Research Article
BibTex RIS Cite

Psikiyatrik Hastalığı Olan Ergenlere Uygulanan Derecelendirilmiş Ölçeklerden Elde Edilen Scalogram Görüntüleri Kullanılarak Bilgisayar Destekli Hastalık Teşhis Tahmini

Year 2025, Volume: 8 Issue: 4, 1572 - 1597, 16.09.2025
https://doi.org/10.47495/okufbed.1594796

Abstract

Ergenlik dönemi hem ergenler hem de aileleri için zor bir dönemdir. Ergenler üzgün ve karamsardır. Ayrıca ergenler zaman zaman öfke patlamaları yaşayabilirler. Ergenler her şeyden önce anlaşıldıklarını ve kendilerine değer verildiğini hissetmeye ihtiyaç duyarlar. Aksi takdirde, ergenler bu duygularını tatmin etmek için başka bir ortama ihtiyaç duyarlar. Ergenlik, yaşamın zor bir dönemidir ve birey ve aile için psikolojik olarak zorlayıcı bir dönemdir. Ergenlik dönemindeki psikiyatrik hastalıklar tedavi edilmezse, ergenler kalıcı ruhsal bozukluklara maruz kalabilir. Bu bozukluklar kişinin psikolojik rahatsızlığını artırarak devam edebilir. Gençlik, bir ülkenin her alanda gelişmesinde önemli bir faktördür. Bu nedenle ergenlik dönemi uygun şekilde yönetilmeli ve psikiyatrik bir hastalık ortaya çıktığında hızlı bir tanı/tedavi süreci uygulanmalıdır. Ruhsal hastalıkların teşhisi de uzman gözlemine dayanır ve iyi bir uzmanlık gerektirir. Tabii ki bu sistemler karar destek sistemleridir ve son karar uzmanlara bırakılır. Bu çalışmada, ergenlik döneminin zorlu yaşam evrelerinde akıl hastalıklarının otomatik tedavisi için makine öğrenimini araştırmak üzere kullanıyoruz. Literatürde sıkça kullanılan, Random Forest ve Support Vector Machines algoritmaları ile çalışılmıştır. Bu algoritamalarda, işlenmeden kullanılan veri setine göre Scalogram görüntülerinde daha yüksek sınıflandırma başarısı elde edilmiştir. Random Forest: %91, Support Vector Machines: %88.

