Optical, Structural and Morphological Properties of Ni Doped α-Fe2O3 Thin Film Grown by RF and DC Magnetron Co-Sputtering Technique
Year 2025,
Volume: 8 Issue: 2, 580 - 597, 12.03.2025
Maryam Abdolahpour Salari
,
Günay Merhan Muğlu
,
Volkan Şenay
,
Sevda Sarıtaş
Abstract
In this research, Ni-doped hematite (α-Fe2O3) thin film was synthesized on glass substrate using direct current (DC) and radio frequency (RF) magnetron co-sputtering technique and some physical properties were investigated. Optical, structural and morphological analysis of the obtained Ni-doped α-Fe2O3 thin film was determined using UV-VIS spectroscopy, EDX, X-ray diffraction, scanning electron microscopy (SEM) and atomic force microscopy (AFM). Based on the absorption measurement, the band gap energy value of the thin film was estimated and the result was determined as 2.12 eV. X-ray diffraction analysis showed a nanocrystalline structure in the thin film under investigation. According to SEM image, thin film exhibits a smooth surface morphology along the substrate. Additionally, AFM images revealed a low RMS roughness value, indicating a smooth surface for the Ni-doped Fe2O3 thin layer.
References
- Abdolahpour Salari M., Merhan Muğlu G., Şenay V., Sarıtaş S., Kundakçı M. Analysis of optical, structural, and morphological properties of a Ti-doped α-Fe2O3 thin film produced through RF and DC magnetron Co-sputtering. Ceramics International 2024; 50(20): 39221-39225.
- Al-Gaashani R., Radiman S., Tabet N., Daud A. Rapid synthesis and optical properties of hematite (α-Fe2O3) nanostructures using a simple thermal decomposition method. Journal of Alloys and Compounds 2013; 550: 395-401.
- Al-Kuhaili M., Saleem M., Durrani S. Optical properties of iron oxide (α-Fe2O3) thin films deposited by the reactive evaporation of iron. Journal of Alloys and Compounds 2012; 521: 178-182.
- Annamalai A., Shinde PS., Subramanian A., Kim JY., Kim JH., Choi SH., Lee JS., Jang JS. Bifunctional TiO2 underlayer for α-Fe2O3 nanorod based photoelectrochemical cells: enhanced interface and Ti4+ doping. Journal of Materials Chemistry A 2015; 3(9): 5007-5013.
- Aragón FF., Ardisson JD., Aquino JC., Gonzalez I., Macedo WA., Coaquira JA., Mantilla J., da Silva SW., Morais PC. Effect of the thickness reduction on the structural, surface and magnetic properties of α-Fe2O3 thin films. Thin Solid Films 2016; 607: 50-54.
- Ateş T., Köytepe S., Bulut N., & Kaygili O. Ni katkısının Fe2O3’ün yapısal özellikleri üzerine etkilerinin araştırılması. International Journal of Innovative Engineering Applications, 2021; 5(2), 81-87.
- Aydın C., Mansour SA., Alahmed Z., Yakuphanoğlu F. Structural and optical characterization of sol–gel derived boron doped Fe2O3 nanostructured films. Journal of Sol-gel Science and Technology 2012; 62: 397-403.
- Basavegowda N., Mishra K., Lee YR. Synthesis, characterization, and catalytic applications of hematite (α-Fe2O3) nanoparticles as reusable nanocatalyst. Advances in Natural Sciences: Nanoscience and Nanotechnology 2017; 8(2): 025017.
- Beermann N., Vayssieres L., Lindquist SE., Hagfeldt A. Photoelectrochemical studies of oriented nanorod thin films of hematite. Journal of the Electrochemical Society 2000; 147(7): 2456.
- Bhowmik R., Choudhary R., Mitra P., Reddy V., Sinha A. Dimensionality induced enhancement of ferromagnetic spin order and ferroelectric polarization in Ga doped α-Fe2O3 thin films. Applied Surface Science 2022; 573: 151609.
- Bohra M., Venkataramani N., Prasad S., Kumar N., Misra DS., Sahoo SC., Krishnan R. RF sputter deposited nanocrystalline (110) magnetite thin film from α-Fe2O3 target. Journal of Nanoscience and Nanotechnology 2007; 7(6): 2055.
- Can MM., Coşkun M., Fırat TA. Comparative study of nanosized iron oxide particles; magnetite (Fe3O4), maghemite (γ-Fe2O3) and hematite (α-Fe2O3), using ferromagnetic resonance. Journal of Alloys and Compounds 2012; 542: 241-247.
- Can MM., Özcan Ş., Fırat T. Magnetic behaviour of iron nanoparticles passivated by oxidation. Physica Status Solidi C 2006; 3(5): 1271-1278.
- Chen J., Xu L., Li W., Gou X. α-Fe2O3 nanotubes in gas sensor and lithium-ion battery applications. Advanced Materials (Weinheim) 2005; 17: 582-586.
- Chiriță M., Grozescu I. Fe2O3-nanoparticles, physical properties and their photochemical and photoelectrochemical applications. Chemical Bulletin of Politehnica 2009; 54(68).
Chueh YL., Lai MW., Liang JQ., Chou LJ., Wang ZL. Systematic study of the growth of aligned arrays of α‐Fe2O3 and Fe3O4 nanowires by a vapor–solid process. Advanced Functional Materials 2006; 16(17): 2243-2251.
- Congolo S., Madito M., Paradzah AT., Harrison AJ., Elnour HMAM., Krüger T., Diale M. Reduction of recombination rates due to volume increasing, annealing, and tetraethoxysilicate treatment in hematite thin films. Applied Nanoscience 2020; 10: 1957-1967.
