Research Article
BibTex RIS Cite

Grafen Oksit Katkılı Sentetik ve Doğal Polimer Tabanlı İlaç Taşıma Sistemlerinin Üretilmesi ve Karakterizasyonu

Year 2025, Volume: 8 Issue: 2, 519 - 532, 12.03.2025
https://doi.org/10.47495/okufbed.1527977

Abstract

Son yıllarda, kanser için kullanılan ilaçların yarattığı yan etkileri ortadan kaldıracak ve terapötik etkiyi arttıracak yeni ilaç taşıma sistemlerinin geliştirilmesine yönelik çalışmalar hız kazanmıştır. Grafenin en iyi bilinen türevi olan grafen oksit (GO) katkılı polimerik nanokompozit filmlerin kimyasal ve mekanik olarak kararlı olması, iyi biyouyumluluk göstermesi ve yüksek antimikrobiyal potansiyel sunması ile ilaç taşıma sistemlerinde sıklıkla kullanılmaktadır. Doğal olarak yarı kristalin katyonik bir polisakkarit olan kitosan (CTS), doku mühendisliği ve ilaç taşıma sistemlerinde de yaygın uygulama alanı bulmuştur. Diğer yandan, biyolojik olarak parçalanabilen ve biyouyumlu yarı kristal doğrusal alifatik bir polyester olan polikaprolakton (PCL)’ nun ise biyolojik olarak parçalanabilen ambalajlama, ilaç taşıma ve doku mühendisliği gibi alanlarda potansiyel uygulamaları mevcuttur. Bu çalışmada, öncelikle grafitten grafen oksit modifiye Hummer yöntemi ile sentezlenmiştir. Daha sonra, CTS ve PCL polimerlerine sentezlenen GO eklenerek çözelti döküm yöntemi ile biyomalzemeler üretilmiştir. İlaç taşıma sistemi olarak değerlendirilecek olan bu biyomalzemelerin morfolojik ve fizikokimyasal özellikleri atomik kuvvet mikroskobu (AFM), X ışını difraktometresi (XRD), Fourier transform kızılötesi spektroskopisi (FTIR) ve temas açısı analizleri ile karakterize edilmiştir. FTIR analiz sonuçlarında, saf polimerlerin ve GO’ nun spesifik pikleri gözlenmiştir. AFM analizi ile yüzey pürüzlülükleri incelendiğinde saf PCL ve saf CTS filmlerine GO eklenmesiyle yüzey pürüzlülüklerinde artış gözlenmiştir. Sentetik ve doğal polimerlerden üretilen ilaç taşıma sistemlerinin yüzey pürüzlülüğündeki artış karşılaştırıldığında PCL’ ye GO katılması ile yüzey pürüzlülüğü daha artmıştır. Temas açı sonuçları karşılaştırıldığında ise GO’ nun katılması ile PCL ve CTS polimer filmlerin temas açı değerinde düşme gözlenmiştir. Sonuç olarak, doğal ve sentetik polimerlere GO katılması ile elde edilen biyomalzemelerin ilaç taşıma sistemi olarak saf polimerlerden üretilen malzemelere göre daha avantajlı olacağı görülmüştür.

Project Number

1919B012300046

Thanks

Bu çalışma, TÜBİTAK 2209-A Üniversite Öğrencileri Araştırma Projeleri Destekleme Programı tarafından 1919B012300046 numaralı proje kapsamında desteklenmiştir.

