Research Article
BibTex RIS Cite

Effect of Curcumin on Antioxidant Enzyme Profile in Tissue Under Heavy Metal Stress

Year 2025, Volume: 8 Issue: 3, 1464 - 1477, 16.06.2025
https://doi.org/10.47495/okufbed.1667841

Abstract

In today's world, where the relationship between nutrition and health is increasingly recognized, plants with strong antioxidant content rank among the top choices for consumption in terms of protecting human health and treating diseases. Various environmental stress factors, particularly heavy metals, contribute to oxidative damage in the body, accumulating over time and paving the way for numerous diseases. Consequently, in recent years, there has been growing interest in studies aimed at mitigating the adverse effects of heavy metals. In this study, the potential protective effects of curcumin, a well-known antioxidant, on antioxidant enzymes and lipid peroxidation in plant tissues were investigated to prevent oxidative stress induced by heavy metal (3 mM Pb). For this purpose, the levels of superoxide dismutase (SOD), catalase (CAT), and malondialdehyde (MDA) were measured in wheat plants under heavy metal stress in the presence of curcumin (0, 10, and 20 µM). The results demonstrated that antioxidant enzyme activities (SOD and CAT) increased, while MDA levels decreased in plant tissues exposed to stress in the presence of curcumin. The potential of curcumin in alleviating heavy metal-induced damage is expected to provide valuable insights for further academic research on this subject.

Ethical Statement

A Declaration Form stating that Ethics Committee Permission is not Required due to the fact that it is plant material has been added to the Files.

Supporting Institution

TÜBİTAK

Project Number

1919B012337493

Thanks

This work was supported by TUBITAK (1919B012337493/2209-A Student University Research Projects Support Program).

