Research Article
BibTex RIS Cite

Green Synthesis, Optimization, and Characterization of Silver Nanoparticles using Helichrysum Extract

Year 2025, Volume: 8 Issue: 4, 1598 - 1612, 16.09.2025
https://doi.org/10.47495/okufbed.1608851

Abstract

Silver nanoparticles are used in many fields such as drug delivery systems, biomedical applications, cancer treatments, cosmetics and food thanks to their uniqe chemical and physical properties. Silver nanoparticles can be synthesized in 3 different ways: physical, chemical and biological. In recent years, researchers have turned to green synthesis because it is environmentally friendly, reliable and biocompatible. In this context, a new method for the synthesis of silver nanoparticles was proposed in this study using Helichrysum extract, a natural phytochemical source. The effects of silver ion concentration, Helichrysum extract concentration and reaction time on nanoparticle formation were investigated and optimum reaction conditions were determined. Silver nanoparticles synthesized in the presence of the synthesized Helichrysum extract were characterized using ultraviole (UV) spectrophotometry and the dynamic light scattering (DLS) analysis. Respect to the UV spectrophotometric results, the synthesized light yellow silver nanoparticles showed maximum absorption at 440 nm wavelength. According to DLS analysis results, homogeneous and spherical nanoparticles with an average size of 54 nm were successfully synthesized. The proposed green nanotechnology-based synthesis method is novel, simple, rapid, low-cost, sustainable, and eco-friendly.

Ethical Statement

The author declares no conflict of interest.

Supporting Institution

Biruni Üniversitesi, B@MER

Project Number

Proje desteği alınmamıştır

Thanks

The author thanks Istanbul University, Faculty of Science, Department of Chemistry, Division of Analytical Chemistry for sharing its research infrastructures.