References

  • Bala S., Nithya D., Doraisamy M. Exploring the effects of graphene oxide concentration on properties and antifouling performance of PEES/GO ultrafiltration membranes. High Performance Polymers 2018; 30(3): 375-383.
  • Ban FY., Majid SR., Huang NM., Lim HN. Graphene oxide and its electrochemical performance. International Journal of Electrochemical Science 2012; 7(5): 4345-4351.
  • Bari SS., Chatterjee A., Mishra S. Biodegradable polymer nanocomposites: An overview. Polymer Reviews 2016; 56(2): 287-328.
  • Bulbul YE., Oksuz AU. Cold atmospheric plasma modified polycaprolactone solution prior to electrospinning: A novel approach for improving quercetin-loaded nanofiber drug delivery systems. International Journal of Pharmaceutics 2024; 651: 123789.
  • Castilla-Cortázar I., Vidaurre A., Marí B., Campillo-Fernández AJ. Morphology, crystallinity, and molecular weight of poly (ε-caprolactone)/graphene oxide hybrids. Polymers 2019; 11(7): 1099.
  • Das PN., Raj KG. Chitosan coated graphene oxide incorporated sodium alginate hydrogel beads for the controlled release of amoxicillin. International Journal of Biological Macromolecules 2024; 254: 127837.
  • Deb A., Vimala R. Natural and synthetic polymer for graphene oxide mediated anticancer drug delivery-A comparative study. International Journal of Biological Macromolecules 2018; 107: 2320-2333.
  • Eskitoros-Togay ŞM. Effects of graphene oxide and silane-grafted graphene oxide on chitosan packaging nanocomposite films for bread preservation. Journal of Polymer Science 2024; 62(23): 5424-5433.
  • Eskitoros-Togay ŞM., Bulbul YE., Çanga Oymak N., Dilsiz N. Development of poly (ℇ‐caprolactone)‐based composite packaging films incorporated nanofillers for enhanced strawberry quality. Journal of Applied Polymer Science 2023; 140(44): e54611.
  • Eskitoros-Togay ŞM., Bulbul YE., Dilsiz N. Combination of nano-hydroxyapatite and curcumin in a biopolymer blend matrix: Characteristics and drug release performance of fibrous composite material systems. International Journal of Pharmaceutics 2020a; 590: 119933.
  • Eskitoros-Togay ŞM., Bulbul YE., Dilsiz N. Controlled release of doxycycline within core/shell poly(ε-caprolactone)/poly(ethylene oxide) fibers via coaxial electrospinning. Journal of Applied Polymer Science 2020b; 137(42): 49273.
  • Eskitoros-Togay ŞM., Yeşilyurt A., Çörtoğlu S. Silan ajanları ile modifiye edilmiş montmorillonit katkılı polimerik kompozit filmlerin üretilmesi ve karakterizasyonu. Fırat Üniversitesi Mühendislik Bilimleri Dergisi 2024; 36(2): 695-704.
  • Ghawanmeh AA., Ali GAM., Algarni H., Sarkar SM., Chong KF. Graphene oxide-based hydrogels as a nanocarrier for anticancer drug delivery. Nano Research 2019; 12: 973-990.
  • Hamedi H., Moradi S., Hudson SM., Tonelli AE., King MW. Chitosan based bioadhesives for biomedical applications: A review. Carbohydrate Polymers 2022; 282: 119100.
  • Han D., Yan L., Chen W., Li W. Preparation of chitosan/graphene oxide composite film with enhanced mechanical strength in the wet state. Carbohydrate Polymers 2011; 83(2): 653-658.
  • Huang X., Qi X., Boey F., Zhang H. Graphene-based composites. Chemical Society Reviews 2012; 41(2): 666-686.
  • Hummers Jr WS., Offeman RE. Preparation of graphitic oxide. Journal of the American Chemical Society 1958; 80(6): 1339-1339.
  • Justin R., Chen B. Characterisation and drug release performance of biodegradable chitosan–graphene oxide nanocomposites. Carbohydrate Polymers 2014; 103: 70-80.
  • Kim DS., Dhand V., Rhee KY., Park SJ. Study on the effect of silanization and improvement in the tensile behavior of graphene-chitosan-composite. Polymers 2015; 7(3): 527-551.
  • Köroğlu D., Eskitoros‐Togay ŞM., Dilsiz N. Enhancing fresh strawberry preservation: Fabrication and characterization of electrospun fibers decorated with functionalized graphene oxide. Journal of Applied Polymer Science 2024; 141(39): e55995.
  • Kumar S., Bose S., Chatterjee K. Amine-functionalized multiwall carbon nanotubes impart osteoinductive and bactericidal properties in poly(ε-caprolactone) composites. RSC Advances 2014; 4(37): 19086-19098.
  • Li G., Fang H., Hu Y., Chen X., Chu Z., Yang Z. Construction of vinyl ester resins composite coatings via introducing silane-functionalized graphene oxide for enhancing comprehensive performance. Composites Science and Technology 2022; 228: 109670.