References

  • Abubakar K., Muhammad Mailafiya M., Danmaigoro A., Musa Chiroma S., Abdul Rahim EB., Abu Bakar Zakaria MZ. Curcumin attenuates lead-induced cerebellar toxicity in rats via chelating activity and inhibition of oxidative stress. Biomolecules 2019; 9(9): 453-479.
  • Acar A., Singh D., Srivastava AK. Assessment of the ameliorative effect of curcumin on pendimethalin-induced genetic and biochemical toxicity. Scientific Reports 2022, 12(1): 2195.
  • Aggarwal BB., Harikumar KB. Potential therapeutic effects of curcumin, the anti-inflammatory agent, against neurodegenerative, cardiovascular, pulmonary, metabolic, autoimmune and neoplastic diseases. The International Journal of Biochemistry & Cell Biology 2009; 41(1): 40-59.
  • Ahmad P., Jaleel C., Salem M., Nabi G., Sharma S. Roles of enzymatic and nonenzymatic antioxidants in plants during abiotic stress. Critical Reviews in Biotechnology 2010; 30: 161-175
  • Akkaya K., Yıldırım M., Değirmenci U., Ünal ND. Sıçanlarda akrilonitril ile oluşturulmuş oksidatif strese karşı timokinon ve kurkuminin olası koruyucu etkileri. Mersin Üniversitesi Tıp Fakültesi Lokman Hekim Tıp Tarihi ve Folklorik Tıp Dergisi 2021; 11(3): 596-604.
  • Arslan E., Agar G., Aydın M. Putrescine as a protective molecule on DNA damage and DNA methylation changes in wheat under drought. Communications Faculty of Sciences University of Ankara Series C Biology 2019; 28(2): 170-187.
  • Aslam M., Aslam A., Sheraz M., Ali B., Ulhassan Z., Najeeb U., Gill RA. Lead toxicity in cereals: Mechanistic insight into toxicity, mode of action, and management. Frontiers in Plant Science 2021; 11: 587785.
  • Aslankoç R., Demirci D., İnan Ü., Yıldız M., Öztürk A., Çetin M., Savran EŞ., Yılmaz B. The role of antioxidant enzymes in oxidative stress - Superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx). Medical Journal of Süleyman Demirel University 2019; 26(3): 362-369.
  • Awaad HA., Alzohairy AM., Morsy AM., Moustafa ESA., Mansour E. Genetic analysis of cadmium tolerance and exploration of its inheritance nature in bread wheat (Triticum aestivum L.). Indıan Journal of Genetıcs And Plant Breedıng 2023; 83(1): 41-51.
  • Bakır Ö., Ağar G. Investigation of DNA methylation level in wheat genome exposed to vanadium by Using CRED-RA technique. Anadolu Ege Tarımsal Araştırma Enstitüsü Dergisi 2021; 31(1): 36-46.
  • Cheraghi E., Golkar A., Roshanaei K., Alani B. Aluminium-induced oxidative stress, apoptosis and alterations in testicular tissue and sperm quality in Wistar rats: Ameliorative effects of curcumin. International Journal of Fertility & Sterility 2017; 11(3): 166.
  • Dalyan E., Yüzbaşıoğlu E., Akpınar I. Physiological and biochemical changes in plant growth and different plant enzymes in response to lead stress. Lead in Plants and the Environment. Radionuclides and Heavy Metals in the Environment 2020; 129–147.
  • Daniel S., Limson JL., Dairam A., Watkins GM., Daya S. Through metal binding, curcumin protects against lead-and cadmium-induced lipid peroxidation in rat brain homogenates and against lead-induced tissue damage in rat brain. Journal of İnorganic Biochemistry 2004; 98(2): 266-275.
  • El-Demerdash FM., Yousef MI. Radwan FM. Ameliorating effect of curcumin on sodium arsenite-induced oxidative damage and lipid peroxidation in different rat organs. Food and Chemical Toxicology 2009; 47(1): 249-254.
  • Erkul C., Özenoğlu A., Reis E. Zerdeçalın genel sağlık üzerine etkileri. Türkiye Sağlık Bilimleri ve Araştırmaları Dergisi, 2021; 4(2): 76-87.
  • Erturk FA., Agar G., Arslan E., Nardemir G., Aydin M., Taspinar MS. Effects of lead sulfate on genetic and epigenetic changes and endogenous hormone levels in corn (Zea mays L.). Polish Journal of Environmental Studies 2014; 23(6): 1925-1932.
  • Farzaei MH., Zobeiri M., Parvizi F., El-Senduny FF., Marmouzi I., Coy-Barrera E., Abdollahi M. Curcumin in liver diseases: a systematic review of the cellular mechanisms of oxidative stress and clinical perspective. Nutrients 2018; 10(7): 855.
  • Giannakoula A., Therios I., Chatzissavvidis C. Effect of lead and copper on photosynthetic apparatus in citrus (Citrus aurantium L.) plants. The role of antioxidants in oxidative damage as a response to heavy metal stress. Plants 2021; 10(1): 155.
  • Gupta SC. Discovery of curcumin, a component of golden spice, and its miraculous biological activities. Clinical and Experimental Pharmacology and Physiology 2012; 39(3): 283-299.
  • Güleç TE., Sönmezoglu ÖA., Yıldırım A. Makarnalık bugdaylarda kalite ve kaliteyi etkileyen faktörler. Journal of Agricultural Faculty of Gaziosmanpaşa University 2010; 1: 113-120.
  • Hameed A., Maqsood W., Hameed A., Qayyum MA., Ahmed T., Farooq T. Chitosan nanoparticles encapsulating curcumin counteract salt-mediated ionic toxicity in wheat seedlings: An ecofriendly and sustainable approach. Environmental Science and Pollution Research 2024; 31(6): 8917-8929.
  • Hameed A., Zahid M., Hameed A., Noreen R., Ibrahim M., Farooq T., Kanwal P. Curcumin-based priming agent confers drought tolerance in wheat seedlings: A climate-smart approach. Industrial Crops and Products 2025; 224: 119451.
  • Hejazi J., Rastmanesh R., Taleban FA., Molana SH., Hejazi E., Ehtejab G., Hara N. Effect of curcumin supplementation during radiotherapy on oxidative status of patients with prostate cancer: a double blinded, randomized, placebo-controlled study. Nutrition and Cancer 2016; 68(1): 77-85.