References

  • Akaberi M., Sahebkar A., Azizi N., Emami SA. Everlasting flowers: Phytochemistry and pharmacology of the genus Helichrysum. Industrial Crops and Products 2019; 138: 111471.
  • Amendola V., Pilot R., Frasconi M., Maragò OM., Iatì MA. Surface plasmon resonance in gold nanoparticles: a review. Journal of Physics: Condensed Matter 2017; 29(20): 203002.
  • Apak R., Demirci Çekiç S., Üzer A., Çelik SE., Bener M., Bekdeşer B., Can Z., Sağlam Ş., Öner AN., Erçağ E. Novel spectroscopic and electrochemical sensors and nanoprobes for the characterization of food and biological antioxidants. Sensors 2018; 18(1): 186.
  • Apak R., Güçlü K., Özyürek M., Karademir SE. Novel total antioxidant capacity index for dietary polyphenols and vitamins C and E, using their cupric ion reducing capability in the presence of neocuproine: CUPRAC method. Journal of Agricultural and Food Chemistry 2004; 52(26): 7970-7981.
  • Bamal D., Singh A., Chaudhary G., Kumar M., Singh M., Rani N., Mundlia P., Sehrawat AR. Silver nanoparticles biosynthesis, characterization, antimicrobial activities, applications, cytotoxicity and safety issues: An updated review. Nanomaterials 2021; 11(8): 2086.
  • Bedlovičová Z., Strapáč I., Baláž M., Salayová A. A brief overview on antioxidant activity determination of silver nanoparticles. Molecules 2020; 25(14): 3191.
  • De Canha MN., Thipe VC., Katti KV., Mandiwana V., Kalombo ML., Ray SS., Rikhotso R., Van Vuuren AJ., Lall N. The activity of gold nanoparticles synthesized using helichrysum odoratissimum against cutibacterium acnes biofilms. Frontiers in Cell and Developmental Biology 2021; 9: 675064.
  • Gouveia SC., Castilho PC. Characterization of phenolic compounds in Helichrysum melaleucum by high‐performance liquid chromatography with on‐line ultraviolet and mass spectrometry detection. Rapid Communications in Mass Spectrometry 2010; 24(13): 1851-1868.
  • Gurunathan S., Kalishwaralal K., Vaidyanathan R., Venkataraman D., Pandian SRK., Muniyandi J., Hariharan N., Eom SH. Biosynthesis, purification and characterization of silver nanoparticles using Escherichia coli. Colloids and Surfaces B: Biointerfaces 2009; 74(1): 328-335.
  • Gurunathan S., Park JH., Han JW., Kim JH. Comparative assessment of the apoptotic potential of silver nanoparticles synthesized by Bacillus tequilensis and Calocybe indica in MDA-MB-231 human breast cancer cells: targeting p53 for anticancer therapy. International Journal of Nanomedicine 2015; 10(1): 4203-4223.
  • Huston M., DeBella M., DiBella M., Gupta A. Green synthesis of nanomaterials. Nanomaterials 2021; 11(8): 2130.
  • Hutchison JE. Greener nanoscience: a proactive approach to advancing applications and reducing implications of nanotechnology. ACS Nano 2008; 2(3): 395-402.
  • Kahraman HT. Synthesis of silver nanoparticles using Alchemilla vulgaris and Helichrysum arenarium for methylene blue and 4-nitrophenol degradation and antibacterial applications. Biomass Conversion and Biorefinery 2024a; 14: 13479-13490.
  • Kahraman HT. Fabrication of electrospun PA66 nanofibers loaded with biosynthesized silver nanoparticles: Investigation of dye degradation and antibacterial activity. Environmental Science and Pollution Research 2024b; 31(40): 53121-53134.
  • Khandel P., Yadaw RK., Soni DK., Kanwar L., Shahi SK. Biogenesis of metal nanoparticles and their pharmacological applications: present status and application prospects. Journal of Nanostructure in Chemistry 2018; 8: 217-254.
  • Ledet G., Bostanian LA., Mandal TK., Tiwari A. Nanoemulsions as a vaccine adjuvant. Boca Raton: CRC Press; 2013.
  • Liz-Marzán LM. Tailoring surface plasmons through the morphology and assembly of metal nanoparticles. Langmuir 2006; 22(1): 32-41.
  • Moores A., Goettmann F. The plasmon band in noble metal nanoparticles: an introduction to theory and applications. New Journal of Chemistry 2006; 30(8): 1121-1132.
  • Mudalige T., Qu H., Van Haute D., Ansar SM., Paredes A., Ingle T. Characterization of nanomaterials: Tools and challenges. Nanomaterials for Food Applications 2019; 313-353.
  • Ozdemir C., Gencer M., Coksu I., Ozbek T., Derman S. A new strategy to achieve high antimicrobial activity: green synthesised silver nanoparticle formulations with Galium aparine and Helichrysum arenarium. Archives of Industrial Hygiene and Toxicology 2023; 74(2): 90-98.
  • Phull AR., Abbas Q., Ali A., Raza H., Zia M., Kim SJ., Haq IU. Antioxidant, cytotoxic and antimicrobial activities of green synthesized silver nanoparticles from crude extract of Bergenia ciliata. Future Journal of Pharmaceutical Sciences 2016; 2(1): 31-36.
  • Sánchez‐Moreno C., Larrauri JA., Saura‐Calixto F. A procedure to measure the antiradical efficiency of polyphenols. Journal of the Science of Food and Agriculture 1998; 76(2): 270-276.
  • Siegel J., Kvítek O., Ulbrich P., Kolská Z., Slepička P., Švorčík V. Progressive approach for metal nanoparticle synthesis. Materials Letters 2012; 89: 47-50.
  • Singh J., Dutta T., Kim KH., Rawat M., Samddar P., Kumar P. ‘Green’synthesis of metals and their oxide nanoparticles: applications for environmental remediation. Journal of Nanobiotechnology 2018; 16: 84.
  • Singh P., Kim YJ., Zhang D., Yang DC. Biological synthesis of nanoparticles from plants and microorganisms. Trends in Biotechnology 2016; 34(7): 588-599.
  • Viegas DA., Palmeira-de-Oliveira A., Salgueiro L., Martinez-de-Oliveira J., Palmeira-de-Oliveira R. Helichrysum italicum: From traditional use to scientific data. Journal of Ethnopharmacology 2014; 151(1): 54-65.
  • Zhang XF., Liu ZG., Shen W., Gurunathan S. Silver nanoparticles: synthesis, characterization, properties, applications, and therapeutic approaches. International Journal of Molecular Sciences 2016; 17(9): 1534.