  • Li J., Zeng X., Ren T., Van der Heide E. The preparation of graphene oxide and its derivatives and their application in bio-tribological systems. Lubricants 2014; 2(3): 137-161.
  • Li Z., Chen F., Yuan L., Liu Y., Zhao Y., Chai Z., Shi W. Uranium (VI) adsorption on graphene oxide nanosheets from aqueous solutions. Chemical Engineering Journal 2012; 210: 539-546.
  • Liu J., Cui L., Losic D. Graphene and graphene oxide as new nanocarriers for drug delivery applications. Acta Biomaterialia 2013; 9(12): 9243-9257.
  • Liu Z., Wang K., Peng X., Zhang L. Chitosan-based drug delivery systems: Current strategic design and potential application in human hard tissue repair. European Polymer Journal 2022; 166: 110979.
  • Luo Y., Pan X., Ling Y., Wang X., Sun R. Facile fabrication of chitosan active film with xylan via direct immersion. Cellulose 2014; 21: 1873-1883.
  • Malik N. Thermally exfoliated graphene oxide reinforced polycaprolactone-based bactericidal nanocomposites for food packaging applications. Materials Technology 2022; 37(5): 345-354.
  • Mazaheri M., Akhavan O., Simchi A. Flexible bactericidal graphene oxide–chitosan layers for stem cell proliferation. Applied Surface Science 2014; 301: 456-462.
  • Mianehrow H., Moghadam MHM., Sharif F., Mazinani S. Graphene-oxide stabilization in electrolyte solutions using hydroxyethyl cellulose for drug delivery application. International Journal of Pharmaceutics 2015; 484(1-2): 276-282.
  • Mindivan F., Göktaş M. Grafen türevleri dolgulu PCL kompozit filmlerin sentezi, yapısal özellikleri ve biyobozunurluğu. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 2024; 30(7): 862-868.
  • Olenych IB., Aksimentyeva OI., Monastyrskii LS., Horbenko YY., Partyka MV., Luchechko AP., Yarytska LI. Effect of graphene oxide on the properties of porous silicon. Nanoscale Research Letters 2016; 11(1): 43.
  • Oleyaei SA., Zahedi Y., Ghanbarzadeh B., Moayedi AA. Modification of physicochemical and thermal properties of starch films by incorporation of TiO2 nanoparticles. International Journal of Biological Macromolecules 2016; 89: 256-264.
  • Oliveira AML., Machado M., Silva GA., Bitoque DB., Tavares Ferreira J., Pinto LA., Ferreira Q. Graphene oxide thin films with drug delivery function. Nanomaterials 2022; 12(7): 1149.
  • Ordikhani F., Farani MR., Dehghani M., Tamjid E., Simchi A. Physicochemical and biological properties of electrodeposited graphene oxide/chitosan films with drug-eluting capacity. Carbon 2015; 84: 91-102.
  • Rajitha K., Mohana KN. Application of modified graphene oxide–Polycaprolactone nanocomposite coating for corrosion control of mild steel in saline medium. Materials Chemistry and Physics 2020; 241: 122050.
  • Sahafnejad-Mohammadi I., Rahmati S., Najmoddin N., Bodaghi M. Biomimetic polycaprolactone-graphene oxide composites for 3D printing bone scaffolds. Macromolecular Materials and Engineering 2023; 308: 2200558.
  • Samanta S., Singh S., Sahoo RR. Simultaneous chemical reduction and surface functionalization of graphene oxide for efficient lubrication of steel–steel contact. RSC Advances 2015; 5(76): 61888-61899.
  • Sung YK., Kim SW. Recent advances in polymeric drug delivery systems. Biomaterials Research 2020; 24(1): 12.
  • Tian B., Liu J. Smart stimuli-responsive chitosan hydrogel for drug delivery: A review. International Journal of Biological Macromolecules 2023; 235: 123902.
  • Wani SUD., Ali M., Mehdi S., Masoodi MH., Zargar MI., Shakeel F. A review on chitosan and alginate-based microcapsules: Mechanism and applications in drug delivery systems. International Journal of Biological Macromolecules 2023; 248: 125875.
  • Yang K., Feng L., Shi X., Liu Z. Nano-graphene in biomedicine: Theranostic applications. Chemical Society Reviews 2013; 42: 530-547.
  • Yang WW., Pierstorff E. Reservoir-based polymer drug delivery systems. Journal of Laboratory Automation 2012; 17(1): 50-58.
  • Yuan Q., Shah J., Hein S., Misra RDK. Controlled and extended drug release behavior of chitosan-based nanoparticle carrier. Acta Biomaterialia 2010; 6(3): 1140-1148.
  • Yu T., Wang GS., Liu L., Wang P., Wei ZY., Qi M. Synthesis of PCL/graphene oxide composites by in situ polymerization. Advanced Materials Research 2012; 518-523: 837-840.