References

  • Agnafors S., Torgerson J., Rusner M., Kjellström AN. Injuries in children and adolescents with psychiatric disorders. BMC Public Health 2020; 20(1): 1-10.
  • Akcan PE., Tekgül N., Karademirci E., Öngel K. Ergenlik dönemi fiziksel büyüme, psikolojik ve sosyal gelişim süreci. Turkish Family Physician 2012; 4: 10-16.
  • Alfaleh A., Khedher NB., Eldin SM., Alturki M., Elbadawi I., Kumar R. Predicting thermal conductivity and dynamic viscosity of nanofluid by employment of support vector machines: A review. Energy Reports 2023; 10: 1259–1267.
  • Bansal V., Goyal S., Srivastava K. Study of prevalence of depression in adolescent students of a public school. Industrial Psychiatry Journal 2009; 18(1): 43-46.
  • Brazier DK., Venning HE. Conversion disorders in adolescents: A practical approach to rehabilitation. Rheumatology 1997; 36(5): 594–598.
  • Buckley V., Young AH., Smith P. Child and adolescent anxiety as a risk factor for bipolar disorder: A systematic review of longitudinal studies. Bipolar Disorders 2023; 25(4): 278–288.
  • Caci H., Baylé FJ., Dossios C., Robert P., Boyer P. The Spielberger trait anxiety inventory measures more than anxiety. European Psychiatry; 2003 18(8): 394–400.
  • Coskun F., Akca OF., Bilgic A., Sharp C. The validity and reliability of borderline personality features scale for children-short form in Turkish adolescents. Turkish Journal of Psychiatry; 2022 33(1): 44-52.
  • Çuhadaroğlu Çetin F., Coşkun A., İşeri E. Çocuk ve ergen psikiyatrisi temel kitabı. 1. Baskı. Ankara: Hekimler Yayın Birliği 2008; 293-312.
  • Davison J., Maguire S., McLaughlin M., Simms V. Involving adolescents with intellectual disability in the adaptation of self‐reported subjective well‐being measures: Participatory research and methodological considerations. Journal of Intellectual Disability Research 2022; 66(7): 628–641.
  • De Cos Milas A., Garcia Moreno M., Gómez Macías V., Chinchurreta de Lora NE., Rodríguez Criado N., Sánchez Sánchez B. Conversion disorder in adolescents: A review and case report. European Psychiatry 2016; 33(1): 349-350.
  • Demeter CA., Townsend LD., Wilson M., Findling RL. Current research in child and adolescent bipolar disorder. Dialogues in Clinical Neuroscience 2008; 10(2): 215–228.
  • Ercan E., İpci M., İnci SB., Ercan E., Ercan ES. The effects of attention deficit hyperactivity disorder on clothing selection and habits among Turkish University students. ADHD Attention Deficit and Hyperactivity Disorders 2014; 7(3): 191–198.
  • Ferrer L., Kirchner T. How do adolescents with adjustment disorder cope with stressful situations relationship with suicidal risk. Revista de Psiquiatría  y Salud Mental 2020; 13(2): 63–72.
  • Geller B., Luby J. Child and adolescent bipolar disorder: A review of the past 10 Years. Journal of the American Academy of Child; Adolescent Psychiatry 1997; 36(9): 1168–1176.
  • Ghosh A., Ray A., Basu A. Oppositional defiant disorder: Current insight. Psychology Research and Behavior Management 2017; 10: 353–367.
  • Gizli ÇÖ., Bedel A., Önder A., Sürer A., Tuhan H., Parlak M. Psychiatric disorders and peer-victimization in children and adolescents with growth hormone deficiency. Clinical Pediatrics 2022; 61(10): 684–691.
  • Gökler B., Ünal MF., Özsungur, B., Çengel Kültür SE., Akdemir D., Taner Y. Okul çağı çocukları için duygulanım bozuklukları ve şizofreni görüşme çizelgesi şimdi ve yaşam boyu şekli Türkçe uyarlamasının geçerlik ve güvenirliği. Çocuk ve Gençlik Ruh Sağlığı Dergisi 2004; 11: 109-116.
  • Grant J. Trichotillomania (hair pulling disorder). Indian Journal of Psychiatry 2019; 61(7): 136-139.
  • Guilé JM., Boissel L., Alaux-Cantin S., Garny de La Rivière S. Borderline personality disorder in adolescents: Prevalence, diagnosis, and treatment strategies. Adolescent Health, Medicine and Therapeutics 2018; 9: 199–210.
  • Gupta A., Mongia M., Garg A. A descriptive study of behavioral problems in schoolgoing children. Industrial Psychiatry Journal 2017; 26(1): 91-94.
  • Kaufman J., Birmaher B., Brent D., Rao U., Flynn C., Moreci P., Williamson D., Ryan N. Schedule for affective disorders and schizophrenia for school-age children-present and Lifetime version (K-SADS-PL): Initial reliability and Validity Data. Journal of the American Academy of Child. Adolescent Psychiatry 1997; 36(7): 980–988.
  • Kovacs M. Rating scales to assess depression in school-aged children. Acta Paedopsychiatrica: International Journal of Child & Adolescent Psychiatry 1981; 46(5-6): 305–315.
  • Li T., Zhou M. ECG classification using wavelet packet entropy and random forests. Entropy 2016; 18(8): 285.
  • Nazeer A., Latif F., Mondal A., Azeem MW., Greydanus DE. Obsessive-compulsive disorder in children and adolescents: Epidemiology, diagnosis and management. Translational Pediatrics 2020; 9(1): 76-93.
  • Öner N., LeCompte WA. Durumluk-sürekli kaygı envanteri el kitabı: Boğaziçi Üniversitesi Yayınları 1985.
  • Oy B. Cocuklar icin depresyon ölçegi geçerlik ve güvenirlik çalışması. Turk Psikiyatri Dergisi 1991; 2: 137-140.
  • Pehlivantürk B., Unal F. Conversion disorder in children and adolescents. Journal of Psychosomatic Research 2002; 52(4): 187–191.
  • Ringbom I., Suvisaari J., Kääriälä A., Sourander A., Gissler M., Kelleher I., Gyllenberg D. Psychotic disorders in adolescence and later long-term exclusion from education and Employment. Schizophrenia Bulletin 2022; 49(1): 90–98.
  • Salles RS., Ribeiro PF. The use of deep learning and 2-D wavelet scalograms for power quality disturbances classification. Electric Power Systems Research 2023; 214(1): 1-11.
  • Sejdic E., Djurovic I., Stankovic LJ. Quantitative performance analysis of Scalogram as instantaneous frequency estimator. IEEE Transactions on Signal Processing 2008; 56(8): 3837–3845.
  • Spielberger C. Manual for the state-trait anxiety inventory (Self-evaluation questionnare). Consulting Psychogyists Press 1970.
  • Stevens JR., Prince JB., Prager LM., Stern TA. Psychotic disorders in children and adolescents: a primer on contemporary evaluation and management. The primary Care Companion For CNS Disorders 2014; 16(2): 13:15.
  • Sun Z., Wang G., Li P., Wang H., Zhang M., Liang, X. An improved random forest based on the classification accuracy and correlation measurement of decision trees. Expert Systems with Applications 2024; 237(PB): 1-19.
  • Tian R., Sun G., Liu X., Zheng B. Sobel edge detection based on weighted nuclear norm minimization image denoising. Electronics 2021; 10(6): 1-14.
  • Tschan T., Peter-Ruf C., Schmid M., In-Albon T. Temperament and character traits in female adolescents with nonsuicidal self-injury disorder with and without comorbid borderline personality disorder. Child and Adolescent Psychiatry and Mental Health 2017; 11(1): 130-134.
  • Turgay A. Turgay's DSM 5 based ADHD and disruptive behaviour disorders screening scale. Integrative Therapy Institute Publication, Toronto-Ontario 1997.
  • Ueda K., Black KJ. A comprehensive review of TIC disorders in children. Journal of Clinical Medicine 2021; 10(11): 1-34.
  • Yin W., Xia H., Huang X., Zhang J., Miyombo ME. A fault diagnosis method for nuclear power plant rotating machinery based on adaptive deep feature extraction and multiple support vector machines. Progress in Nuclear Energy 2023; 164: 1-10.
  • Zhang Jin-Yu., Chen Yan., Huang Xian-Xiang. Edge detection of images based on improved Sobel operator and genetic algorithms. 2009 International Conference on Image Analysis and Signal Processing 2009: 31-35.
  • Zhao F., Hao J., Zhang H., Yu X., Yan Z., Wu F. Quality recognition method of oyster based on U-net and random Forest. Journal of Food Composition and Analysis 2024; 125: 105746.

