhanian A., Assareh E. Exploring an innovative approach to hydrogen generation for fuel cell energy production by integrating a dual organic Rankine system with an absorption chiller powered by geothermal energy. Energy Nexus 2024;13(100267): 1-19.
  • Chen X., Chen L., Guo J., Chen J. An available method exploiting the waste heat in a proton exchange membrane fuel cell system. International Journal of Hydrogen Energy 2011; 36(10): 6099-6104.
  • Chitsaz A., Haghghi MA., Hosseinpour J. Thermodynamic and exergoeconomic analyses of a proton exchange membrane fuel cell (PEMFC) system and the feasibility evaluation of integrating with a proton exchange membrane electrolyzer (PEME). Energy Conversion and Management 2019; 186: 487-499.
  • Hassan AH., O’Donoghue L., Sánchez-Canales V., Corberán JM., Payá J., Jockenhöfer H. Thermodynamic analysis of high-temperature pumped thermal energy storage systems: Refrigerant selection, performance and limitations. Energy Reports 2020; 6: 147-159.
  • Ioroi T., Yasuda K., Siroma Z., Fujiwara N., Miyazaki Y. Thin film electrocatalyst layer for unitized regenerative polymer electrolyte fuel cells. Journal of Power Sources 2002; 112(2): 583-587.
  • Keshavarzzadeh AH., Ahmadi P., Safaei MR. Assessment and optimization of an integrated energy system with electrolysis and fuel cells for electricity, cooling and hydrogen production using various optimization techniques. International Journal of Hydrogen Energy 2019; 44(39): 21379-21396.
  • Kosmadakis G., Manolakos D., Papadakis G. Simulation and economic analysis of a CPV/thermal system coupled with an organic Rankine cycle for increased power generation. Solar Energy 2011; 85(2): 308-324.
  • Kunusch C., Puleston P., Mayosky M. Sliding-mode control of PEM fuel cells. Springer Science ve Business Media 2012.
  • Kurşun B., Ökten K. Thermodynamic analysis of a Rankine cycle coupled with a concentrated photovoltaic thermal system for hydrogen production by a proton exchange membrane electrolyzer plant. International Journal of Hydrogen Energy 2019; 44(41): 22863-22875.
  • Larminie J., Dicks A. Fuel cell systems explained. John Wiley 2003; 3: 61-69.
  • Liu G., Qin Y., Wang J., Liu C., Yin Y., Zhao J., Yin Y., Zhang J., Otoo ON. Thermodynamic modeling and analysis of a novel PEMFC-ORC combined power system. Energy Conversion and Management 2020; 217(112998): 1-25.
  • Mahabunphachai S., Cora ÖN., Koç M. Effect of manufacturing processes on formability and surface topography of proton exchange membrane fuel cell metallic bipolar plates. Journal of Power Sources 2010; 195(16): 5269-5277.
  • Marshall A., Børresen B., Hagen G., Tsypkin M., Tunold R. Hydrogen production by advanced proton exchange membrane (PEM) water electrolysers—Reduced energy consumption by improved electrocatalysis. Energy 2007; 32(4): 431-436.
  • Midilli A., Ay M., Dincer I., Rosen MA. On hydrogen and hydrogen energy strategies: I: current status and needs. Renewable and Sustainable Energy Reviews 2005; 9(3): 255-271.
  • Momirlan M., Veziroglu TN. The properties of hydrogen as fuel tomorrow in sustainable energy system for a cleaner planet. International Journal of Hydrogen Energy 2005; 30(7): 795-802.
  • Nasser M., Hassan H. Assessment of hydrogen production from waste heat using hybrid systems of Rankine cycle with proton exchange membrane/solid oxide electrolyzer. International Journal of Hydrogen Energy 2023; 48(20): 7135-7153.