Fabrication and Characterization of Graphene Oxide Doped Synthetic and Natural Polymer Based Drug Delivery Systems

Year 2025, Volume: 8 Issue: 2, 519 - 532, 12.03.2025
https://doi.org/10.47495/okufbed.1527977

Abstract

In recent years, studies on the development of new drug delivery systems that will eliminate the side effects caused by drugs used for cancer and increase the therapeutic effect have accelerated. Graphene oxide (GO) doped polymeric nanocomposite films, the best-known derivative of graphene, are frequently used in drug delivery systems due to their chemical and mechanical stability, good biocompatibility and high antimicrobial potential. Chitosan (CTS), a naturally semi-crystalline cationic polysaccharide, has also found widespread application in tissue engineering and drug delivery systems. On the other hand, polycaprolactone (PCL), a biodegradable and biocompatible semi-crystalline linear aliphatic polyester, has potential applications in biodegradable packaging, drug delivery and tissue engineering. In this study, graphene oxide was first synthesized from graphite by modified Hummer method. Then, biomaterials were produced by solution casting method by adding synthesized GO to CTS and PCL polymers. The morphological and physicochemical properties of these biomaterials, which will be evaluated as drug delivery systems, were characterized by atomic force microscopy (AFM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and contact angle analysis. In the FTIR analysis results, specific peaks of pure polymers and GO were observed. When surface roughness was analyzed by AFM analysis, an increase in surface roughness was observed with the addition of GO to pure PCL and pure CTS films. When the increase in surface roughness of drug delivery systems produced from synthetic and natural polymers was compared, the surface roughness increased more with the addition of GO to PCL. When the contact angle results were compared, a decrease in the contact angle value of PCL and CTS polymer films was observed with the addition of GO. As a result, it was observed that biomaterials obtained by adding GO to natural and synthetic polymers will be more advantageous as a drug delivery system than materials produced from pure polymers.