Computer-Aided Disease Diagnosis Prediction Using Scalogram Images Obtained From Graded Scales Applied To Adolescents With Psychiatric Illness

Year 2025, Volume: 8 Issue: 4, 1572 - 1597, 16.09.2025
https://doi.org/10.47495/okufbed.1594796

Abstract

Adolescence is a difficult period for both adolescents and their families. Adolescents are sad and pessimistic. Adolescents may also experience outbursts of anger from time to time. Adolescents need above all to feel understood and valued. Otherwise, adolescents need another environment to satisfy these feelings. Adolescence is a difficult period of life and a psychologically challenging time for the individual and the family. If psychiatric illnesses during adolescence are left untreated, adolescents may suffer from permanent mental disorders. These disorders may continue by increasing the psychological disturbance of the person. Youth is an important factor in the development of a country in every field. For this reason, adolescence should be managed appropriately and a rapid diagnosis/treatment process should be applied when a psychiatric illness occurs. Diagnosis of mental illnesses is also based on expert observation and requires good expertise. Of course, these systems are decision support systems and the final decision is left to the experts. In this study, we use machine learning to investigate the automatic treatment of mental illnesses in the challenging life stages of adolescence. Random Forest and Support Vector Machines algorithms, which are frequently used in the literature, are used. In these algorithms, higher classification success was obtained in scalogram images compared to the unprocessed data set. Random Forest: 91%, Support Vector Machines: 88%.

