Research Article
BibTex RIS Cite

Why Do Epidemics Evolve in Waves?

Year 2025, Volume: 8 Issue: 2, 929 - 941, 12.03.2025
https://doi.org/10.47495/okufbed.1525498

Abstract

Multiple epidemic waves have been observed during the “Spanish Flu” (1918-1919) and the Covid-19 (2019-2021) pandemics. The “Spanish Flu” pandemic, characterized by the H1N1 viral strain, was a severe and well documented pandemic that manifested itself in three distinct epidemic waves spanning a period of 18 months. The Covid-19 pandemic has also been characterized by multiple epidemic waves and the its data also include information on the variants of the ancestor virus. In this study, potential factors contributing to the occurrence of multiple waves are discussed by employing the Susceptible- Infected- Removed SIR model. These factors may include seasonality effects and relaxation of control measures. The introduction of a new variant of a pathogen can initiate a new wave, representing a distinct epidemic event. Also, at the end of an epidemic wave, the relaxation of restrictions allows previously protected individuals to re-enter the susceptible population, leading to an increase in susceptible individuals (S). Finally, the easing of restrictions promotes higher interconnections within the susceptible population, resulting in an increase in the basic reproduction number (R_0). By observing the simulations using the Susceptible-Infected-Removed model, we can conclude that the introduction of a new variant seems to be more dominant among causes leading to a new wave.

References

  • Andreasen V., Viboud C., Simonsen L. Epidemiologic characterization of the 1918 influenza pandemic summer wave in Copenhagen: implications for pandemic control strategies. Journal of Infectious Diseases 2008; 297(2): 270-278.
  • Ghosh K., Ghosh AK. Study of COVID-19 epidemiological evolution in India with amulti-wave SIR model. Nonlinear Dynamics 2022; 109(1): 47-55.
  • Hatchett RJ., Mecher CE., Lipsitch M. Public health interventions and epidemic intensity during the 1918 influenza Pandemic. Proceedings of the National Academy of Science 2007; 104(18): 7582-7587.
  • Hethcote HW. Qualitative analyses of communicable disease models. Mathematical Biosciences 1976; 28(3- 4): 335-356.
  • Jordan EO. Epidemic influenza: A survey. 1927.
  • Kermack WO., McKendrick AG. A contribution to the mathematical theory of epidemics. Proceedings of the Royal Society of London. Series A, Containing papers of a Mathematical and Physical Character 1927; 115(772): 700-721.
  • Langfeld K. Dynamics of epidemic diseases without guaranteed immunity. Journal of Mathematics in Industry 2021: 11(1): 1-8.
  • Marsh P. Spanish flu: How the 1918 pandemic hit Ulster and beyond. 2018, Accessed July 17, 2024, https://www.bbc.com/news/uk-northern-ireland-46265074
  • Peker-Dobie A., Demirci A., Bilge AH., Ahmetolan S. On the time shift phenomena in epidemic models. Frontiers in Physics 2020; 8: 578455-578455.
  • Perakis G., Singhvi D., Skali Lami O., Thayaparan L. COVID-19: A multiwave SIR-based model for learning waves. Production and Operations Management 2023; 32(5): 1471-1489.
  • Singh P., Gupta A. Generalized SIR (GSIR) epidemic model: An improved framework for the predictive monitoring of COVID-19 pandemic. ISA Transactions 2022; 124: 31-40.
  • Taubenberger JK., Morens DM. Influenza: the mother of all pandemics. Revista Biomedica 2006; 17(1): 69-79.
  • Tizzoni M., Bajardi P., Poletto C., Ramasco JJ., Balcan D., Gonçalves B., Vespignani A. Real-time numerical forecast of global epidemic spreading: case study of 2009 A/H1N1pdm. BMC Medicine 2012; 10: 1-31.
  • Xu B., Cai J., Chowell G., Xu B. Mechanistic modelling of multiple waves in an influenza epidemic of pandemic. Journal of Theoretical Biology 2020; 486: 110070-110070.

Salgınlar Neden Dalgalar Halinde İlerler?

Year 2025, Volume: 8 Issue: 2, 929 - 941, 12.03.2025
https://doi.org/10.47495/okufbed.1525498

Abstract

“İspanyol Gribi” (1918-1919) ve Covid-19 (2019-2021) pandemileri sırasında birden fazla salgın dalgası gözlemlenmiştir. H1N1 viral suşu ile karakterize edilen “İspanyol Gribi”, 18 aylık bir döneme yayılan ve üç farklı salgın dalgası ile kendini gösteren şiddetli ve iyi belgelenmiş bir salgındı. Covid-19 pandemisi de çoklu dalgalar ile karakterize edilmiş olup, salgın verisi ata virisün varyantları bilgisini de içermektedir. Bu çalışmada, birden fazla dalganın ortaya çıkmasına yol açan potansiyel faktörler, mevsimsellik etkileri ve kontrol önlemlerinin gevşetilmesi olabilir. Patojenin yeni bir varyantının ortaya çıkışı, yeni bir dalga başlatarak farklı bir salgın başlatabilir. Ayrıca, bir salgın dalgasının sonunda, kısıtlamaların gevşetilmesi, daha önce korunan bireylerin yeniden duyarlı nüfusa girmesine ve duyarlı bireylerin (S) artmasına yol açabilir. Son olarak, kısıtlamaların gevşetilmesi, duyarlı nüfus içinde daha yüksek bağlantılar teşvik ederek temel üreme sayısının (R_0) artmasına neden olabilir. Duyarlı-Enfekte-İyileşen modeli kullanılarak yapılan simülasyonlar göz önüne alındığında, yeni bir varyantın ortaya çıkışının, yeni bir dalgaya yol açan nedenler arasında daha baskın olduğu ihtimali tartışılmıştır.