Project Number

1919B012300046

References

  • Bala S., Nithya D., Doraisamy M. Exploring the effects of graphene oxide concentration on properties and antifouling performance of PEES/GO ultrafiltration membranes. High Performance Polymers 2018; 30(3): 375-383.
  • Ban FY., Majid SR., Huang NM., Lim HN. Graphene oxide and its electrochemical performance. International Journal of Electrochemical Science 2012; 7(5): 4345-4351.
  • Bari SS., Chatterjee A., Mishra S. Biodegradable polymer nanocomposites: An overview. Polymer Reviews 2016; 56(2): 287-328.
  • Bulbul YE., Oksuz AU. Cold atmospheric plasma modified polycaprolactone solution prior to electrospinning: A novel approach for improving quercetin-loaded nanofiber drug delivery systems. International Journal of Pharmaceutics 2024; 651: 123789.
  • Castilla-Cortázar I., Vidaurre A., Marí B., Campillo-Fernández AJ. Morphology, crystallinity, and molecular weight of poly (ε-caprolactone)/graphene oxide hybrids. Polymers 2019; 11(7): 1099.
  • Das PN., Raj KG. Chitosan coated graphene oxide incorporated sodium alginate hydrogel beads for the controlled release of amoxicillin. International Journal of Biological Macromolecules 2024; 254: 127837.
  • Deb A., Vimala R. Natural and synthetic polymer for graphene oxide mediated anticancer drug delivery-A comparative study. International Journal of Biological Macromolecules 2018; 107: 2320-2333.
  • Eskitoros-Togay ŞM. Effects of graphene oxide and silane-grafted graphene oxide on chitosan packaging nanocomposite films for bread preservation. Journal of Polymer Science 2024; 62(23): 5424-5433.
  • Eskitoros-Togay ŞM., Bulbul YE., Çanga Oymak N., Dilsiz N. Development of poly (ℇ‐caprolactone)‐based composite packaging films incorporated nanofillers for enhanced strawberry quality. Journal of Applied Polymer Science 2023; 140(44): e54611.
  • Eskitoros-Togay ŞM., Bulbul YE., Dilsiz N. Combination of nano-hydroxyapatite and curcumin in a biopolymer blend matrix: Characteristics and drug release performance of fibrous composite material systems. International Journal of Pharmaceutics 2020a; 590: 119933.
  • Eskitoros-Togay ŞM., Bulbul YE., Dilsiz N. Controlled release of doxycycline within core/shell poly(ε-caprolactone)/poly(ethylene oxide) fibers via coaxial electrospinning. Journal of Applied Polymer Science 2020b; 137(42): 49273.
  • Eskitoros-Togay ŞM., Yeşilyurt A., Çörtoğlu S. Silan ajanları ile modifiye edilmiş montmorillonit katkılı polimerik kompozit filmlerin üretilmesi ve karakterizasyonu. Fırat Üniversitesi Mühendislik Bilimleri Dergisi 2024; 36(2): 695-704.
  • Ghawanmeh AA., Ali GAM., Algarni H., Sarkar SM., Chong KF. Graphene oxide-based hydrogels as a nanocarrier for anticancer drug delivery. Nano Research 2019; 12: 973-990.
  • Hamedi H., Moradi S., Hudson SM., Tonelli AE., King MW. Chitosan based bioadhesives for biomedical applications: A review. Carbohydrate Polymers 2022; 282: 119100.
  • Han D., Yan L., Chen W., Li W. Preparation of chitosan/graphene oxide composite film with enhanced mechanical strength in the wet state. Carbohydrate Polymers 2011; 83(2): 653-658.
  • Huang X., Qi X., Boey F., Zhang H. Graphene-based composites. Chemical Society Reviews 2012; 41(2): 666-686.
  • Hummers Jr WS., Offeman RE. Preparation of graphitic oxide. Journal of the American Chemical Society 1958; 80(6): 1339-1339.
  • Justin R., Chen B. Characterisation and drug release performance of biodegradable chitosan–graphene oxide nanocomposites. Carbohydrate Polymers 2014; 103: 70-80.
  • Kim DS., Dhand V., Rhee KY., Park SJ. Study on the effect of silanization and improvement in the tensile behavior of graphene-chitosan-composite. Polymers 2015; 7(3): 527-551.
  • Köroğlu D., Eskitoros‐Togay ŞM., Dilsiz N. Enhancing fresh strawberry preservation: Fabrication and characterization of electrospun fibers decorated with functionalized graphene oxide. Journal of Applied Polymer Science 2024; 141(39): e55995.
  • Kumar S., Bose S., Chatterjee K. Amine-functionalized multiwall carbon nanotubes impart osteoinductive and bactericidal properties in poly(ε-caprolactone) composites. RSC Advances 2014; 4(37): 19086-19098.
  • Li G., Fang H., Hu Y., Chen X., Chu Z., Yang Z. Construction of vinyl ester resins composite coatings via introducing silane-functionalized graphene oxide for enhancing comprehensive performance. Composites Science and Technology 2022; 228: 109670.
