Review
BibTex RIS Cite

Targeting the PI3K/AKT/mTOR Pathway in Cancer Therapy: A Current Evaluation of Next-Generation mTOR Inhibitors

Year 2025, Volume: 8 Issue: 4, 2006 - 2038, 16.09.2025
https://doi.org/10.47495/okufbed.1609867

Abstract

The PI3K/AKT/mTOR signaling pathway plays a crucial role in cancer development. mTOR, a serine/threonine kinase, regulates several fundamental cellular processes, including cell growth, metabolism, translation, the cell cycle, and cell survival. Dysregulation of the PI3K/AKT/mTOR pathway has been associated with the development of various cancer types, and its hyperactivation leads to abnormal cancer cell growth and metastasis. Specifically, the two main mTOR complexes, mTORC1 and mTORC2, play key roles in supporting cancer cell survival and proliferation. This review highlights the significance of mTOR as a key target for cancer therapy, investigating how mTOR inhibitors can suppress cancer cells by modulating this pathway. While mTOR inhibitors, such as rapamycin and its derivatives, show promise in cancer treatment, clinical success has been limited by drug resistance and toxicity issues. Therefore, the need for more specific and effective inhibitors is emphasized. In particular, dual inhibitor strategies, such as those targeting both PI3K and mTOR, are highlighted for their ability to inhibit both the mTORC1 and mTORC2 complexes, thus effectively curbing cancer cell growth and metabolism. However, further research is required to fully realize the clinical potential of these inhibitors. Additionally, clinical studies on the inhibition of the PI3K/AKT/mTOR pathway suggest that combination therapies with chemotherapy and other targeted treatments yield better outcomes compared to monotherapies. This combination approach is considered more effective in overcoming resistance mechanisms in cancer cells.

Ethical Statement

It does not require ethical committee approval.