  • Nel WP., Cooper CJ. Implications of fossil fuel constraints on economic growth and global warming. Energy Policy 2009; 37(1): 166-180.
  • Ni M., Leung MK., Leung DY. Energy and exergy analysis of hydrogen production by a proton exchange membrane (PEM) electrolyzer plant. Energy Conversion and Management 2008; 49(10): 2748-2756.
  • Ozen DN., Timurkutluk B., Altinisik K. Effects of operation temperature and reactant gas humidity levels on performance of PEM fuel cells. Renewable and Sustainable Energy Reviews 2016; 59: 1298-1306.
  • Rahimi-Esbo M., Firouzjaee MR., Farahabadi HB., Alizadeh E. Performance investigation of a standalone renewable energy system using response surface methodology (RSM): 4E analysis and multi-objective optimization. Energy Conversion and Management 2024; 299(117752): 1-15.
  • Razmi AR., Alirahmi SM., Nabat MH., Assareh E., Shahbakhti M. A green hydrogen energy storage concept based on parabolic trough collector and proton exchange membrane electrolyzer/fuel cell: thermodynamic and exergoeconomic analyses with multi-objective optimization. International Journal of Hydrogen Energy 2022; 47(62): 26468-26489.
  • Sabbaghi MA., Soltani M., Fraser R., Dusseault M. Emergy-based exergoeconomic and exergoenvironmental assessment of a novel CCHP system integrated with PEME and PEMFC for a residential building. Energy 2024; 305(132301): 1-17.
  • Saeed E.W., Warkozek EG. Modeling and analysis of renewable PEM fuel cell system. Energy Procedia 2015; 74: 87-101.
  • Sarma U., Ganguly S. Determination of the component sizing for the PEM fuel cell-battery hybrid energy system for locomotive application using particle swarm optimization. Journal of Energy Storage 2018; 19: 247-259.
  • Satterthwaite D. Cities' contribution to global warming: notes on the allocation of greenhouse gas emissions. Environment and Urbanization, 2008; 20(2): 539-549.
  • Sazali N. Emerging technologies by hydrogen: A review. International Journal of Hydrogen Energy 2020; 45(38): 18753-18771.
  • Singla MK., Nijhawan P., Oberoi AS. Hydrogen fuel and fuel cell technology for cleaner future: a review. Environmental Science and Pollution Research 2021; 28: 15607-15626.
  • Taner T. Energy and exergy analyze of PEM fuel cell: A case study of modeling and simulations. Energy 2018; 143: 284-294.
  • Turan C., Cora ÖN., Koç M. Effect of manufacturing processes on contact resistance characteristics of metallic bipolar plates in PEM fuel cells. International Journal of Hydrogen Energy 2011; 36(19): 12370-12380.
  • Turan C., Cora ÖN., Koç M. Investigation of the effects of process sequence on the contact resistance characteristics of coated metallic bipolar plates for polymer electrolyte membrane fuel cells. Journal of Power Sources 2013; 243: 925-934.
  • Wang D., Dhahad HA., Ali MA., Almojil, SF., Almohana AI., Alali AF., Alyousuf FQA., Almoalimi K. T. Environmental/Economic assessment and multi-aspect optimization of a poly-generation system based on waste heat recovery of PEM fuel cells. Applied Thermal Engineering 2023; 223 (119946):1-14.
  • Zhao P., Wang J., Gao L., Dai Y. Parametric analysis of a hybrid power system using organic Rankine cycle to recover waste heat from proton exchange membrane fuel cell. International Journal of Hydrogen Energy 2012; 37(4): 3382-3391.
  • Zuliani N., Taccani R. Microcogeneration system based on HTPEM fuel cell fueled with natural gas: Performance analysis. Applied Energy 2012; 97: 802-808.
There are 37 citations in total.