  • Li J., Zeng X., Ren T., Van der Heide E. The preparation of graphene oxide and its derivatives and their application in bio-tribological systems. Lubricants 2014; 2(3): 137-161.
  • Li Z., Chen F., Yuan L., Liu Y., Zhao Y., Chai Z., Shi W. Uranium (VI) adsorption on graphene oxide nanosheets from aqueous solutions. Chemical Engineering Journal 2012; 210: 539-546.
  • Liu J., Cui L., Losic D. Graphene and graphene oxide as new nanocarriers for drug delivery applications. Acta Biomaterialia 2013; 9(12): 9243-9257.
  • Liu Z., Wang K., Peng X., Zhang L. Chitosan-based drug delivery systems: Current strategic design and potential application in human hard tissue repair. European Polymer Journal 2022; 166: 110979.
  • Luo Y., Pan X., Ling Y., Wang X., Sun R. Facile fabrication of chitosan active film with xylan via direct immersion. Cellulose 2014; 21: 1873-1883.
  • Malik N. Thermally exfoliated graphene oxide reinforced polycaprolactone-based bactericidal nanocomposites for food packaging applications. Materials Technology 2022; 37(5): 345-354.
  • Mazaheri M., Akhavan O., Simchi A. Flexible bactericidal graphene oxide–chitosan layers for stem cell proliferation. Applied Surface Science 2014; 301: 456-462.
  • Mianehrow H., Moghadam MHM., Sharif F., Mazinani S. Graphene-oxide stabilization in electrolyte solutions using hydroxyethyl cellulose for drug delivery application. International Journal of Pharmaceutics 2015; 484(1-2): 276-282.
  • Mindivan F., Göktaş M. Grafen türevleri dolgulu PCL kompozit filmlerin sentezi, yapısal özellikleri ve biyobozunurluğu. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 2024; 30(7): 862-868.
  • Olenych IB., Aksimentyeva OI., Monastyrskii LS., Horbenko YY., Partyka MV., Luchechko AP., Yarytska LI. Effect of graphene oxide on the properties of porous silicon. Nanoscale Research Letters 2016; 11(1): 43.
  • Oleyaei SA., Zahedi Y., Ghanbarzadeh B., Moayedi AA. Modification of physicochemical and thermal properties of starch films by incorporation of TiO2 nanoparticles. International Journal of Biological Macromolecules 2016; 89: 256-264.
  • Oliveira AML., Machado M., Silva GA., Bitoque DB., Tavares Ferreira J., Pinto LA., Ferreira Q. Graphene oxide thin films with drug delivery function. Nanomaterials 2022; 12(7): 1149.
  • Ordikhani F., Farani MR., Dehghani M., Tamjid E., Simchi A. Physicochemical and biological properties of electrodeposited graphene oxide/chitosan films with drug-eluting capacity. Carbon 2015; 84: 91-102.
  • Rajitha K., Mohana KN. Application of modified graphene oxide–Polycaprolactone nanocomposite coating for corrosion control of mild steel in saline medium. Materials Chemistry and Physics 2020; 241: 122050.
  • Sahafnejad-Mohammadi I., Rahmati S., Najmoddin N., Bodaghi M. Biomimetic polycaprolactone-graphene oxide composites for 3D printing bone scaffolds. Macromolecular Materials and Engineering 2023; 308: 2200558.
  • Samanta S., Singh S., Sahoo RR. Simultaneous chemical reduction and surface functionalization of graphene oxide for efficient lubrication of steel–steel contact. RSC Advances 2015; 5(76): 61888-61899.
  • Sung YK., Kim SW. Recent advances in polymeric drug delivery systems. Biomaterials Research 2020; 24(1): 12.
  • Tian B., Liu J. Smart stimuli-responsive chitosan hydrogel for drug delivery: A review. International Journal of Biological Macromolecules 2023; 235: 123902.
  • Wani SUD., Ali M., Mehdi S., Masoodi MH., Zargar MI., Shakeel F. A review on chitosan and alginate-based microcapsules: Mechanism and applications in drug delivery systems. International Journal of Biological Macromolecules 2023; 248: 125875.
  • Yang K., Feng L., Shi X., Liu Z. Nano-graphene in biomedicine: Theranostic applications. Chemical Society Reviews 2013; 42: 530-547.
  • Yang WW., Pierstorff E. Reservoir-based polymer drug delivery systems. Journal of Laboratory Automation 2012; 17(1): 50-58.
  • Yuan Q., Shah J., Hein S., Misra RDK. Controlled and extended drug release behavior of chitosan-based nanoparticle carrier. Acta Biomaterialia 2010; 6(3): 1140-1148.
  • Yu T., Wang GS., Liu L., Wang P., Wei ZY., Qi M. Synthesis of PCL/graphene oxide composites by in situ polymerization. Advanced Materials Research 2012; 518-523: 837-840.
There are 45 citations in total.