  • Ibrahim Mohamed M., Bafeel Sameera O. Alteration of gene expression, superoxide anion radical and lipid peroxidation induced by lead toxicity in leaves of Lepidium sativum. Journal of Animal and Plant Sciences 2009, 4: 281-288.
  • Kaur G., Singh HP., Batish DR., Kohli RK. Lead (Pb)-induced biochemical and ultrastructural changes in wheat (Triticum aestivum) roots. Protoplasma 2013; 250: 53–62.
  • Kalefetoğlu Macar T., Macar O., Çavuşoğlu K., Yalçin E., Yapar K. Turmeric (Curcuma longa L.) tends to reduce the toxic effects of nickel (II) chloride in Allium cepa L. roots. Environmental Science and Pollution Research 2022; 29(40): 60508-60518.
  • Khan Z., Thounaojam TC., Rajkumari JD., Deka BK., Rahman R., Upadhyaya H. Arsenic induced chromosomal aberrations, biochemical and morphological changes in Vigna radiata L.(Mung bean) seedlings and its amelioration by Curcumin. Vegetos 2024; 37(3): 1185-1194.
  • Kumar A., Dogra S., Prakash A. Protective effect of curcumin (Curcuma longa), against aluminium toxicity:Possible behavioral and biochemical alterations in rats. Behavioural Brain Research 2009; 205: 384-390.
  • Lamhamdi M., El Galiou O., Bakrim A., Novoa-Munoz JC., Arias-Estevez M., Aarab A., Lafont R. Effect of lead stress on mineral content and growth of wheat (Triticum aestivum) and spinach (Spinacia oleracea) seedlings. Saudi Journal of Biological Sciences 2013; 20(1): 29-36.
  • Madhava RKV., Sresty TVS. Antioxidative parameters in the seedlings of pigeonpea (Cajanus cajan L. Millspaugh) in response to Zn and Ni stresses. Plant Science 2000; 157: 113-120.
  • Mfarrej MFB., Javed R., Almeer R., Alsaidalani M., Kamel MH., Saleem S. Phosphorus sources enhance barley growth and mitigate lead stress via antioxidant responses, proline metabolism, and gene expression. South African Journal of Botany 2024; 174: 138-151.
  • Mudduluru G., George-William JN., Muppala S., Asangani IA., Kumarswamy R., Nelson LD., Allgayer H. Curcumin regulates miR-21 expression and inhibits invasion and metastasis in colorectal cancer. Bioscience Reports 2011; 31(3): 185-197.
  • Navabpour S., Yamchi A., Bagherikia S., Kafi H. Lead-induced oxidative stress and role of antioxidant defense in wheat (Triticum aestivum L.). Physiology and Molecular Biology of Plants 2020; 26: 793-802.
  • Pratyusha S. Phenolic compounds in the plant development and defense: An overview. Plant Stress Physiology- Perspectives in Agriculture 2022; 125–140.
  • Rajasekaran SA. Therapeutic potential of curcumin in gastrointestinal diseases. World Journal of Gastrointestinal Pathophysiology 2011; 2(1): 1-14.
  • Roy R., Mostofa MG., Wang J., Sikdar A., Sarker T. Improvement of growth performance of Amorpha fruticosa under contrasting regime of water and fertilizer in coal-contaminated spoils using response surface methodology. BMC Plant Biology 2020; 20: 1-15.
  • Seriner R., Dağlıoğlu K., Coşkun G., Bilgin R. Examination of the effect of curcumin in experimental liver damage created by diethylnitrosamine in Swiss albino mice to superoxide dismutase and catalase activities and glutathione, malondialdehyde, and advanced oxidation protein products levels. Biotechnology and Applied Biochemistry 2022; 69(3): 1217-1225.
  • Sevgi K., Leblebici S. Bitkilerde ağır metal stresine verilen fizyolojik ve moleküler yanıtlar. Journal of Anatolian Environmental and Animal Sciences 2022; 7(4): 528-536.
  • Sharma P., Dubey RS. Lead toxicity in plants. Brazilian Journal of Plant Physiology 2005; 17: 35-52.
  • Sharma R., Samant S., Sharma P., Devi S. Evaluation of antioxidant activities of Withania somnifera leaves growing in natural habitats of North-west Himalaya, India. Journal of Medicinal Plants Research 2012, 6(5): 657-661.
  • Thakur S., Singh L., Zularisam AW., Sakinah M., Din MFM. Lead induced oxidative stress and alteration in the activities of antioxidative enzymes in rice shoots. Plant Biology 2017; 61: 595–598.
  • Taspinar MS., Kuloglu SS., Aydin M., Agar G. Physiological-biochemical and molecular change in Triticum aestivum L. exposed to lead stress. Research Square 2023; 10.21203/rs.3.rs-2529649/v1
  • Tofan A., Gurkan E., Arikan‐Abdulveli B., Balci M., Yildiztugay E., Ozfidan‐Konakci C. Curcumin, a secondary metabolite, activates the defense system by regulating water status, PSII photochemistry, and antioxidant capacity in lactuca sativa exposed to lead and/or arsenic stresses. Food and Energy Security 2025; 14(1): e70027.
  • Upadhyaya H., Shome S., Roy D., Bhattacharya MK. Arsenic induced changes in growth and physiological responses in Vigna radiata seedling: effect of curcumin interaction. American Journal of Plant Sciences 2014; 5(24): 3609.
  • Wang XN., Zhang CJ., Diao HL., Zhang Y. Protective effects of curcumin against sodium arsenite-induced ovarian oxidative injury in a mouse model. Chinese Medical Journal 2017; 130(09): 1026-1032.
  • Zhang X., Yan L., Liu J., Zhang Z., Tan C. Removal of diferent kinds of heavy metals by novel PPG-nZVI beads and their application in simulated stormwater infltration facility. Applied Sciences 2019; 9(20): 4213.
  • Zhang L., Zengin G., Ozfidan-Konakci C., Yildiztugay E., Arikan B., Ekim R. Lucini L. Exogenous curcumin mitigates As stress in spinach plants: A biochemical and metabolomics investigation. Plant Physiology and Biochemistry 2024; 211: 108713.