Ölmez Çiçek Ekstresi Kullanılarak Gümüş Nanoparçacıkların Yeşil Sentezi, Optimizasyonu ve Karakterizasyonu

Year 2025, Volume: 8 Issue: 4, 1598 - 1612, 16.09.2025
https://doi.org/10.47495/okufbed.1608851

Abstract

Gümüş nanoparçacıklar, benzersiz kimyasal ve fiziksel özellikleri sayesinde ilaç taşıma sistemleri, biyomedikal uygulamalar, kanser tedavileri, kozmetikler ve gıdalar gibi birçok alanda kullanılmaktadır. Gümüş nanoparçacıklar fiziksel, kimyasal ve biyolojik olmak üzere üç farklı şekilde sentezlenebilir. Son yıllarda araştırmacılar, çevre dostu, güvenilir ve biyouyumlu olması nedeniyle yeşil senteze yönelmiştir. Bu bağlamda, bu çalışmada doğal bir fitokimyasal kaynak olan Helichrysum ekstresi kullanılarak gümüş nanoparçacıkların sentezi için yeni bir yöntem önerilmiştir. Nanoparçacık oluşumu üzerinde gümüş iyon konsantrasyonunun, Helichrysum ekstresi konsantrasyonunun ve reaksiyon süresinin etkileri araştırılmış ve optimum reaksiyon koşulları belirlenmiştir. Helichrysum ekstresi varlığında sentezlenen gümüş nanoparçacıklar, ultraviyole (UV) spektrofotometri ve dinamik ışık saçılması (DLS) analizi kullanılarak karakterize edilmiştir. UV spektrofotometri sonuçlarına göre, sentezlenen açık sarı gümüş nanopartikülleri 440 nm dalga boyunda maksimum absorpsiyon göstermiştir. DLS analiz sonuçlarına göre, ortalama 54 nm boyuta sahip homojen ve küresel nanoparçacıklar başarıyla sentezlendi. Önerilen yeşil nanoteknoloji esaslı sentez yöntemi yeni, basit, hızlı, düşük maliyetli, sürdürülebilir ve çevre dostudur.

Ethical Statement

Yazar herhangi bir çıkar çatışması beyan etmemektedir.

Supporting Institution

Biruni University, B@MER

Project Number

Proje desteği alınmamıştır

Thanks

Yazar İstanbul Üniversitesi, Fen Fakültesi, Analitik Kimya Anabilim Dalı'na cihaz paylaşımı için teşekkür eder.