- Dayanand Chahar, M., Pathak DK., Thakur O., Vankar V., Kumar, R. Deposition of single phase polycrystalline α-Fe2O3 thin film on silicon and silica substrates by spray pyrolysis. Silicon 2021; 13: 3361-3366.
- Demircioğlu A., Demir KÇ. Effects of annealing on structural, morphological, and corrosion properties of α-Fe2O3 thin films. Journal of Electronic Materials 2021; 50(5): 2750-2760.
- Dghoughi L., Elidrissi B., Bernede C., Addou M., Lamrani MA., Regragui M., Erguig H. Physico-chemical, optical and electrochemical properties of iron oxide thin films prepared by spray pyrolysis. Applied Surface Science 2006; 253(4): 1823-1829.
- Durães L., Moutinho A., Seabra IJ., Costa BF., de Sousa HC., Portugal A. Characterization of iron (iii) oxide/hydroxide nanostructured materials produced by sol–gel technology based on the fe (no3) 3· 9h2o–c2h5oh–ch3chch2o system. Materials Chemistry and Physics 2011; 130(1-2): 548-560.
- Emin S., De Respinis M., Mavrič T., Dam B., Valant M., Smith W. Photoelectrochemical water splitting with porous α-Fe2O3 thin films prepared from Fe/Fe-oxide nanoparticles. Applied Catalysis A: General 2016; 523: 130-138.
- Garrido-Ramírez E., Mora M., Marco J., Ureta-Zañartu M. Characterization of nanostructured allophane clays and their use as support of iron species in a heterogeneous electro-fenton system. Applied Clay Science 2013; 86: 153-161.
- Ge J., Tian J., Zhuo L., Chen H., Tang B. Fabrication of self-assembled iron oxide hierarchical nanostructures and their application in water treatment. Solid State Sciences 2011; 13(8): 1554-1559.
- Glasscock JA., Barnes PR., Plumb IC., Savvides N. Enhancement of photoelectrochemical hydrogen production from hematite thin films by the introduction of Ti and Si. The Journal of Physical Chemistry C 2007; 111(44): 16477-16488.
- Gmucová K., Weis M., Nádaždy V., Capek I., Šatka A., Chitu L., Cirák J., Majkova E. Effect of charged deep states in hydrogenated amorphous silicon on the behavior of iron oxides nanoparticles deposited on its surface. Applied Surface Science 2008; 254(21): 7008-7013.
- Grine A., Zehani F., Khennaoui B., Bouremmad F., Zaioune H. Effect of precursor concentration and annealing temperature on the structural, optical and electrical properties of pure α-Fe2O3 thin films elaborated by the spin-coating method. Materials Chemistry and Physics 2022; 276: 125367.
- Guo Z., Shin K., Karki AB., Young DP., Kaner RB., Hahn HT. Fabrication and characterization of iron oxide nanoparticles filled polypyrrole nanocomposites. Journal of Nanoparticle Research 2009; 11: 1441-1452.
- Gurmen S., Ebin B. Production and characterization of the nanostructured hollow iron oxide spheres and nanoparticles by aerosol route. Journal of Alloys and Compounds 2010; 492(1-2): 585-589.
- Gurmen S., Ebin B., Stopić S., Friedrich B. Nanocrystalline spherical iron–nickel (Fe–Ni) alloy particles prepared by ultrasonic spray pyrolysis and hydrogen reduction (USP-HR). Journal of Alloys and Compounds 2009; 480(2): 529-533.
- Hahn NT., Ye H., Flaherty DW., Bard AJ., Mullins CB. Reactive ballistic deposition of α-Fe2O3 thin films for photoelectrochemical water oxidation. ACS Nano 2010; 4(4): 1977-1986.
- Hamed MH., Mueller DN., Müller M. Thermal phase design of ultrathin magnetic iron oxide films: from Fe3O4 to γ-Fe2O3 and FeO. Journal of Materials Chemistry C 2020; 8(4): 1335-1343.
- Han R., Li W., Pan W., Zhu M., Zhou D., Li FS. 1D magnetic materials of Fe3O4 and Fe with high performance of microwave absorption fabricated by electrospinning method. Scientific Reports 2014; 4(1): 7493.
- Hessam R., Najafisayar P. The effects of applied current density and bath concentration on the morphology, crystal structure and optical properties of electrodeposited hematite thin films. Thin Solid Films 2019; 692: 137633.
- Hiralal P., Saremi-Yarahmadi S., Bayer BC., Wang H., Hofmann S., Wijayantha KU., Amaratunga GA. Nanostructured hematite photoelectrochemical electrodes prepared by the low temperature thermal oxidation of iron. Solar Energy Materials and Solar Cells 2011; 95(7): 1819-1825.
- Hjiri M. Highly sensitive NO2 gas sensor based on hematite nanoparticles synthesized by sol–gel technique. Journal of Materials Science: Materials in Electronics 2020; 31(6): 5025-5031.
- Hu YS., Kleiman-Shwarsctein A., Forman AJ., Hazen D., Park JN., McFarland EW. Pt-doped α-Fe2O3 thin films active for photoelectrochemical water splitting. Chemistry of Materials 2008; 20(12): 3803-3805.
- Huang MC., Chang WS., Lin JC., Chang YH., Wu CC. Magnetron sputtering process of carbon-doped α-Fe2O3 thin films for photoelectrochemical water splitting. Journal of Alloys and Compounds 2015; 636: 176-182.