Ağır Metal Stresi Altındaki Dokuda Kurkuminin Antioksidan Enzim Profiline Etkisi

Year 2025, Volume: 8 Issue: 3, 1464 - 1477, 16.06.2025
https://doi.org/10.47495/okufbed.1667841

Abstract

Beslenme ve sağlık arasındaki ilişkinin her geçen gün daha da farkına varıldığı günümüzde antioksidan içerikleri güçlü olan bitkiler insan sağlığının korunması ve hastalıkların tedavi edilmesi açısından tüketimde ilk sıralarda yer almaktadır. Günümüz yaşam şartlarındaki pek çok çevresel stresin özellikle ağır metallerin vücudumuzda oluşturduğu oksidatif hasar vücutta birikerek pek çok hastalığa zemin hazırlamaktadır. Bu nedenle son yıllarda ağır metallerin bu olumsuz etkilerini azaltmayı amaçlayan çalışmalara olan ilgi artmaktadır. Bu çalışmada, ağır metal (3mM Pb) ile indüklenen oksidatif stresi önlemek amacıyla, antioksidan etkileri bilinen kurkuminin bitki dokusundaki antioksidan enzimler ve lipit peroksidasyonu üzerine olası koruyucu etkileri araştırılmıştır. Bu amaçla, kurkumin (0, 10 ve 20µM) varlığında ağır metal stresinin buğday bitkisinde oluşturduğu süperoksit dismutaz (SOD), katalaz (CAT) ve malondialdehit (MDA) düzeyleri ölçülmüştür. Kurkumin varlığında stres altındaki bitkisel dokuda antioksidan enzim (SOD ve CAT) aktivitesinin arttığı, malondialdehit (MDA) düzeyinin ise azaldığı tespit edilmiştir. Kurkuminin ağır metal stresinin neden olduğu hasarın giderilmesindeki bu potansiyel gücünün konu ile ilgili akademik çalışmalara da ışık tutacağı düşünülmektedir.

Ethical Statement

Bitki materyali olması nedeniyle Etik Kurul İznine Gerek Olmadığına Dair Beyan Formu Dosyalar İçerisinde eklenilmiştir.