References

  • Al-Kali A., Aldoss I., Atherton PJ., Strand CA., Shah B., Webster J., Bhatnagar B., Flatten KS., Peterson KL., Schneider PA., Buhrow SA., Kong J., Reid JM., Adjei AA., Kaufmann SH. A phase 2 and pharmacological study of sapanisertib in patients with relapsed and/or refractory acute lymphoblastic leukemia. Cancer Med 2023; 12(23): 21229-21239.
  • Ali ES., Mitra K., Akter S., Ramproshad S., Mondal B., Khan IN., Islam MT., Sharifi-Rad J., Calina D., Cho WC. Recent advances and limitations of mTOR inhibitors in the treatment of cancer. Cancer Cell International 2022; 22(1): 284.
  • Alzahrani AS. PI3K/Akt/mTOR inhibitors in cancer: At the bench and bedside. Elsevier; 2019.
  • Amin AG., Jeong SW., Gillick JL., Sursal T., Murali R., Gandhi CD., Jhanwar-Uniyal M. Targeting the mTOR pathway using novel ATP-competitive inhibitors, Torin1, Torin2 and XL388, in the treatment of glioblastoma. International Journal of Oncology 2021; 59(4): 83.
  • An J., He H., Yao W., Shang Y., Jiang Y., Yu Z. PI3K/Akt/FoxO pathway mediates glycolytic metabolism in HepG2 cells exposed to triclosan (TCS). Environment International 2020; 136(105428.
  • Apsel B., Blair JA., Gonzalez B., Nazif TM., Feldman ME., Aizenstein B., Hoffman R., Williams RL., Shokat KM., Knight ZA. Targeted polypharmacology: discovery of dual inhibitors of tyrosine and phosphoinositide kinases. Nature Chemical Biology 2008; 4(11): 691.
  • Barnieh FM., Loadman PM., Falconer RA. Progress towards a clinically-successful ATR inhibitor for cancer therapy. Current research in pharmacology and drug discovery 2021; 2(100017.
  • Bartalucci N., Tozzi L., Bogani C., Martinelli S., Rotunno G., Villeval JL. ve Vannucchi AM. Co-targeting the PI3K/mTOR and JAK2 signalling pathways produces synergistic activity against myeloproliferative neoplasms. J Cell Mol Med 2013; 17(11): 1385-1396.
  • Baselga J., Semiglazov V., van Dam P., Manikhas A., Bellet M., Mayordomo J., Campone M., Kubista E., Greil R., Bianchi G. Phase II randomized study of neoadjuvant everolimus plus letrozole compared with placebo plus letrozole in patients with estrogen receptor–positive breast cancer. Journal of Clinical Oncology 2009; 27(16): 2630-2637.
  • Beaufils F., Cmiljanovic N., Cmiljanovic V., Bohnacker T., Melone A., Marone R., Jackson E., Zhang X., Sele A., Borsari C. 5-(4, 6-Dimorpholino-1, 3, 5-triazin-2-yl)-4-(trifluoromethyl) pyridin-2-amine (PQR309), a potent, brain-penetrant, orally bioavailable, pan-class I PI3K/mTOR inhibitor as clinical candidate in oncology. Journal of Medicinal Chemistry 2017; 60(17): 7524-7538.
  • Bendell JC., Kelley RK., Shih KC., Grabowsky JA., Bergsland E., Jones S., Martin T., Infante JR., Mischel PS., Matsutani T., Xu S., Wong L., Liu Y., Wu X., Mortensen DS., Chopra R., Hege K., Munster PN. A phase I dose-escalation study to assess safety, tolerability, pharmacokinetics, and preliminary efficacy of the dual mTORC1/mTORC2 kinase inhibitor CC-223 in patients with advanced solid tumors or multiple myeloma. Cancer 2015; 121(19): 3481-3490.
  • Bermudez T., Sammani S., Song JH., Hernon VR., Kempf CL., Garcia AN., Burt J., Hufford M., Camp SM., Cress AE. eNAMPT neutralization reduces preclinical ARDS severity via rectified NFkB and Akt/mTORC2 signaling. Scientific Reports 2022; 12(1): 696.
  • Bhagwat SV., Gokhale PC., Crew AP., Cooke A., Yao Y., Mantis C., Kahler J., Workman J., Bittner M., Dudkin L. Preclinical characterization of OSI-027, a potent and selective inhibitor of mTORC1 and mTORC2: distinct from rapamycin. Molecular Cancer Therapeutics 2011; 10(8): 1394-1406.
  • Bhakuni R., Shaik A., Priya B. ve Kirubakaran S. Characterization of SPK 98, a Torin2 analog, as ATR and mTOR dual kinase inhibitor. Bioorganic & Medicinal Chemistry Letters 2020; 30(23): 127517.
  • Brana I., Pham N-A., Kim L., Sakashita S., Li M., Ng C., Wang Y., Loparco P., Sierra R., Wang L. Novel combinations of PI3K-mTOR inhibitors with dacomitinib or chemotherapy in PTEN-deficient patient-derived tumor xenografts. Oncotarget 2017; 8(49): 84659.
  • Brown EJ., Baltimore D. Essential and dispensable roles of ATR in cell cycle arrest and genome maintenance. Genes & Development 2003; 17(5): 615-628.
  • Bukowski RM. Temsirolimus: a safety and efficacy review. Expert Opinion on Drug Safety 2012; 11(5): 861-879. Carroll WL., Aifantis I., Raetz E. Beating the clock in T-cell acute lymphoblastic leukemia. Clin Cancer Res 2017; 23(4): 873-875.