References

  • Andreasen V., Viboud C., Simonsen L. Epidemiologic characterization of the 1918 influenza pandemic summer wave in Copenhagen: implications for pandemic control strategies. Journal of Infectious Diseases 2008; 297(2): 270-278.
  • Ghosh K., Ghosh AK. Study of COVID-19 epidemiological evolution in India with amulti-wave SIR model. Nonlinear Dynamics 2022; 109(1): 47-55.
  • Hatchett RJ., Mecher CE., Lipsitch M. Public health interventions and epidemic intensity during the 1918 influenza Pandemic. Proceedings of the National Academy of Science 2007; 104(18): 7582-7587.
  • Hethcote HW. Qualitative analyses of communicable disease models. Mathematical Biosciences 1976; 28(3- 4): 335-356.
  • Jordan EO. Epidemic influenza: A survey. 1927.
  • Kermack WO., McKendrick AG. A contribution to the mathematical theory of epidemics. Proceedings of the Royal Society of London. Series A, Containing papers of a Mathematical and Physical Character 1927; 115(772): 700-721.
  • Langfeld K. Dynamics of epidemic diseases without guaranteed immunity. Journal of Mathematics in Industry 2021: 11(1): 1-8.
  • Marsh P. Spanish flu: How the 1918 pandemic hit Ulster and beyond. 2018, Accessed July 17, 2024, https://www.bbc.com/news/uk-northern-ireland-46265074
  • Peker-Dobie A., Demirci A., Bilge AH., Ahmetolan S. On the time shift phenomena in epidemic models. Frontiers in Physics 2020; 8: 578455-578455.
  • Perakis G., Singhvi D., Skali Lami O., Thayaparan L. COVID-19: A multiwave SIR-based model for learning waves. Production and Operations Management 2023; 32(5): 1471-1489.
  • Singh P., Gupta A. Generalized SIR (GSIR) epidemic model: An improved framework for the predictive monitoring of COVID-19 pandemic. ISA Transactions 2022; 124: 31-40.
  • Taubenberger JK., Morens DM. Influenza: the mother of all pandemics. Revista Biomedica 2006; 17(1): 69-79.
  • Tizzoni M., Bajardi P., Poletto C., Ramasco JJ., Balcan D., Gonçalves B., Vespignani A. Real-time numerical forecast of global epidemic spreading: case study of 2009 A/H1N1pdm. BMC Medicine 2012; 10: 1-31.
  • Xu B., Cai J., Chowell G., Xu B. Mechanistic modelling of multiple waves in an influenza epidemic of pandemic. Journal of Theoretical Biology 2020; 486: 110070-110070.
There are 14 citations in total.

Details

Primary Language English
Subjects Biological Mathematics
Journal Section RESEARCH ARTICLES
Authors

Ayse Peker-dobie

Semra Ahmetolan 0000-0003-1003-7918

Ayşe Hümeyra Bilge

Ali Demirci

Publication Date March 12, 2025
Submission Date July 31, 2024
Acceptance Date January 30, 2025
Published in Issue Year 2025 Volume: 8 Issue: 2

Cite

APA Peker-dobie, A., Ahmetolan, S., Bilge, A. H., Demirci, A. (2025). Why Do Epidemics Evolve in Waves?. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 8(2), 929-941. https://doi.org/10.47495/okufbed.1525498
AMA Peker-dobie A, Ahmetolan S, Bilge AH, Demirci A. Why Do Epidemics Evolve in Waves?. Osmaniye Korkut Ata University Journal of The Institute of Science and Techno. March 2025;8(2):929-941. doi:10.47495/okufbed.1525498
Chicago Peker-dobie, Ayse, Semra Ahmetolan, Ayşe Hümeyra Bilge, and Ali Demirci. “Why Do Epidemics Evolve in Waves?”. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi 8, no. 2 (March 2025): 929-41. https://doi.org/10.47495/okufbed.1525498.
EndNote Peker-dobie A, Ahmetolan S, Bilge AH, Demirci A (March 1, 2025) Why Do Epidemics Evolve in Waves?. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi 8 2 929–941.
IEEE A. Peker-dobie, S. Ahmetolan, A. H. Bilge, and A. Demirci, “Why Do Epidemics Evolve in Waves?”, Osmaniye Korkut Ata University Journal of The Institute of Science and Techno, vol. 8, no. 2, pp. 929–941, 2025, doi: 10.47495/okufbed.1525498.
ISNAD Peker-dobie, Ayse et al. “Why Do Epidemics Evolve in Waves?”. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi 8/2 (March 2025), 929-941. https://doi.org/10.47495/okufbed.1525498.
JAMA Peker-dobie A, Ahmetolan S, Bilge AH, Demirci A. Why Do Epidemics Evolve in Waves?. Osmaniye Korkut Ata University Journal of The Institute of Science and Techno. 2025;8:929–941.
MLA Peker-dobie, Ayse et al. “Why Do Epidemics Evolve in Waves?”. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi, vol. 8, no. 2, 2025, pp. 929-41, doi:10.47495/okufbed.1525498.
Vancouver Peker-dobie A, Ahmetolan S, Bilge AH, Demirci A. Why Do Epidemics Evolve in Waves?. Osmaniye Korkut Ata University Journal of The Institute of Science and Techno. 2025;8(2):929-41.

23487


196541947019414

19433194341943519436 1960219721 197842261021238 23877

*This journal is an international refereed journal 

*Our journal does not charge any article processing fees over publication process.

* This journal is online publishes 5 issues per year (January, March, June, September, December)

*This journal published in Turkish and English as open access. 

19450 This work is licensed under a Creative Commons Attribution 4.0 International License.