Details

Primary Language Turkish
Subjects Materials Science and Technologies, Polymer Science and Technologies
Journal Section RESEARCH ARTICLES
Authors

Fatma Nur Duvarcı 0009-0004-5089-8741

Mehmet Can Çelik 0009-0003-8725-8214

Muhammet Can Yüce 0009-0004-4353-0826

Şükran Melda Eskitoros Toğay 0000-0002-7473-8417

Project Number 1919B012300046
Publication Date March 12, 2025
Submission Date August 5, 2024
Acceptance Date November 17, 2024
Published in Issue Year 2025 Volume: 8 Issue: 2

Cite

APA Duvarcı, F. N., Çelik, M. C., Yüce, M. C., Eskitoros Toğay, Ş. M. (2025). Grafen Oksit Katkılı Sentetik ve Doğal Polimer Tabanlı İlaç Taşıma Sistemlerinin Üretilmesi ve Karakterizasyonu. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 8(2), 519-532. https://doi.org/10.47495/okufbed.1527977
AMA Duvarcı FN, Çelik MC, Yüce MC, Eskitoros Toğay ŞM. Grafen Oksit Katkılı Sentetik ve Doğal Polimer Tabanlı İlaç Taşıma Sistemlerinin Üretilmesi ve Karakterizasyonu. Osmaniye Korkut Ata University Journal of The Institute of Science and Techno. March 2025;8(2):519-532. doi:10.47495/okufbed.1527977
Chicago Duvarcı, Fatma Nur, Mehmet Can Çelik, Muhammet Can Yüce, and Şükran Melda Eskitoros Toğay. “Grafen Oksit Katkılı Sentetik Ve Doğal Polimer Tabanlı İlaç Taşıma Sistemlerinin Üretilmesi Ve Karakterizasyonu”. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi 8, no. 2 (March 2025): 519-32. https://doi.org/10.47495/okufbed.1527977.
EndNote Duvarcı FN, Çelik MC, Yüce MC, Eskitoros Toğay ŞM (March 1, 2025) Grafen Oksit Katkılı Sentetik ve Doğal Polimer Tabanlı İlaç Taşıma Sistemlerinin Üretilmesi ve Karakterizasyonu. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi 8 2 519–532.
IEEE F. N. Duvarcı, M. C. Çelik, M. C. Yüce, and Ş. M. Eskitoros Toğay, “Grafen Oksit Katkılı Sentetik ve Doğal Polimer Tabanlı İlaç Taşıma Sistemlerinin Üretilmesi ve Karakterizasyonu”, Osmaniye Korkut Ata University Journal of The Institute of Science and Techno, vol. 8, no. 2, pp. 519–532, 2025, doi: 10.47495/okufbed.1527977.
ISNAD Duvarcı, Fatma Nur et al. “Grafen Oksit Katkılı Sentetik Ve Doğal Polimer Tabanlı İlaç Taşıma Sistemlerinin Üretilmesi Ve Karakterizasyonu”. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi 8/2 (March 2025), 519-532. https://doi.org/10.47495/okufbed.1527977.
JAMA Duvarcı FN, Çelik MC, Yüce MC, Eskitoros Toğay ŞM. Grafen Oksit Katkılı Sentetik ve Doğal Polimer Tabanlı İlaç Taşıma Sistemlerinin Üretilmesi ve Karakterizasyonu. Osmaniye Korkut Ata University Journal of The Institute of Science and Techno. 2025;8:519–532.
MLA Duvarcı, Fatma Nur et al. “Grafen Oksit Katkılı Sentetik Ve Doğal Polimer Tabanlı İlaç Taşıma Sistemlerinin Üretilmesi Ve Karakterizasyonu”. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi, vol. 8, no. 2, 2025, pp. 519-32, doi:10.47495/okufbed.1527977.
Vancouver Duvarcı FN, Çelik MC, Yüce MC, Eskitoros Toğay ŞM. Grafen Oksit Katkılı Sentetik ve Doğal Polimer Tabanlı İlaç Taşıma Sistemlerinin Üretilmesi ve Karakterizasyonu. Osmaniye Korkut Ata University Journal of The Institute of Science and Techno. 2025;8(2):519-32.

23487


196541947019414

19433194341943519436 1960219721 197842261021238 23877

*This journal is an international refereed journal 

*Our journal does not charge any article processing fees over publication process.

* This journal is online publishes 5 issues per year (January, March, June, September, December)

*This journal published in Turkish and English as open access. 

19450 This work is licensed under a Creative Commons Attribution 4.0 International License.