  • Chapuis N., Tamburini J., Green AS., Vignon C., Bardet V., Neyret A., Pannetier M., Willems L., Park S., Macone A. Dual inhibition of PI3K and mTORC1/2 signaling by NVP-BEZ235 as a new therapeutic strategy for acute myeloid leukemia. Clinical Cancer Research 2010; 16(22): 5424-5435.
  • Chen M., Yu Y., Mi T., Guo Q., Xiang B., Tian X., Jin L., Long C., Shen L., Liu X. MK-2206 alleviates renal fibrosis by suppressing the Akt/mTOR signaling pathway in vivo and in vitro. Cells 2022; 11(21): 3505.
  • Chen X., Zhang T., Ren X., Wei Y., Zhang X., Zang X., Ju X., Qin C., Xu D. CHKB-AS1 enhances proliferation and resistance to NVP-BEZ235 of renal cancer cells via regulating the phosphorylation of MAP4 and PI3K/AKT/mTOR signaling. European Journal of Medical Research 2023; 28(1): 588.
  • Chen Y., Zhou X. Research progress of mTOR inhibitors. European Journal of Medicinal Chemistry 2020; 208(112820.
  • Chiang GG., Abraham RT. Phosphorylation of mammalian target of rapamycin (mTOR) at Ser-2448 IsMediated by p70S6 kinase. Journal of Biological Chemistry 2005; 280(27): 25485-25490.
  • Chiarini F., Grimaldi C., Ricci F., Tazzari PL., Evangelisti C., Ognibene A., Battistelli M., Falcieri E., Melchionda F., Pession A. Activity of the novel dual phosphatidylinositol 3-kinase/mammalian target of rapamycin inhibitor NVP-BEZ235 against T-cell acute lymphoblastic leukemia. Cancer Research 2010; 70(20): 8097-8107.
  • Chilamakuri R., Agarwal S. Dual targeting of PI3K and HDAC by CUDC-907 inhibits pediatric neuroblastoma growth. Cancers 2022; 14(4): 1067.
  • Collins GP., Eyre TA., Schmitz-Rohmer D., Townsend W., Popat R., Giulino-Roth L., Fields PA., Krasniqi F., Soussain C., Stathis A. A phase II study to assess the safety and efficacy of the dual mTORC1/2 and PI3K inhibitor bimiralisib (PQR309) in relapsed, refractory lymphoma. Hemasphere 2021; 5(11): e656.
  • Crew AP., Bhagwat SV., Dong H., Bittner MA., Chan A., Chen X., Coate H., Cooke A., Gokhale PC., Honda A. Imidazo [1, 5-a] pyrazines: orally efficacious inhibitors of mTORC1 and mTORC2. Bioorganic & Medicinal Chemistry Letters 2011; 21(7): 2092-2097.
  • D'amato V., Rosa R., D'amato C., Formisano L., Marciano R., Nappi L., Raimondo L., Di Mauro C., Servetto A., Fusciello C. The dual PI3K/mTOR inhibitor PKI-587 enhances sensitivity to cetuximab in EGFR-resistant human head and neck cancer models. British Journal of Cancer 2014; 110(12): 2887-2895.
  • Dan HC., Sun M., Yang L., Feldman RI., Sui X-M., Ou CC., Nellist M., Yeung RS., Halley DJ., Nicosia SV. Phosphatidylinositol 3-kinase/Akt pathway regulates tuberous sclerosis tumor suppressor complex by phosphorylation of tuberin. Journal of Biological Chemistry 2002; 277(38): 35364-35370.
  • de Leuw P., Stephan C. Protease inhibitors for the treatment of hepatitis C virus infection. GMS Infect Dis 2017; 5(Doc08).
  • Del Campo JM., Birrer M., Davis C., Fujiwara K., Gollerkeri A., Gore M., Houk B., Lau S., Poveda A., Gonzalez-Martin A., Muller C., Muro K., Pierce K., Suzuki M., Vermette J. ve Oza A. A randomized phase II non-comparative study of PF-04691502 and gedatolisib (PF-05212384) in patients with recurrent endometrial cancer. Gynecol Oncol 2016; 142(1): 62-69.
  • Diaz R., Nguewa P., Diaz-Gonzalez J., Hamel E., Gonzalez-Moreno O., Catena R., Serrano D., Redrado M., Sherris D., Calvo A. The novel Akt inhibitor Palomid 529 (P529) enhances the effect of radiotherapy in prostate cancer. British Journal of Cancer 2009; 100(6): 932-940.
  • Dibble CC., Cantley LC. Regulation of mTORC1 by PI3K signaling. Trends in Cell Biology 2015; 25(9): 545-555.
  • Dobler C., Jost T., Hecht M., Fietkau R., Distel L. Senescence induction by combined ionizing radiation and DNA damage response inhibitors in head and neck squamous cell carcinoma cells. Cells 2020; 9(9): 2012.
  • Dolly SO., Wagner AJ., Bendell JC., Kindler HL., Krug LM., Seiwert TY., Zauderer MG., Lolkema MP., Apt D., Yeh R-F. Phase I study of apitolisib (GDC-0980), dual phosphatidylinositol-3-kinase and mammalian target of rapamycin kinase inhibitor, in patients with advanced solid tumors. Clinical Cancer Research 2016; 22(12): 2874-2884.
  • Dominguez JF., Rosberger H., Garell P., Gandhi CD., Jhanwar-Uniyal M. First, second, and third generation mTOR pathways inhibitors for treatment of glioblastoma. Cancer Research 2022; 82(12_Supplement): 5410-5410.
  • Ducker GS., Atreya CE., Simko JP., Hom YK., Matli MR., Benes CH., Hann B., Nakakura EK., Bergsland EK., Donner DB. Incomplete inhibition of phosphorylation of 4E-BP1 as a mechanism of primary resistance to ATP-competitive mTOR inhibitors. Oncogene 2014; 33(12): 1590-1600.