Details

Primary Language Turkish
Subjects Energy
Journal Section RESEARCH ARTICLES
Authors

Sefa Salim Örnek 0009-0002-7337-2596

Burak Kurşun 0000-0001-5878-3894

Korhan Ökten 0000-0002-8728-8785

Levent Uğur 0000-0003-3447-3191

Publication Date March 12, 2025
Submission Date February 29, 2024
Acceptance Date August 29, 2024
Published in Issue Year 2025 Volume: 8 Issue: 2

Cite

APA Örnek, S. S., Kurşun, B., Ökten, K., Uğur, L. (2025). PEME-PDMYH Sistemi Kaynaklı Oluşan Isı Kaynağının ORÇ Birleşeni ile Verimlilik ve Ekonomik Analizi. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 8(2), 773-793. https://doi.org/10.47495/okufbed.1444638
AMA Örnek SS, Kurşun B, Ökten K, Uğur L. PEME-PDMYH Sistemi Kaynaklı Oluşan Isı Kaynağının ORÇ Birleşeni ile Verimlilik ve Ekonomik Analizi. Osmaniye Korkut Ata University Journal of The Institute of Science and Techno. March 2025;8(2):773-793. doi:10.47495/okufbed.1444638
Chicago Örnek, Sefa Salim, Burak Kurşun, Korhan Ökten, and Levent Uğur. “PEME-PDMYH Sistemi Kaynaklı Oluşan Isı Kaynağının ORÇ Birleşeni Ile Verimlilik Ve Ekonomik Analizi”. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi 8, no. 2 (March 2025): 773-93. https://doi.org/10.47495/okufbed.1444638.
EndNote Örnek SS, Kurşun B, Ökten K, Uğur L (March 1, 2025) PEME-PDMYH Sistemi Kaynaklı Oluşan Isı Kaynağının ORÇ Birleşeni ile Verimlilik ve Ekonomik Analizi. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi 8 2 773–793.
IEEE S. S. Örnek, B. Kurşun, K. Ökten, and L. Uğur, “PEME-PDMYH Sistemi Kaynaklı Oluşan Isı Kaynağının ORÇ Birleşeni ile Verimlilik ve Ekonomik Analizi”, Osmaniye Korkut Ata University Journal of The Institute of Science and Techno, vol. 8, no. 2, pp. 773–793, 2025, doi: 10.47495/okufbed.1444638.
ISNAD Örnek, Sefa Salim et al. “PEME-PDMYH Sistemi Kaynaklı Oluşan Isı Kaynağının ORÇ Birleşeni Ile Verimlilik Ve Ekonomik Analizi”. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi 8/2 (March 2025), 773-793. https://doi.org/10.47495/okufbed.1444638.
JAMA Örnek SS, Kurşun B, Ökten K, Uğur L. PEME-PDMYH Sistemi Kaynaklı Oluşan Isı Kaynağının ORÇ Birleşeni ile Verimlilik ve Ekonomik Analizi. Osmaniye Korkut Ata University Journal of The Institute of Science and Techno. 2025;8:773–793.
MLA Örnek, Sefa Salim et al. “PEME-PDMYH Sistemi Kaynaklı Oluşan Isı Kaynağının ORÇ Birleşeni Ile Verimlilik Ve Ekonomik Analizi”. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi, vol. 8, no. 2, 2025, pp. 773-9, doi:10.47495/okufbed.1444638.
Vancouver Örnek SS, Kurşun B, Ökten K, Uğur L. PEME-PDMYH Sistemi Kaynaklı Oluşan Isı Kaynağının ORÇ Birleşeni ile Verimlilik ve Ekonomik Analizi. Osmaniye Korkut Ata University Journal of The Institute of Science and Techno. 2025;8(2):773-9.

23487


196541947019414

19433194341943519436 1960219721 197842261021238 23877

*This journal is an international refereed journal 

*Our journal does not charge any article processing fees over publication process.

* This journal is online publishes 5 issues per year (January, March, June, September, December)

*This journal published in Turkish and English as open access. 

19450 This work is licensed under a Creative Commons Attribution 4.0 International License.