- Jiang Z., Jiang D., Wei W., Yan Z., Xie J. Natural carbon nanodots assisted development of size-tunable metal (Pd, Ag) nanoparticles grafted on bionic dendritic α-Fe2O3 for cooperative catalytic applications. Journal of Materials Chemistry A 2015; 3(46): 23607-23620.
- Kalyanaraman R., Yoo S., Krupashankara M., Sudarshan T., Dowding R. Synthesis and consolidation of iron nanopowders. Nanostructured Materials 1998; 10(8): 1379-1392.
- Kamal A., Razia ET., Zahra M., Sardar S., Mumtaz A. Monitoring the synergistic effect of Mn/Ni Co-doping and morphological engineering in α-Fe2O3 for energy storage capacity as battery type electrode material. International Journal of Hydrogen Energy 2024; 88, 1280-1292.
- Kayani ZN., Afzal A., Butt MZ., Batool I., Arshad S., Ali Y., Riaz S., Naseem S. Structural, optical and magnetic properties of iron oxide nano-particles. Materials Today: Proceedings 2015; 2(10): 5660-5663.
- Khedr M., Halim KA., Soliman N. Effect of temperature on the kinetics of acetylene decomposition over reduced iron oxide catalyst for the production of carbon nanotubes. Applied Surface Science 2008; 255(5): 2375-2381.
- Kojima H., Hanada K. Origin of coercivity changes during the oxidation of Fe3O4 to γ-Fe2O3. IEEE Transactions on Magnetics 1980; 16(1): 11-13.
- Li M., Liu H., Pang S., Yan P., Liu M., Ding M., Zhang B. Facile fabrication of three-dimensional fusiform-like α-Fe2O3 for enhanced photocatalytic performance. Nanomaterials 2021; 11(10): 2650.
- Li SS., Li WJ., Jiang TJ., Liu ZG., Chen X., Cong HP., Liu JH., Huang YY., Li LN., Huang XJ. Iron oxide with different crystal phases (α-and γ-Fe2O3) in electroanalysis and ultrasensitive and selective detection of lead (II): an advancing approach using XPS and EXAFS. Analytical Chemistry 2016; 88(1): 906-914.
- Ma Y., Xie XY., Chen HY., Zhang TH., Debela TT. The growth mode of α-Fe2O3 thin films by DC magnetron sputtering. Vacuum 2021; 194: 110625.
- Miller EL., Paluselli D., Marsen B., Rocheleau RE. Low-temperature reactively sputtered iron oxide for thin film devices. Thin Solid Films 2004; 466(1-2): 307-313.
- Miller EL., Paluselli D., Marsen B., Rocheleau RE. Development of reactively sputtered metal oxide films for hydrogen-producing hybrid multijunction photoelectrodes. Solar Energy Materials and Solar Cells 2005; 88(2): 131-144.
- Mirzaei A., Hashemi B., Janghorban K. α-Fe2O3 based nanomaterials as gas sensors. Journal of Materials Science: Materials in Electronics 2016; 27: 3109-3144.
- Mishra M., Chun DM. α-Fe2O3 as a photocatalytic material: A review. Applied Catalysis A: General 2015; 498: 126-141.
- Miyashiro A. Oxidation and reduction in the Earth's crust with special reference to the role of graphite. Geochimica et Cosmochimica Acta 1964; 28(5): 717-729.
- Mokhtari S., Dokhan N., Omeiri S., Berkane B., Trari M. Influence of pretreatment on the properties of α-Fe2O3 and the effect on photocatalytic degradation of methylene blue under visible light. Water Science and Technology 2020; 82(11): 2415-2424.
- Morales M., Serna C., Bødker F., Mørup S. Spin canting due to structural disorder in maghemite. Journal of Physics: Condensed Matter 1997; 9(25): 5461.
- Morales MDP., Veintemillas-Verdaguer S., Montero M., Serna C., Roig A., Casas L., Martínez B., Sandiumenge F. Surface and internal spin canting in γ-Fe2O3 nanoparticles. Chemistry of Materials 1999; 11(11): 3058-3064.
- More P., Jadhav P., Ghanwat A., Dhole I., Navale Y., Patil V. Spray synthesized hydrophobic α-Fe2O3 thin film electrodes for supercapacitor application. Journal of Materials Science: Materials in Electronics 2017; 28: 17839-17848.
- MØrup S., Frandsen C., BØdker F., Klausen SN., Lefmann K., LindgÅrd PA., Hansen MF. Magnetic properties of nanoparticles of antiferromagnetic materials. Paper presented at the Mössbauer Spectroscopy: Proceedings of the Fifth Seeheim Workshop, held in Seeheim, Germany 2003, 21–25 May 2002.
- Namai A., Yoshikiyo M., Yamada K., Sakurai S., Goto T., Yoshida T., Miyazaki T., Nakajima M., Suemoto T., Tokoro H., Ohkoshi S. Hard magnetic ferrite with a gigantic coercivity and high frequency millimetre wave rotation. Nature Communications 2012; 3(1): 1035.
- Nielsch K., Bachmann J., Daub M., Jing J., Knez M., Gösele U., Barth S., Mathur S., Escrig J., Altbir D. Ferromagnetic nanostructures by atomic layer deposition: From thin films towards core-shell nanotubes. ECS Transactions 2007; 11(7): 139.
- Ortega D., Garitaonandia J., Barrera-Solano C., Dominguez M. Thermal evolution of the ferromagnetic resonance in Fe2O3/SiO2 nanocomposites for magneto-optical sensors. Sensors and Actuators A: Physical 2008; 142(2): 554-560.