Supporting Institution

TÜBİTAK

Project Number

1919B012337493

Thanks

Bu çalışma TÜBİTAK (1919B012337493/2209-A Öğrenci Üniversitesi Araştırma Projeleri Destekleme Programı) tarafından desteklenmiştir.

References

  • Abubakar K., Muhammad Mailafiya M., Danmaigoro A., Musa Chiroma S., Abdul Rahim EB., Abu Bakar Zakaria MZ. Curcumin attenuates lead-induced cerebellar toxicity in rats via chelating activity and inhibition of oxidative stress. Biomolecules 2019; 9(9): 453-479.
  • Acar A., Singh D., Srivastava AK. Assessment of the ameliorative effect of curcumin on pendimethalin-induced genetic and biochemical toxicity. Scientific Reports 2022, 12(1): 2195.
  • Aggarwal BB., Harikumar KB. Potential therapeutic effects of curcumin, the anti-inflammatory agent, against neurodegenerative, cardiovascular, pulmonary, metabolic, autoimmune and neoplastic diseases. The International Journal of Biochemistry & Cell Biology 2009; 41(1): 40-59.
  • Ahmad P., Jaleel C., Salem M., Nabi G., Sharma S. Roles of enzymatic and nonenzymatic antioxidants in plants during abiotic stress. Critical Reviews in Biotechnology 2010; 30: 161-175
  • Akkaya K., Yıldırım M., Değirmenci U., Ünal ND. Sıçanlarda akrilonitril ile oluşturulmuş oksidatif strese karşı timokinon ve kurkuminin olası koruyucu etkileri. Mersin Üniversitesi Tıp Fakültesi Lokman Hekim Tıp Tarihi ve Folklorik Tıp Dergisi 2021; 11(3): 596-604.
  • Arslan E., Agar G., Aydın M. Putrescine as a protective molecule on DNA damage and DNA methylation changes in wheat under drought. Communications Faculty of Sciences University of Ankara Series C Biology 2019; 28(2): 170-187.
  • Aslam M., Aslam A., Sheraz M., Ali B., Ulhassan Z., Najeeb U., Gill RA. Lead toxicity in cereals: Mechanistic insight into toxicity, mode of action, and management. Frontiers in Plant Science 2021; 11: 587785.
  • Aslankoç R., Demirci D., İnan Ü., Yıldız M., Öztürk A., Çetin M., Savran EŞ., Yılmaz B. The role of antioxidant enzymes in oxidative stress - Superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx). Medical Journal of Süleyman Demirel University 2019; 26(3): 362-369.
  • Awaad HA., Alzohairy AM., Morsy AM., Moustafa ESA., Mansour E. Genetic analysis of cadmium tolerance and exploration of its inheritance nature in bread wheat (Triticum aestivum L.). Indıan Journal of Genetıcs And Plant Breedıng 2023; 83(1): 41-51.
  • Bakır Ö., Ağar G. Investigation of DNA methylation level in wheat genome exposed to vanadium by Using CRED-RA technique. Anadolu Ege Tarımsal Araştırma Enstitüsü Dergisi 2021; 31(1): 36-46.
  • Cheraghi E., Golkar A., Roshanaei K., Alani B. Aluminium-induced oxidative stress, apoptosis and alterations in testicular tissue and sperm quality in Wistar rats: Ameliorative effects of curcumin. International Journal of Fertility & Sterility 2017; 11(3): 166.
  • Dalyan E., Yüzbaşıoğlu E., Akpınar I. Physiological and biochemical changes in plant growth and different plant enzymes in response to lead stress. Lead in Plants and the Environment. Radionuclides and Heavy Metals in the Environment 2020; 129–147.
  • Daniel S., Limson JL., Dairam A., Watkins GM., Daya S. Through metal binding, curcumin protects against lead-and cadmium-induced lipid peroxidation in rat brain homogenates and against lead-induced tissue damage in rat brain. Journal of İnorganic Biochemistry 2004; 98(2): 266-275.
  • El-Demerdash FM., Yousef MI. Radwan FM. Ameliorating effect of curcumin on sodium arsenite-induced oxidative damage and lipid peroxidation in different rat organs. Food and Chemical Toxicology 2009; 47(1): 249-254.
  • Erkul C., Özenoğlu A., Reis E. Zerdeçalın genel sağlık üzerine etkileri. Türkiye Sağlık Bilimleri ve Araştırmaları Dergisi, 2021; 4(2): 76-87.