References

  • Agnafors S., Torgerson J., Rusner M., Kjellström AN. Injuries in children and adolescents with psychiatric disorders. BMC Public Health 2020; 20(1): 1-10.
  • Akcan PE., Tekgül N., Karademirci E., Öngel K. Ergenlik dönemi fiziksel büyüme, psikolojik ve sosyal gelişim süreci. Turkish Family Physician 2012; 4: 10-16.
  • Alfaleh A., Khedher NB., Eldin SM., Alturki M., Elbadawi I., Kumar R. Predicting thermal conductivity and dynamic viscosity of nanofluid by employment of support vector machines: A review. Energy Reports 2023; 10: 1259–1267.
  • Bansal V., Goyal S., Srivastava K. Study of prevalence of depression in adolescent students of a public school. Industrial Psychiatry Journal 2009; 18(1): 43-46.
  • Brazier DK., Venning HE. Conversion disorders in adolescents: A practical approach to rehabilitation. Rheumatology 1997; 36(5): 594–598.
  • Buckley V., Young AH., Smith P. Child and adolescent anxiety as a risk factor for bipolar disorder: A systematic review of longitudinal studies. Bipolar Disorders 2023; 25(4): 278–288.
  • Caci H., Baylé FJ., Dossios C., Robert P., Boyer P. The Spielberger trait anxiety inventory measures more than anxiety. European Psychiatry; 2003 18(8): 394–400.
  • Coskun F., Akca OF., Bilgic A., Sharp C. The validity and reliability of borderline personality features scale for children-short form in Turkish adolescents. Turkish Journal of Psychiatry; 2022 33(1): 44-52.
  • Çuhadaroğlu Çetin F., Coşkun A., İşeri E. Çocuk ve ergen psikiyatrisi temel kitabı. 1. Baskı. Ankara: Hekimler Yayın Birliği 2008; 293-312.
  • Davison J., Maguire S., McLaughlin M., Simms V. Involving adolescents with intellectual disability in the adaptation of self‐reported subjective well‐being measures: Participatory research and methodological considerations. Journal of Intellectual Disability Research 2022; 66(7): 628–641.
  • De Cos Milas A., Garcia Moreno M., Gómez Macías V., Chinchurreta de Lora NE., Rodríguez Criado N., Sánchez Sánchez B. Conversion disorder in adolescents: A review and case report. European Psychiatry 2016; 33(1): 349-350.
  • Demeter CA., Townsend LD., Wilson M., Findling RL. Current research in child and adolescent bipolar disorder. Dialogues in Clinical Neuroscience 2008; 10(2): 215–228.
  • Ercan E., İpci M., İnci SB., Ercan E., Ercan ES. The effects of attention deficit hyperactivity disorder on clothing selection and habits among Turkish University students. ADHD Attention Deficit and Hyperactivity Disorders 2014; 7(3): 191–198.
  • Ferrer L., Kirchner T. How do adolescents with adjustment disorder cope with stressful situations relationship with suicidal risk. Revista de Psiquiatría  y Salud Mental 2020; 13(2): 63–72.
  • Geller B., Luby J. Child and adolescent bipolar disorder: A review of the past 10 Years. Journal of the American Academy of Child; Adolescent Psychiatry 1997; 36(9): 1168–1176.
  • Ghosh A., Ray A., Basu A. Oppositional defiant disorder: Current insight. Psychology Research and Behavior Management 2017; 10: 353–367.
  • Gizli ÇÖ., Bedel A., Önder A., Sürer A., Tuhan H., Parlak M. Psychiatric disorders and peer-victimization in children and adolescents with growth hormone deficiency. Clinical Pediatrics 2022; 61(10): 684–691.
  • Gökler B., Ünal MF., Özsungur, B., Çengel Kültür SE., Akdemir D., Taner Y. Okul çağı çocukları için duygulanım bozuklukları ve şizofreni görüşme çizelgesi şimdi ve yaşam boyu şekli Türkçe uyarlamasının geçerlik ve güvenirliği. Çocuk ve Gençlik Ruh Sağlığı Dergisi 2004; 11: 109-116.
  • Grant J. Trichotillomania (hair pulling disorder). Indian Journal of Psychiatry 2019; 61(7): 136-139.
  • Guilé JM., Boissel L., Alaux-Cantin S., Garny de La Rivière S. Borderline personality disorder in adolescents: Prevalence, diagnosis, and treatment strategies. Adolescent Health, Medicine and Therapeutics 2018; 9: 199–210.