- Özdemir Ö., Dunlop DJ., Moskowitz BM. Changes in remanence, coercivity and domain state at low temperature in magnetite. Earth and Planetary Science Letters 2002; 194(3-4): 343-358.
- Randrianantoandro N., Mercier A., Hervieu M., Greneche J. Direct phase transformation from hematite to maghemite during high energy ball milling. Materials Letters 2001; 47(3): 150-158.
- Sahoo S., Agarwal K., Singh A., Polke B., Raha K. Characterization of γ-and α-Fe2O3 nano powders synthesized by emulsion precipitation-calcination route and rheological behaviour of α-Fe2O3. International Journal of Engineering, Science and Technology 2010; 2(8): 118-126.
- Salari M., Sağlam M., Baltakesmez A., Güzeldir B. Effect of electron radiation on electrical parameters of Zn/n-Si/Au–Sb and Zn/ZnO/n-Si/Au–Sb diodes. Journal of Radioanalytical and Nuclear Chemistry 2019a; 319: 667-678.
- Salari M., Sağlam M., Güzeldir B. The protection from the effects of gamma rays of metal-semiconductor diodes by means of ZnO thin interface layer. Radiation Physics and Chemistry 2019b; 165: 108416.
- Saravanan P., Hsu JH., Sivaprahasam D., Kamat S. Structural and magnetic properties of γ-Fe2O3 nanostructured compacts processed by spark plasma sintering. Journal of Magnetism and Magnetic Materials 2013; 346: 175-177.
- Sharma B., Sharma A. Enhanced surface dynamics and magnetic switching of α-Fe2O3 films prepared by laser assisted chemical vapor deposition. Applied Surface Science 2021; 567: 150724.
- Shen S., Jiang J., Guo P., Kronawitter CX., Mao SS., Guo L. Effect of Cr doping on the photoelectrochemical performance of hematite nanorod photoanodes. Nano Energy 2012; 1(5): 732-741.
- Sun HT., Cantalini C., Faccio M., Pelino M., Catalano M., Tapfer L. Porous silica‐coated α‐Fe2O3 ceramics for humidity measurement at elevated temperature. Journal of the American Ceramic Society 1996; 79(4): 927-937.
- Tahir AA., Wijayantha KU., Saremi-Yarahmadi S., Mazhar M., McKee V. Nanostructured α-Fe2O3 thin films for photoelectrochemical hydrogen generation. Chemistry of Materials 2009; 21(16): 3763-3772.
- Tauc J., Grigorovici R., Vancu A. Optical properties and electronic structure of amorphous germanium. Physica Status Solidi 1966; 15(2): 627-637.
- Tian J., Xue Y., Yu X., Pei Y., Zhang H., Wang J. Binding Fe2O3 nanoparticles in polydopamine-reduced graphene as negative electrode materials for high-performance asymmetric supercapacitors. Journal of Nanoparticle Research 2019; 21: 1-12.
- Ubale A., Belkhedkar M. Size dependent physical properties of nanostructured α-Fe2O3 thin films grown by successive ionic layer adsorption and reaction method for antibacterial application. Journal of Materials Science & Technology 2015; 31(1): 1-9.
- Vasquez MM., Zysler R., Arciprete C., Dimitrijewits M., Saragovi C., Greneche J. Magnetic interaction evidence in α-Fe2O3 nanoparticles by magnetization and Mössbauer measurements. Journal of Magnetism and Magnetic Materials 1999; 204(1-2); 29-35.
- Vincent T., Gross M., Dotan H., Rothschild A. Thermally oxidized iron oxide nanoarchitectures for hydrogen production by solar-induced water splitting. International Journal of Hydrogen Energy 2012; 37(9): 8102-8109.
- Wang H., Mao J., Zhang Z., Zhang Q., Zhang L., Zhang W., Li P. Photocatalytic degradation of deoxynivalenol over dendritic-like α-Fe2O3 under visible light irradiation. Toxins 2019; 11(2): 105.
- Wang L., Lee CY., Schmuki P. Ti and Sn co-doped anodic α-Fe2O3 films for efficient water splitting. Electrochemistry Communications 2013; 30: 21-25.
- Zboril R., Mashlan M., Petridis D. Iron (III) oxides from thermal processes synthesis, structural and magnetic properties, Mössbauer spectroscopy characterization, and applications. Chemistry of Materials 2002; 14(3): 969-982.
- Zhao B., Kaspar T., Droubay T., McCloy J., Bowden M., Shutthanandan V., Heald S., Chambers S. Electrical transport properties of Ti-doped Fe2O3 (0001) epitaxial films. Physical Review B—Condensed Matter and Materials Physics 2011; 84(24): 245325.
- Zhao P., Li W., Wang G., Yu B., Li X., Bai J., Ren Z. Facile hydrothermal fabrication of nitrogen-doped graphene/Fe2O3 composites as high performance electrode materials for supercapacitor. Journal of Alloys and Compounds 2014; 604: 87-93.