  • Erturk FA., Agar G., Arslan E., Nardemir G., Aydin M., Taspinar MS. Effects of lead sulfate on genetic and epigenetic changes and endogenous hormone levels in corn (Zea mays L.). Polish Journal of Environmental Studies 2014; 23(6): 1925-1932.
  • Farzaei MH., Zobeiri M., Parvizi F., El-Senduny FF., Marmouzi I., Coy-Barrera E., Abdollahi M. Curcumin in liver diseases: a systematic review of the cellular mechanisms of oxidative stress and clinical perspective. Nutrients 2018; 10(7): 855.
  • Giannakoula A., Therios I., Chatzissavvidis C. Effect of lead and copper on photosynthetic apparatus in citrus (Citrus aurantium L.) plants. The role of antioxidants in oxidative damage as a response to heavy metal stress. Plants 2021; 10(1): 155.
  • Gupta SC. Discovery of curcumin, a component of golden spice, and its miraculous biological activities. Clinical and Experimental Pharmacology and Physiology 2012; 39(3): 283-299.
  • Güleç TE., Sönmezoglu ÖA., Yıldırım A. Makarnalık bugdaylarda kalite ve kaliteyi etkileyen faktörler. Journal of Agricultural Faculty of Gaziosmanpaşa University 2010; 1: 113-120.
  • Hameed A., Maqsood W., Hameed A., Qayyum MA., Ahmed T., Farooq T. Chitosan nanoparticles encapsulating curcumin counteract salt-mediated ionic toxicity in wheat seedlings: An ecofriendly and sustainable approach. Environmental Science and Pollution Research 2024; 31(6): 8917-8929.
  • Hameed A., Zahid M., Hameed A., Noreen R., Ibrahim M., Farooq T., Kanwal P. Curcumin-based priming agent confers drought tolerance in wheat seedlings: A climate-smart approach. Industrial Crops and Products 2025; 224: 119451.
  • Hejazi J., Rastmanesh R., Taleban FA., Molana SH., Hejazi E., Ehtejab G., Hara N. Effect of curcumin supplementation during radiotherapy on oxidative status of patients with prostate cancer: a double blinded, randomized, placebo-controlled study. Nutrition and Cancer 2016; 68(1): 77-85.
  • Ibrahim Mohamed M., Bafeel Sameera O. Alteration of gene expression, superoxide anion radical and lipid peroxidation induced by lead toxicity in leaves of Lepidium sativum. Journal of Animal and Plant Sciences 2009, 4: 281-288.
  • Kaur G., Singh HP., Batish DR., Kohli RK. Lead (Pb)-induced biochemical and ultrastructural changes in wheat (Triticum aestivum) roots. Protoplasma 2013; 250: 53–62.
  • Kalefetoğlu Macar T., Macar O., Çavuşoğlu K., Yalçin E., Yapar K. Turmeric (Curcuma longa L.) tends to reduce the toxic effects of nickel (II) chloride in Allium cepa L. roots. Environmental Science and Pollution Research 2022; 29(40): 60508-60518.
  • Khan Z., Thounaojam TC., Rajkumari JD., Deka BK., Rahman R., Upadhyaya H. Arsenic induced chromosomal aberrations, biochemical and morphological changes in Vigna radiata L.(Mung bean) seedlings and its amelioration by Curcumin. Vegetos 2024; 37(3): 1185-1194.
  • Kumar A., Dogra S., Prakash A. Protective effect of curcumin (Curcuma longa), against aluminium toxicity:Possible behavioral and biochemical alterations in rats. Behavioural Brain Research 2009; 205: 384-390.
  • Lamhamdi M., El Galiou O., Bakrim A., Novoa-Munoz JC., Arias-Estevez M., Aarab A., Lafont R. Effect of lead stress on mineral content and growth of wheat (Triticum aestivum) and spinach (Spinacia oleracea) seedlings. Saudi Journal of Biological Sciences 2013; 20(1): 29-36.
  • Madhava RKV., Sresty TVS. Antioxidative parameters in the seedlings of pigeonpea (Cajanus cajan L. Millspaugh) in response to Zn and Ni stresses. Plant Science 2000; 157: 113-120.