  • Gupta A., Mongia M., Garg A. A descriptive study of behavioral problems in schoolgoing children. Industrial Psychiatry Journal 2017; 26(1): 91-94.
  • Kaufman J., Birmaher B., Brent D., Rao U., Flynn C., Moreci P., Williamson D., Ryan N. Schedule for affective disorders and schizophrenia for school-age children-present and Lifetime version (K-SADS-PL): Initial reliability and Validity Data. Journal of the American Academy of Child. Adolescent Psychiatry 1997; 36(7): 980–988.
  • Kovacs M. Rating scales to assess depression in school-aged children. Acta Paedopsychiatrica: International Journal of Child & Adolescent Psychiatry 1981; 46(5-6): 305–315.
  • Li T., Zhou M. ECG classification using wavelet packet entropy and random forests. Entropy 2016; 18(8): 285.
  • Nazeer A., Latif F., Mondal A., Azeem MW., Greydanus DE. Obsessive-compulsive disorder in children and adolescents: Epidemiology, diagnosis and management. Translational Pediatrics 2020; 9(1): 76-93.
  • Öner N., LeCompte WA. Durumluk-sürekli kaygı envanteri el kitabı: Boğaziçi Üniversitesi Yayınları 1985.
  • Oy B. Cocuklar icin depresyon ölçegi geçerlik ve güvenirlik çalışması. Turk Psikiyatri Dergisi 1991; 2: 137-140.
  • Pehlivantürk B., Unal F. Conversion disorder in children and adolescents. Journal of Psychosomatic Research 2002; 52(4): 187–191.
  • Ringbom I., Suvisaari J., Kääriälä A., Sourander A., Gissler M., Kelleher I., Gyllenberg D. Psychotic disorders in adolescence and later long-term exclusion from education and Employment. Schizophrenia Bulletin 2022; 49(1): 90–98.
  • Salles RS., Ribeiro PF. The use of deep learning and 2-D wavelet scalograms for power quality disturbances classification. Electric Power Systems Research 2023; 214(1): 1-11.
  • Sejdic E., Djurovic I., Stankovic LJ. Quantitative performance analysis of Scalogram as instantaneous frequency estimator. IEEE Transactions on Signal Processing 2008; 56(8): 3837–3845.
  • Spielberger C. Manual for the state-trait anxiety inventory (Self-evaluation questionnare). Consulting Psychogyists Press 1970.
  • Stevens JR., Prince JB., Prager LM., Stern TA. Psychotic disorders in children and adolescents: a primer on contemporary evaluation and management. The primary Care Companion For CNS Disorders 2014; 16(2): 13:15.
  • Sun Z., Wang G., Li P., Wang H., Zhang M., Liang, X. An improved random forest based on the classification accuracy and correlation measurement of decision trees. Expert Systems with Applications 2024; 237(PB): 1-19.
  • Tian R., Sun G., Liu X., Zheng B. Sobel edge detection based on weighted nuclear norm minimization image denoising. Electronics 2021; 10(6): 1-14.
  • Tschan T., Peter-Ruf C., Schmid M., In-Albon T. Temperament and character traits in female adolescents with nonsuicidal self-injury disorder with and without comorbid borderline personality disorder. Child and Adolescent Psychiatry and Mental Health 2017; 11(1): 130-134.
  • Turgay A. Turgay's DSM 5 based ADHD and disruptive behaviour disorders screening scale. Integrative Therapy Institute Publication, Toronto-Ontario 1997.
  • Ueda K., Black KJ. A comprehensive review of TIC disorders in children. Journal of Clinical Medicine 2021; 10(11): 1-34.
  • Yin W., Xia H., Huang X., Zhang J., Miyombo ME. A fault diagnosis method for nuclear power plant rotating machinery based on adaptive deep feature extraction and multiple support vector machines. Progress in Nuclear Energy 2023; 164: 1-10.
  • Zhang Jin-Yu., Chen Yan., Huang Xian-Xiang. Edge detection of images based on improved Sobel operator and genetic algorithms. 2009 International Conference on Image Analysis and Signal Processing 2009: 31-35.
  • Zhao F., Hao J., Zhang H., Yu X., Yan Z., Wu F. Quality recognition method of oyster based on U-net and random Forest. Journal of Food Composition and Analysis 2024; 125: 105746.
There are 41 citations in total.