RF ve DC Magnetron Püskürtme Tekniği ile Büyütülmüş Ni Katkılı α-Fe2O3 İnce Filmin Optik, Yapısal ve Morfolojik Özellikleri
Year 2025,
Volume: 8 Issue: 2, 580 - 597, 12.03.2025
Maryam Abdolahpour Salari
,
Günay Merhan Muğlu
,
Volkan Şenay
,
Sevda Sarıtaş
Abstract
Bu araştırmada, doğru akım (DC) ve radyo frekansı (RF) magnetron püskürtme tekniği kullanılarak cam alttaş üzerinde Ni katkılı hematit (α-Fe2O3) ince film sentezlenmiştir ve bazı fiziksel özellikler araştırılmıştır. Elde edilen Ni katkılı α-Fe2O3 ince filmin optik, yapısal ve morfolojik analizi, UV-VIS spektroskopisi, EDX, X-ışını kırınımı, taramalı elektron mikroskobu (SEM) ve atomik kuvvet mikroskobu kullanılarak belirlenmiştir. Absorbsiyon ölçümüne dayanarak ince filmin bant aralığı enerji değeri hesap edilmiştir ve sonuç 2,12 eV olarak belirlenmiştir. X-ışını kırınım analizi, incelenen ince filmin nanokristal bir yapıya sahip olduğunu göstermiştir. SEM görüntüsüne göre ince film alttaş boyunca düzgün bir yüzey morfolojisi sergilemiştir. Ayrıca AFM görüntüleri, Ni:Fe2O3 ince filminin pürüzsüz bir yüzeye sahip olduğunu gösteren düşük bir RMS pürüzlülük değeri ortaya koymuştur.
Ethical Statement
Bu çalışmanın, özgün bir çalışma olduğunu; çalışmanın hazırlık, veri toplama, analiz ve bilgilerin sunumu olmak üzere tüm aşamalarından bilimsel etik ilke ve kurallarına uygun davrandığımızı; bu çalışma kapsamında elde edilmeyen tüm veri ve bilgiler için kaynak gösterdiğimizi ve bu kaynaklara kaynakçada yer verdiğimizi; kullanılan verilerde herhangi bir değişiklik yapmadığımızı beyan ederim. Herhangi bir zamanda, çalışmayla ilgili yaptığımız bu beyana aykırı bir durumun saptanması durumunda, ortaya çıkacak tüm ahlaki ve hukuki sonuçlara razı olduğumuzu bildiririm.
Saygılarımla
Sorumlu Yazar
Doç. Dr. Volkan ŞENAY
References
- Abdolahpour Salari M., Merhan Muğlu G., Şenay V., Sarıtaş S., Kundakçı M. Analysis of optical, structural, and morphological properties of a Ti-doped α-Fe2O3 thin film produced through RF and DC magnetron Co-sputtering. Ceramics International 2024; 50(20): 39221-39225.
- Al-Gaashani R., Radiman S., Tabet N., Daud A. Rapid synthesis and optical properties of hematite (α-Fe2O3) nanostructures using a simple thermal decomposition method. Journal of Alloys and Compounds 2013; 550: 395-401.
- Al-Kuhaili M., Saleem M., Durrani S. Optical properties of iron oxide (α-Fe2O3) thin films deposited by the reactive evaporation of iron. Journal of Alloys and Compounds 2012; 521: 178-182.
- Annamalai A., Shinde PS., Subramanian A., Kim JY., Kim JH., Choi SH., Lee JS., Jang JS. Bifunctional TiO2 underlayer for α-Fe2O3 nanorod based photoelectrochemical cells: enhanced interface and Ti4+ doping. Journal of Materials Chemistry A 2015; 3(9): 5007-5013.
- Aragón FF., Ardisson JD., Aquino JC., Gonzalez I., Macedo WA., Coaquira JA., Mantilla J., da Silva SW., Morais PC. Effect of the thickness reduction on the structural, surface and magnetic properties of α-Fe2O3 thin films. Thin Solid Films 2016; 607: 50-54.
- Ateş T., Köytepe S., Bulut N., & Kaygili O. Ni katkısının Fe2O3’ün yapısal özellikleri üzerine etkilerinin araştırılması. International Journal of Innovative Engineering Applications, 2021; 5(2), 81-87.
- Aydın C., Mansour SA., Alahmed Z., Yakuphanoğlu F. Structural and optical characterization of sol–gel derived boron doped Fe2O3 nanostructured films. Journal of Sol-gel Science and Technology 2012; 62: 397-403.
- Basavegowda N., Mishra K., Lee YR. Synthesis, characterization, and catalytic applications of hematite (α-Fe2O3) nanoparticles as reusable nanocatalyst. Advances in Natural Sciences: Nanoscience and Nanotechnology 2017; 8(2): 025017.
- Beermann N., Vayssieres L., Lindquist SE., Hagfeldt A. Photoelectrochemical studies of oriented nanorod thin films of hematite. Journal of the Electrochemical Society 2000; 147(7): 2456.
- Bhowmik R., Choudhary R., Mitra P., Reddy V., Sinha A. Dimensionality induced enhancement of ferromagnetic spin order and ferroelectric polarization in Ga doped α-Fe2O3 thin films. Applied Surface Science 2022; 573: 151609.
- Bohra M., Venkataramani N., Prasad S., Kumar N., Misra DS., Sahoo SC., Krishnan R. RF sputter deposited nanocrystalline (110) magnetite thin film from α-Fe2O3 target. Journal of Nanoscience and Nanotechnology 2007; 7(6): 2055.
- Can MM., Coşkun M., Fırat TA. Comparative study of nanosized iron oxide particles; magnetite (Fe3O4), maghemite (γ-Fe2O3) and hematite (α-Fe2O3), using ferromagnetic resonance. Journal of Alloys and Compounds 2012; 542: 241-247.
- Can MM., Özcan Ş., Fırat T. Magnetic behaviour of iron nanoparticles passivated by oxidation. Physica Status Solidi C 2006; 3(5): 1271-1278.
- Chen J., Xu L., Li W., Gou X. α-Fe2O3 nanotubes in gas sensor and lithium-ion battery applications. Advanced Materials (Weinheim) 2005; 17: 582-586.