  • Mfarrej MFB., Javed R., Almeer R., Alsaidalani M., Kamel MH., Saleem S. Phosphorus sources enhance barley growth and mitigate lead stress via antioxidant responses, proline metabolism, and gene expression. South African Journal of Botany 2024; 174: 138-151.
  • Mudduluru G., George-William JN., Muppala S., Asangani IA., Kumarswamy R., Nelson LD., Allgayer H. Curcumin regulates miR-21 expression and inhibits invasion and metastasis in colorectal cancer. Bioscience Reports 2011; 31(3): 185-197.
  • Navabpour S., Yamchi A., Bagherikia S., Kafi H. Lead-induced oxidative stress and role of antioxidant defense in wheat (Triticum aestivum L.). Physiology and Molecular Biology of Plants 2020; 26: 793-802.
  • Pratyusha S. Phenolic compounds in the plant development and defense: An overview. Plant Stress Physiology- Perspectives in Agriculture 2022; 125–140.
  • Rajasekaran SA. Therapeutic potential of curcumin in gastrointestinal diseases. World Journal of Gastrointestinal Pathophysiology 2011; 2(1): 1-14.
  • Roy R., Mostofa MG., Wang J., Sikdar A., Sarker T. Improvement of growth performance of Amorpha fruticosa under contrasting regime of water and fertilizer in coal-contaminated spoils using response surface methodology. BMC Plant Biology 2020; 20: 1-15.
  • Seriner R., Dağlıoğlu K., Coşkun G., Bilgin R. Examination of the effect of curcumin in experimental liver damage created by diethylnitrosamine in Swiss albino mice to superoxide dismutase and catalase activities and glutathione, malondialdehyde, and advanced oxidation protein products levels. Biotechnology and Applied Biochemistry 2022; 69(3): 1217-1225.
  • Sevgi K., Leblebici S. Bitkilerde ağır metal stresine verilen fizyolojik ve moleküler yanıtlar. Journal of Anatolian Environmental and Animal Sciences 2022; 7(4): 528-536.
  • Sharma P., Dubey RS. Lead toxicity in plants. Brazilian Journal of Plant Physiology 2005; 17: 35-52.
  • Sharma R., Samant S., Sharma P., Devi S. Evaluation of antioxidant activities of Withania somnifera leaves growing in natural habitats of North-west Himalaya, India. Journal of Medicinal Plants Research 2012, 6(5): 657-661.
  • Thakur S., Singh L., Zularisam AW., Sakinah M., Din MFM. Lead induced oxidative stress and alteration in the activities of antioxidative enzymes in rice shoots. Plant Biology 2017; 61: 595–598.
  • Taspinar MS., Kuloglu SS., Aydin M., Agar G. Physiological-biochemical and molecular change in Triticum aestivum L. exposed to lead stress. Research Square 2023; 10.21203/rs.3.rs-2529649/v1
  • Tofan A., Gurkan E., Arikan‐Abdulveli B., Balci M., Yildiztugay E., Ozfidan‐Konakci C. Curcumin, a secondary metabolite, activates the defense system by regulating water status, PSII photochemistry, and antioxidant capacity in lactuca sativa exposed to lead and/or arsenic stresses. Food and Energy Security 2025; 14(1): e70027.
  • Upadhyaya H., Shome S., Roy D., Bhattacharya MK. Arsenic induced changes in growth and physiological responses in Vigna radiata seedling: effect of curcumin interaction. American Journal of Plant Sciences 2014; 5(24): 3609.
  • Wang XN., Zhang CJ., Diao HL., Zhang Y. Protective effects of curcumin against sodium arsenite-induced ovarian oxidative injury in a mouse model. Chinese Medical Journal 2017; 130(09): 1026-1032.
  • Zhang X., Yan L., Liu J., Zhang Z., Tan C. Removal of diferent kinds of heavy metals by novel PPG-nZVI beads and their application in simulated stormwater infltration facility. Applied Sciences 2019; 9(20): 4213.
  • Zhang L., Zengin G., Ozfidan-Konakci C., Yildiztugay E., Arikan B., Ekim R. Lucini L. Exogenous curcumin mitigates As stress in spinach plants: A biochemical and metabolomics investigation. Plant Physiology and Biochemistry 2024; 211: 108713.
There are 47 citations in total.