References

  • Akaberi M., Sahebkar A., Azizi N., Emami SA. Everlasting flowers: Phytochemistry and pharmacology of the genus Helichrysum. Industrial Crops and Products 2019; 138: 111471.
  • Amendola V., Pilot R., Frasconi M., Maragò OM., Iatì MA. Surface plasmon resonance in gold nanoparticles: a review. Journal of Physics: Condensed Matter 2017; 29(20): 203002.
  • Apak R., Demirci Çekiç S., Üzer A., Çelik SE., Bener M., Bekdeşer B., Can Z., Sağlam Ş., Öner AN., Erçağ E. Novel spectroscopic and electrochemical sensors and nanoprobes for the characterization of food and biological antioxidants. Sensors 2018; 18(1): 186.
  • Apak R., Güçlü K., Özyürek M., Karademir SE. Novel total antioxidant capacity index for dietary polyphenols and vitamins C and E, using their cupric ion reducing capability in the presence of neocuproine: CUPRAC method. Journal of Agricultural and Food Chemistry 2004; 52(26): 7970-7981.
  • Bamal D., Singh A., Chaudhary G., Kumar M., Singh M., Rani N., Mundlia P., Sehrawat AR. Silver nanoparticles biosynthesis, characterization, antimicrobial activities, applications, cytotoxicity and safety issues: An updated review. Nanomaterials 2021; 11(8): 2086.
  • Bedlovičová Z., Strapáč I., Baláž M., Salayová A. A brief overview on antioxidant activity determination of silver nanoparticles. Molecules 2020; 25(14): 3191.
  • De Canha MN., Thipe VC., Katti KV., Mandiwana V., Kalombo ML., Ray SS., Rikhotso R., Van Vuuren AJ., Lall N. The activity of gold nanoparticles synthesized using helichrysum odoratissimum against cutibacterium acnes biofilms. Frontiers in Cell and Developmental Biology 2021; 9: 675064.
  • Gouveia SC., Castilho PC. Characterization of phenolic compounds in Helichrysum melaleucum by high‐performance liquid chromatography with on‐line ultraviolet and mass spectrometry detection. Rapid Communications in Mass Spectrometry 2010; 24(13): 1851-1868.
  • Gurunathan S., Kalishwaralal K., Vaidyanathan R., Venkataraman D., Pandian SRK., Muniyandi J., Hariharan N., Eom SH. Biosynthesis, purification and characterization of silver nanoparticles using Escherichia coli. Colloids and Surfaces B: Biointerfaces 2009; 74(1): 328-335.
  • Gurunathan S., Park JH., Han JW., Kim JH. Comparative assessment of the apoptotic potential of silver nanoparticles synthesized by Bacillus tequilensis and Calocybe indica in MDA-MB-231 human breast cancer cells: targeting p53 for anticancer therapy. International Journal of Nanomedicine 2015; 10(1): 4203-4223.
  • Huston M., DeBella M., DiBella M., Gupta A. Green synthesis of nanomaterials. Nanomaterials 2021; 11(8): 2130.
  • Hutchison JE. Greener nanoscience: a proactive approach to advancing applications and reducing implications of nanotechnology. ACS Nano 2008; 2(3): 395-402.
  • Kahraman HT. Synthesis of silver nanoparticles using Alchemilla vulgaris and Helichrysum arenarium for methylene blue and 4-nitrophenol degradation and antibacterial applications. Biomass Conversion and Biorefinery 2024a; 14: 13479-13490.
  • Kahraman HT. Fabrication of electrospun PA66 nanofibers loaded with biosynthesized silver nanoparticles: Investigation of dye degradation and antibacterial activity. Environmental Science and Pollution Research 2024b; 31(40): 53121-53134.
  • Khandel P., Yadaw RK., Soni DK., Kanwar L., Shahi SK. Biogenesis of metal nanoparticles and their pharmacological applications: present status and application prospects. Journal of Nanostructure in Chemistry 2018; 8: 217-254.
  • Ledet G., Bostanian LA., Mandal TK., Tiwari A. Nanoemulsions as a vaccine adjuvant. Boca Raton: CRC Press; 2013.
  • Liz-Marzán LM. Tailoring surface plasmons through the morphology and assembly of metal nanoparticles. Langmuir 2006; 22(1): 32-41.
  • Moores A., Goettmann F. The plasmon band in noble metal nanoparticles: an introduction to theory and applications. New Journal of Chemistry 2006; 30(8): 1121-1132.
  • Mudalige T., Qu H., Van Haute D., Ansar SM., Paredes A., Ingle T. Characterization of nanomaterials: Tools and challenges. Nanomaterials for Food Applications 2019; 313-353.
  • Ozdemir C., Gencer M., Coksu I., Ozbek T., Derman S. A new strategy to achieve high antimicrobial activity: green synthesised silver nanoparticle formulations with Galium aparine and Helichrysum arenarium. Archives of Industrial Hygiene and Toxicology 2023; 74(2): 90-98.
  • Phull AR., Abbas Q., Ali A., Raza H., Zia M., Kim SJ., Haq IU. Antioxidant, cytotoxic and antimicrobial activities of green synthesized silver nanoparticles from crude extract of Bergenia ciliata. Future Journal of Pharmaceutical Sciences 2016; 2(1): 31-36.
  • Sánchez‐Moreno C., Larrauri JA., Saura‐Calixto F. A procedure to measure the antiradical efficiency of polyphenols. Journal of the Science of Food and Agriculture 1998; 76(2): 270-276.
  • Siegel J., Kvítek O., Ulbrich P., Kolská Z., Slepička P., Švorčík V. Progressive approach for metal nanoparticle synthesis. Materials Letters 2012; 89: 47-50.
  • Singh J., Dutta T., Kim KH., Rawat M., Samddar P., Kumar P. ‘Green’synthesis of metals and their oxide nanoparticles: applications for environmental remediation. Journal of Nanobiotechnology 2018; 16: 84.
  • Singh P., Kim YJ., Zhang D., Yang DC. Biological synthesis of nanoparticles from plants and microorganisms. Trends in Biotechnology 2016; 34(7): 588-599.
  • Viegas DA., Palmeira-de-Oliveira A., Salgueiro L., Martinez-de-Oliveira J., Palmeira-de-Oliveira R. Helichrysum italicum: From traditional use to scientific data. Journal of Ethnopharmacology 2014; 151(1): 54-65.
  • Zhang XF., Liu ZG., Shen W., Gurunathan S. Silver nanoparticles: synthesis, characterization, properties, applications, and therapeutic approaches. International Journal of Molecular Sciences 2016; 17(9): 1534.
There are 27 citations in total.