Details

Primary Language English
Subjects Deep Learning
Journal Section RESEARCH ARTICLES
Authors

Sinan Altun 0000-0002-2356-0460

Hatice Altun 0000-0002-6802-8216

Publication Date September 16, 2025
Submission Date December 2, 2024
Acceptance Date March 27, 2025
Published in Issue Year 2025 Volume: 8 Issue: 4

Cite

APA Altun, S., & Altun, H. (2025). Computer-Aided Disease Diagnosis Prediction Using Scalogram Images Obtained From Graded Scales Applied To Adolescents With Psychiatric Illness. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 8(4), 1572-1597. https://doi.org/10.47495/okufbed.1594796
AMA Altun S, Altun H. Computer-Aided Disease Diagnosis Prediction Using Scalogram Images Obtained From Graded Scales Applied To Adolescents With Psychiatric Illness. Osmaniye Korkut Ata University Journal of The Institute of Science and Techno. September 2025;8(4):1572-1597. doi:10.47495/okufbed.1594796
Chicago Altun, Sinan, and Hatice Altun. “Computer-Aided Disease Diagnosis Prediction Using Scalogram Images Obtained From Graded Scales Applied To Adolescents With Psychiatric Illness”. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi 8, no. 4 (September 2025): 1572-97. https://doi.org/10.47495/okufbed.1594796.
EndNote Altun S, Altun H (September 1, 2025) Computer-Aided Disease Diagnosis Prediction Using Scalogram Images Obtained From Graded Scales Applied To Adolescents With Psychiatric Illness. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi 8 4 1572–1597.
IEEE S. Altun and H. Altun, “Computer-Aided Disease Diagnosis Prediction Using Scalogram Images Obtained From Graded Scales Applied To Adolescents With Psychiatric Illness”, Osmaniye Korkut Ata University Journal of The Institute of Science and Techno, vol. 8, no. 4, pp. 1572–1597, 2025, doi: 10.47495/okufbed.1594796.
ISNAD Altun, Sinan - Altun, Hatice. “Computer-Aided Disease Diagnosis Prediction Using Scalogram Images Obtained From Graded Scales Applied To Adolescents With Psychiatric Illness”. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi 8/4 (September2025), 1572-1597. https://doi.org/10.47495/okufbed.1594796.
JAMA Altun S, Altun H. Computer-Aided Disease Diagnosis Prediction Using Scalogram Images Obtained From Graded Scales Applied To Adolescents With Psychiatric Illness. Osmaniye Korkut Ata University Journal of The Institute of Science and Techno. 2025;8:1572–1597.
MLA Altun, Sinan and Hatice Altun. “Computer-Aided Disease Diagnosis Prediction Using Scalogram Images Obtained From Graded Scales Applied To Adolescents With Psychiatric Illness”. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi, vol. 8, no. 4, 2025, pp. 1572-97, doi:10.47495/okufbed.1594796.
Vancouver Altun S, Altun H. Computer-Aided Disease Diagnosis Prediction Using Scalogram Images Obtained From Graded Scales Applied To Adolescents With Psychiatric Illness. Osmaniye Korkut Ata University Journal of The Institute of Science and Techno. 2025;8(4):1572-97.

23487


196541947019414

19433194341943519436 1960219721 197842261021238 23877

*This journal is an international refereed journal 

*Our journal does not charge any article processing fees over publication process.

* This journal is online publishes 5 issues per year (January, March, June, September, December)

*This journal published in Turkish and English as open access. 

19450 This work is licensed under a Creative Commons Attribution 4.0 International License.