Details

Primary Language Turkish
Subjects Botany (Other)
Journal Section RESEARCH ARTICLES
Authors

Filiz Aygün Ertürk

Eren Suyabatmaz This is me 0009-0006-8787-2398

Project Number 1919B012337493
Publication Date June 16, 2025
Submission Date March 28, 2025
Acceptance Date May 28, 2025
Published in Issue Year 2025 Volume: 8 Issue: 3

Cite

APA Aygün Ertürk, F., & Suyabatmaz, E. (2025). Ağır Metal Stresi Altındaki Dokuda Kurkuminin Antioksidan Enzim Profiline Etkisi. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 8(3), 1464-1477. https://doi.org/10.47495/okufbed.1667841
AMA Aygün Ertürk F, Suyabatmaz E. Ağır Metal Stresi Altındaki Dokuda Kurkuminin Antioksidan Enzim Profiline Etkisi. Osmaniye Korkut Ata University Journal of The Institute of Science and Techno. June 2025;8(3):1464-1477. doi:10.47495/okufbed.1667841
Chicago Aygün Ertürk, Filiz, and Eren Suyabatmaz. “Ağır Metal Stresi Altındaki Dokuda Kurkuminin Antioksidan Enzim Profiline Etkisi”. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi 8, no. 3 (June 2025): 1464-77. https://doi.org/10.47495/okufbed.1667841.
EndNote Aygün Ertürk F, Suyabatmaz E (June 1, 2025) Ağır Metal Stresi Altındaki Dokuda Kurkuminin Antioksidan Enzim Profiline Etkisi. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi 8 3 1464–1477.
IEEE F. Aygün Ertürk and E. Suyabatmaz, “Ağır Metal Stresi Altındaki Dokuda Kurkuminin Antioksidan Enzim Profiline Etkisi”, Osmaniye Korkut Ata University Journal of The Institute of Science and Techno, vol. 8, no. 3, pp. 1464–1477, 2025, doi: 10.47495/okufbed.1667841.
ISNAD Aygün Ertürk, Filiz - Suyabatmaz, Eren. “Ağır Metal Stresi Altındaki Dokuda Kurkuminin Antioksidan Enzim Profiline Etkisi”. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi 8/3 (June2025), 1464-1477. https://doi.org/10.47495/okufbed.1667841.
JAMA Aygün Ertürk F, Suyabatmaz E. Ağır Metal Stresi Altındaki Dokuda Kurkuminin Antioksidan Enzim Profiline Etkisi. Osmaniye Korkut Ata University Journal of The Institute of Science and Techno. 2025;8:1464–1477.
MLA Aygün Ertürk, Filiz and Eren Suyabatmaz. “Ağır Metal Stresi Altındaki Dokuda Kurkuminin Antioksidan Enzim Profiline Etkisi”. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi, vol. 8, no. 3, 2025, pp. 1464-77, doi:10.47495/okufbed.1667841.
Vancouver Aygün Ertürk F, Suyabatmaz E. Ağır Metal Stresi Altındaki Dokuda Kurkuminin Antioksidan Enzim Profiline Etkisi. Osmaniye Korkut Ata University Journal of The Institute of Science and Techno. 2025;8(3):1464-77.

23487


196541947019414

19433194341943519436 1960219721 197842261021238 23877

*This journal is an international refereed journal 

*Our journal does not charge any article processing fees over publication process.

* This journal is online publishes 5 issues per year (January, March, June, September, December)

*This journal published in Turkish and English as open access. 

19450 This work is licensed under a Creative Commons Attribution 4.0 International License.