- Chiriță M., Grozescu I. Fe2O3-nanoparticles, physical properties and their photochemical and photoelectrochemical applications. Chemical Bulletin of Politehnica 2009; 54(68).
Chueh YL., Lai MW., Liang JQ., Chou LJ., Wang ZL. Systematic study of the growth of aligned arrays of α‐Fe2O3 and Fe3O4 nanowires by a vapor–solid process. Advanced Functional Materials 2006; 16(17): 2243-2251.
- Congolo S., Madito M., Paradzah AT., Harrison AJ., Elnour HMAM., Krüger T., Diale M. Reduction of recombination rates due to volume increasing, annealing, and tetraethoxysilicate treatment in hematite thin films. Applied Nanoscience 2020; 10: 1957-1967.
- Dayanand Chahar, M., Pathak DK., Thakur O., Vankar V., Kumar, R. Deposition of single phase polycrystalline α-Fe2O3 thin film on silicon and silica substrates by spray pyrolysis. Silicon 2021; 13: 3361-3366.
- Demircioğlu A., Demir KÇ. Effects of annealing on structural, morphological, and corrosion properties of α-Fe2O3 thin films. Journal of Electronic Materials 2021; 50(5): 2750-2760.
- Dghoughi L., Elidrissi B., Bernede C., Addou M., Lamrani MA., Regragui M., Erguig H. Physico-chemical, optical and electrochemical properties of iron oxide thin films prepared by spray pyrolysis. Applied Surface Science 2006; 253(4): 1823-1829.
- Durães L., Moutinho A., Seabra IJ., Costa BF., de Sousa HC., Portugal A. Characterization of iron (iii) oxide/hydroxide nanostructured materials produced by sol–gel technology based on the fe (no3) 3· 9h2o–c2h5oh–ch3chch2o system. Materials Chemistry and Physics 2011; 130(1-2): 548-560.
- Emin S., De Respinis M., Mavrič T., Dam B., Valant M., Smith W. Photoelectrochemical water splitting with porous α-Fe2O3 thin films prepared from Fe/Fe-oxide nanoparticles. Applied Catalysis A: General 2016; 523: 130-138.
- Garrido-Ramírez E., Mora M., Marco J., Ureta-Zañartu M. Characterization of nanostructured allophane clays and their use as support of iron species in a heterogeneous electro-fenton system. Applied Clay Science 2013; 86: 153-161.
- Ge J., Tian J., Zhuo L., Chen H., Tang B. Fabrication of self-assembled iron oxide hierarchical nanostructures and their application in water treatment. Solid State Sciences 2011; 13(8): 1554-1559.
- Glasscock JA., Barnes PR., Plumb IC., Savvides N. Enhancement of photoelectrochemical hydrogen production from hematite thin films by the introduction of Ti and Si. The Journal of Physical Chemistry C 2007; 111(44): 16477-16488.
- Gmucová K., Weis M., Nádaždy V., Capek I., Šatka A., Chitu L., Cirák J., Majkova E. Effect of charged deep states in hydrogenated amorphous silicon on the behavior of iron oxides nanoparticles deposited on its surface. Applied Surface Science 2008; 254(21): 7008-7013.
- Grine A., Zehani F., Khennaoui B., Bouremmad F., Zaioune H. Effect of precursor concentration and annealing temperature on the structural, optical and electrical properties of pure α-Fe2O3 thin films elaborated by the spin-coating method. Materials Chemistry and Physics 2022; 276: 125367.
- Guo Z., Shin K., Karki AB., Young DP., Kaner RB., Hahn HT. Fabrication and characterization of iron oxide nanoparticles filled polypyrrole nanocomposites. Journal of Nanoparticle Research 2009; 11: 1441-1452.
- Gurmen S., Ebin B. Production and characterization of the nanostructured hollow iron oxide spheres and nanoparticles by aerosol route. Journal of Alloys and Compounds 2010; 492(1-2): 585-589.
- Gurmen S., Ebin B., Stopić S., Friedrich B. Nanocrystalline spherical iron–nickel (Fe–Ni) alloy particles prepared by ultrasonic spray pyrolysis and hydrogen reduction (USP-HR). Journal of Alloys and Compounds 2009; 480(2): 529-533.
- Hahn NT., Ye H., Flaherty DW., Bard AJ., Mullins CB. Reactive ballistic deposition of α-Fe2O3 thin films for photoelectrochemical water oxidation. ACS Nano 2010; 4(4): 1977-1986.
- Hamed MH., Mueller DN., Müller M. Thermal phase design of ultrathin magnetic iron oxide films: from Fe3O4 to γ-Fe2O3 and FeO. Journal of Materials Chemistry C 2020; 8(4): 1335-1343.
- Han R., Li W., Pan W., Zhu M., Zhou D., Li FS. 1D magnetic materials of Fe3O4 and Fe with high performance of microwave absorption fabricated by electrospinning method. Scientific Reports 2014; 4(1): 7493.
- Hessam R., Najafisayar P. The effects of applied current density and bath concentration on the morphology, crystal structure and optical properties of electrodeposited hematite thin films. Thin Solid Films 2019; 692: 137633.
- Hiralal P., Saremi-Yarahmadi S., Bayer BC., Wang H., Hofmann S., Wijayantha KU., Amaratunga GA. Nanostructured hematite photoelectrochemical electrodes prepared by the low temperature thermal oxidation of iron. Solar Energy Materials and Solar Cells 2011; 95(7): 1819-1825.
- Hjiri M. Highly sensitive NO2 gas sensor based on hematite nanoparticles synthesized by sol–gel technique. Journal of Materials Science: Materials in Electronics 2020; 31(6): 5025-5031.