Details

Primary Language Turkish
Subjects Analytical Spectrometry
Journal Section RESEARCH ARTICLES
Authors

Nilay Beğiç

Project Number Proje desteği alınmamıştır
Publication Date September 16, 2025
Submission Date December 28, 2024
Acceptance Date March 27, 2025
Published in Issue Year 2025 Volume: 8 Issue: 4

Cite

APA Beğiç, N. (2025). Ölmez Çiçek Ekstresi Kullanılarak Gümüş Nanoparçacıkların Yeşil Sentezi, Optimizasyonu ve Karakterizasyonu. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 8(4), 1598-1612. https://doi.org/10.47495/okufbed.1608851
AMA Beğiç N. Ölmez Çiçek Ekstresi Kullanılarak Gümüş Nanoparçacıkların Yeşil Sentezi, Optimizasyonu ve Karakterizasyonu. Osmaniye Korkut Ata University Journal of The Institute of Science and Techno. September 2025;8(4):1598-1612. doi:10.47495/okufbed.1608851
Chicago Beğiç, Nilay. “Ölmez Çiçek Ekstresi Kullanılarak Gümüş Nanoparçacıkların Yeşil Sentezi, Optimizasyonu Ve Karakterizasyonu”. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi 8, no. 4 (September 2025): 1598-1612. https://doi.org/10.47495/okufbed.1608851.
EndNote Beğiç N (September 1, 2025) Ölmez Çiçek Ekstresi Kullanılarak Gümüş Nanoparçacıkların Yeşil Sentezi, Optimizasyonu ve Karakterizasyonu. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi 8 4 1598–1612.
IEEE N. Beğiç, “Ölmez Çiçek Ekstresi Kullanılarak Gümüş Nanoparçacıkların Yeşil Sentezi, Optimizasyonu ve Karakterizasyonu”, Osmaniye Korkut Ata University Journal of The Institute of Science and Techno, vol. 8, no. 4, pp. 1598–1612, 2025, doi: 10.47495/okufbed.1608851.
ISNAD Beğiç, Nilay. “Ölmez Çiçek Ekstresi Kullanılarak Gümüş Nanoparçacıkların Yeşil Sentezi, Optimizasyonu Ve Karakterizasyonu”. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi 8/4 (September2025), 1598-1612. https://doi.org/10.47495/okufbed.1608851.
JAMA Beğiç N. Ölmez Çiçek Ekstresi Kullanılarak Gümüş Nanoparçacıkların Yeşil Sentezi, Optimizasyonu ve Karakterizasyonu. Osmaniye Korkut Ata University Journal of The Institute of Science and Techno. 2025;8:1598–1612.
MLA Beğiç, Nilay. “Ölmez Çiçek Ekstresi Kullanılarak Gümüş Nanoparçacıkların Yeşil Sentezi, Optimizasyonu Ve Karakterizasyonu”. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi, vol. 8, no. 4, 2025, pp. 1598-12, doi:10.47495/okufbed.1608851.
Vancouver Beğiç N. Ölmez Çiçek Ekstresi Kullanılarak Gümüş Nanoparçacıkların Yeşil Sentezi, Optimizasyonu ve Karakterizasyonu. Osmaniye Korkut Ata University Journal of The Institute of Science and Techno. 2025;8(4):1598-612.

23487


196541947019414

19433194341943519436 1960219721 197842261021238 23877

*This journal is an international refereed journal 

*Our journal does not charge any article processing fees over publication process.

* This journal is online publishes 5 issues per year (January, March, June, September, December)

*This journal published in Turkish and English as open access. 

19450 This work is licensed under a Creative Commons Attribution 4.0 International License.