- Hu YS., Kleiman-Shwarsctein A., Forman AJ., Hazen D., Park JN., McFarland EW. Pt-doped α-Fe2O3 thin films active for photoelectrochemical water splitting. Chemistry of Materials 2008; 20(12): 3803-3805.
- Huang MC., Chang WS., Lin JC., Chang YH., Wu CC. Magnetron sputtering process of carbon-doped α-Fe2O3 thin films for photoelectrochemical water splitting. Journal of Alloys and Compounds 2015; 636: 176-182.
- Jiang Z., Jiang D., Wei W., Yan Z., Xie J. Natural carbon nanodots assisted development of size-tunable metal (Pd, Ag) nanoparticles grafted on bionic dendritic α-Fe2O3 for cooperative catalytic applications. Journal of Materials Chemistry A 2015; 3(46): 23607-23620.
- Kalyanaraman R., Yoo S., Krupashankara M., Sudarshan T., Dowding R. Synthesis and consolidation of iron nanopowders. Nanostructured Materials 1998; 10(8): 1379-1392.
- Kamal A., Razia ET., Zahra M., Sardar S., Mumtaz A. Monitoring the synergistic effect of Mn/Ni Co-doping and morphological engineering in α-Fe2O3 for energy storage capacity as battery type electrode material. International Journal of Hydrogen Energy 2024; 88, 1280-1292.
- Kayani ZN., Afzal A., Butt MZ., Batool I., Arshad S., Ali Y., Riaz S., Naseem S. Structural, optical and magnetic properties of iron oxide nano-particles. Materials Today: Proceedings 2015; 2(10): 5660-5663.
- Khedr M., Halim KA., Soliman N. Effect of temperature on the kinetics of acetylene decomposition over reduced iron oxide catalyst for the production of carbon nanotubes. Applied Surface Science 2008; 255(5): 2375-2381.
- Kojima H., Hanada K. Origin of coercivity changes during the oxidation of Fe3O4 to γ-Fe2O3. IEEE Transactions on Magnetics 1980; 16(1): 11-13.
- Li M., Liu H., Pang S., Yan P., Liu M., Ding M., Zhang B. Facile fabrication of three-dimensional fusiform-like α-Fe2O3 for enhanced photocatalytic performance. Nanomaterials 2021; 11(10): 2650.
- Li SS., Li WJ., Jiang TJ., Liu ZG., Chen X., Cong HP., Liu JH., Huang YY., Li LN., Huang XJ. Iron oxide with different crystal phases (α-and γ-Fe2O3) in electroanalysis and ultrasensitive and selective detection of lead (II): an advancing approach using XPS and EXAFS. Analytical Chemistry 2016; 88(1): 906-914.
- Ma Y., Xie XY., Chen HY., Zhang TH., Debela TT. The growth mode of α-Fe2O3 thin films by DC magnetron sputtering. Vacuum 2021; 194: 110625.
- Miller EL., Paluselli D., Marsen B., Rocheleau RE. Low-temperature reactively sputtered iron oxide for thin film devices. Thin Solid Films 2004; 466(1-2): 307-313.
- Miller EL., Paluselli D., Marsen B., Rocheleau RE. Development of reactively sputtered metal oxide films for hydrogen-producing hybrid multijunction photoelectrodes. Solar Energy Materials and Solar Cells 2005; 88(2): 131-144.
- Mirzaei A., Hashemi B., Janghorban K. α-Fe2O3 based nanomaterials as gas sensors. Journal of Materials Science: Materials in Electronics 2016; 27: 3109-3144.
- Mishra M., Chun DM. α-Fe2O3 as a photocatalytic material: A review. Applied Catalysis A: General 2015; 498: 126-141.
- Miyashiro A. Oxidation and reduction in the Earth's crust with special reference to the role of graphite. Geochimica et Cosmochimica Acta 1964; 28(5): 717-729.
- Mokhtari S., Dokhan N., Omeiri S., Berkane B., Trari M. Influence of pretreatment on the properties of α-Fe2O3 and the effect on photocatalytic degradation of methylene blue under visible light. Water Science and Technology 2020; 82(11): 2415-2424.
- Morales M., Serna C., Bødker F., Mørup S. Spin canting due to structural disorder in maghemite. Journal of Physics: Condensed Matter 1997; 9(25): 5461.
- Morales MDP., Veintemillas-Verdaguer S., Montero M., Serna C., Roig A., Casas L., Martínez B., Sandiumenge F. Surface and internal spin canting in γ-Fe2O3 nanoparticles. Chemistry of Materials 1999; 11(11): 3058-3064.
- More P., Jadhav P., Ghanwat A., Dhole I., Navale Y., Patil V. Spray synthesized hydrophobic α-Fe2O3 thin film electrodes for supercapacitor application. Journal of Materials Science: Materials in Electronics 2017; 28: 17839-17848.
- MØrup S., Frandsen C., BØdker F., Klausen SN., Lefmann K., LindgÅrd PA., Hansen MF. Magnetic properties of nanoparticles of antiferromagnetic materials. Paper presented at the Mössbauer Spectroscopy: Proceedings of the Fifth Seeheim Workshop, held in Seeheim, Germany 2003, 21–25 May 2002.
- Namai A., Yoshikiyo M., Yamada K., Sakurai S., Goto T., Yoshida T., Miyazaki T., Nakajima M., Suemoto T., Tokoro H., Ohkoshi S. Hard magnetic ferrite with a gigantic coercivity and high frequency millimetre wave rotation. Nature Communications 2012; 3(1): 1035.
- Nielsch K., Bachmann J., Daub M., Jing J., Knez M., Gösele U., Barth S., Mathur S., Escrig J., Altbir D. Ferromagnetic nanostructures by atomic layer deposition: From thin films towards core-shell nanotubes. ECS Transactions 2007; 11(7): 139.
- Ortega D., Garitaonandia J., Barrera-Solano C., Dominguez M. Thermal evolution of the ferromagnetic resonance in Fe2O3/SiO2 nanocomposites for magneto-optical sensors. Sensors and Actuators A: Physical 2008; 142(2): 554-560.
- Özdemir Ö., Dunlop DJ., Moskowitz BM. Changes in remanence, coercivity and domain state at low temperature in magnetite. Earth and Planetary Science Letters 2002; 194(3-4): 343-358.
- Randrianantoandro N., Mercier A., Hervieu M., Greneche J. Direct phase transformation from hematite to maghemite during high energy ball milling. Materials Letters 2001; 47(3): 150-158.
- Sahoo S., Agarwal K., Singh A., Polke B., Raha K. Characterization of γ-and α-Fe2O3 nano powders synthesized by emulsion precipitation-calcination route and rheological behaviour of α-Fe2O3. International Journal of Engineering, Science and Technology 2010; 2(8): 118-126.
- Salari M., Sağlam M., Baltakesmez A., Güzeldir B. Effect of electron radiation on electrical parameters of Zn/n-Si/Au–Sb and Zn/ZnO/n-Si/Au–Sb diodes. Journal of Radioanalytical and Nuclear Chemistry 2019a; 319: 667-678.
- Salari M., Sağlam M., Güzeldir B. The protection from the effects of gamma rays of metal-semiconductor diodes by means of ZnO thin interface layer. Radiation Physics and Chemistry 2019b; 165: 108416.
- Saravanan P., Hsu JH., Sivaprahasam D., Kamat S. Structural and magnetic properties of γ-Fe2O3 nanostructured compacts processed by spark plasma sintering. Journal of Magnetism and Magnetic Materials 2013; 346: 175-177.
- Sharma B., Sharma A. Enhanced surface dynamics and magnetic switching of α-Fe2O3 films prepared by laser assisted chemical vapor deposition. Applied Surface Science 2021; 567: 150724.
- Shen S., Jiang J., Guo P., Kronawitter CX., Mao SS., Guo L. Effect of Cr doping on the photoelectrochemical performance of hematite nanorod photoanodes. Nano Energy 2012; 1(5): 732-741.
- Sun HT., Cantalini C., Faccio M., Pelino M., Catalano M., Tapfer L. Porous silica‐coated α‐Fe2O3 ceramics for humidity measurement at elevated temperature. Journal of the American Ceramic Society 1996; 79(4): 927-937.
- Tahir AA., Wijayantha KU., Saremi-Yarahmadi S., Mazhar M., McKee V. Nanostructured α-Fe2O3 thin films for photoelectrochemical hydrogen generation. Chemistry of Materials 2009; 21(16): 3763-3772.
- Tauc J., Grigorovici R., Vancu A. Optical properties and electronic structure of amorphous germanium. Physica Status Solidi 1966; 15(2): 627-637.
- Tian J., Xue Y., Yu X., Pei Y., Zhang H., Wang J. Binding Fe2O3 nanoparticles in polydopamine-reduced graphene as negative electrode materials for high-performance asymmetric supercapacitors. Journal of Nanoparticle Research 2019; 21: 1-12.
- Ubale A., Belkhedkar M. Size dependent physical properties of nanostructured α-Fe2O3 thin films grown by successive ionic layer adsorption and reaction method for antibacterial application. Journal of Materials Science & Technology 2015; 31(1): 1-9.
- Vasquez MM., Zysler R., Arciprete C., Dimitrijewits M., Saragovi C., Greneche J. Magnetic interaction evidence in α-Fe2O3 nanoparticles by magnetization and Mössbauer measurements. Journal of Magnetism and Magnetic Materials 1999; 204(1-2); 29-35.
- Vincent T., Gross M., Dotan H., Rothschild A. Thermally oxidized iron oxide nanoarchitectures for hydrogen production by solar-induced water splitting. International Journal of Hydrogen Energy 2012; 37(9): 8102-8109.
- Wang H., Mao J., Zhang Z., Zhang Q., Zhang L., Zhang W., Li P. Photocatalytic degradation of deoxynivalenol over dendritic-like α-Fe2O3 under visible light irradiation. Toxins 2019; 11(2): 105.
- Wang L., Lee CY., Schmuki P. Ti and Sn co-doped anodic α-Fe2O3 films for efficient water splitting. Electrochemistry Communications 2013; 30: 21-25.
- Zboril R., Mashlan M., Petridis D. Iron (III) oxides from thermal processes synthesis, structural and magnetic properties, Mössbauer spectroscopy characterization, and applications. Chemistry of Materials 2002; 14(3): 969-982.
- Zhao B., Kaspar T., Droubay T., McCloy J., Bowden M., Shutthanandan V., Heald S., Chambers S. Electrical transport properties of Ti-doped Fe2O3 (0001) epitaxial films. Physical Review B—Condensed Matter and Materials Physics 2011; 84(24): 245325.
- Zhao P., Li W., Wang G., Yu B., Li X., Bai J., Ren Z. Facile hydrothermal fabrication of nitrogen-doped graphene/Fe2O3 composites as high performance electrode materials for supercapacitor. Journal of Alloys and Compounds 2014; 604: 87-93.