  • Efeyan A., Sabatini DM. mTOR and cancer: many loops in one pathway. Current Opinion in Cell Biology 2010; 22(2): 169-176.
  • Faivre S., Kroemer G., Raymond E. Current development of mTOR inhibitors as anticancer agents. Nature reviews Drug Discovery 2006; 5(8): 671-688.
  • Faulhaber EM., Jost T., Symank J., Scheper J., Bürkel F., Fietkau R., Hecht M., Distel LV. Kinase inhibitors of DNA-PK, ATM and ATR in combination with ionizing radiation can increase tumor cell death in HNSCC cells while sparing normal tissue cells. Genes 2021; 12(6): 925.
  • Fayard E., Tintignac LA., Baudry A., Hemmings BA. Protein kinase B/Akt at a glance. Journal of Cell Science 2005; 118(24): 5675-5678.
  • Feng Y., Jiang Y., Hao F. GSK2126458 has the potential to inhibit the proliferation of pancreatic cancer uncovered by bioinformatics analysis and pharmacological experiments. Journal of Translational Medicine 2021; 19: 1-17.
  • Fokas E., Prevo R., Hammond EM., Brunner TB., McKenna WG. ve Muschel RJ. Targeting ATR in DNA damage response and cancer therapeutics. Cancer treatment reviews 2014; 40(1): 109-117.
  • Foote KM., Nissink JWM., McGuire T., Turner P., Guichard S., Yates JW., Lau A., Blades K., Heathcote D., Odedra R. Discovery and characterization of AZD6738, a potent inhibitor of ataxia telangiectasia mutated and Rad3 related (ATR) kinase with application as an anticancer agent. Journal of Medicinal Chemistry 2018; 61: 9889-9907.
  • Freitag H., Christen F., Lewens F., Grass I., Briest F., Iwaszkiewicz S., Siegmund B., Grabowski P. Inhibition of mTOR's catalytic site by PKI-587 is a promising therapeutic option for gastroenteropancreatic neuroendocrine tumor disease. Neuroendocrinology 2017; 105(1): 90-104.
  • García-Martínez JM., Moran J., Clarke RG., Gray A., Cosulich SC., Chresta CM., Alessi DR. Ku-0063794 is a specific inhibitor of the mammalian target of rapamycin (mTOR). Biochemical Journal 2009; 421(1): 29-42.
  • Gazi M., Moharram SA., Marhäll A., Kazi JU. The dual specificity PI3K/mTOR inhibitor PKI-587 displays efficacy against T-cell acute lymphoblastic leukemia (T-ALL). Cancer Lett 2017; 392: 9-16.
  • Gkountakos A., Pilotto S., Mafficini A., Vicentini C., Simbolo M., Milella M., Tortora G., Scarpa A., Bria E., Corbo V. Unmasking the impact of Rictor in cancer: novel insights of mTORC2 complex. Carcinogenesis 2018; 39(8): 971-980.
  • Glaviano A., Foo AS., Lam HY., Yap KC., Jacot W., Jones RH., Eng H., Nair MG., Makvandi P., Geoerger B. PI3K/AKT/mTOR signaling transduction pathway and targeted therapies in cancer. Molecular cancer 2023; 22(1): 138.
  • Gravina GL., Marampon F., Sherris D., Vittorini F., Cesare ED., Tombolini V., Lenzi A., Jannini EA., Festuccia C. Torc1/Torc2 inhibitor, Palomid 529, enhances radiation response modulating CRM1‐mediated survivin function and delaying DNA repair in prostate cancer models. The Prostate 2014; 74(8): 852-868.
  • Grewe M., Gansauge F., Schmid RM., Adler G., Seufferlein T. Regulation of cell growth and cyclin D1 expression by the constitutively active FRAP-p70s6K pathway in human pancreatic cancer cells. Cancer Res 1999; 59(15): 3581-3587.
  • Guertin DA., Sabatini DM. Defining the role of mTOR in cancer. Cancer Cell 2007; 12(1): 9-22.
  • Guertin DA., Stevens DM., Thoreen CC., Burds AA., Kalaany NY., Moffat J., Brown M., Fitzgerald KJ., Sabatini DM. Ablation in mice of the mTORC components raptor, rictor, or mLST8 reveals that mTORC2 is required for signaling to Akt-FOXO and PKCalpha, but not S6K1. Dev Cell 2006; 11(6): 859-871.
  • Guo Q., Yu C., Zhang C., Li Y., Wang T., Huang Z., Wang X., Zhou W., Li Y., Qin Z. Highly selective, potent, and oral mTOR inhibitor for treatment of cancer as autophagy inducer. Journal of Medicinal Chemistry 2018; 61(3): 881-904.
  • Hadley G., Beard DJ., Alexopoulou Z., Sutherland BA., Buchan AM. Investigation of the novel mTOR inhibitor AZD2014 in neuronal ischemia. Neuroscience Letters 2019; 706: 223-230.
  • Han EK., Leverson J., McGonigal T., Shah O., Woods K., Hunter T., Giranda V. ve Luo Y. Akt inhibitor A-443654 induces rapid Akt Ser-473 phosphorylation independent of mTORC1 inhibition. Oncogene 2007; 26(38): 5655-5661.
  • Han SN., Oza A., Colombo N., Oaknin A., Raspagliesi F., Wenham RM., Braicu EI., Jewell A., Makker V., Krell J., Alia EMG., Baurain JF., Su Z., Neuwirth R., Vincent S., Sedarati F., Faller DV., Scambia G. A randomized phase 2 study of sapanisertib in combination with paclitaxel versus paclitaxel alone in women with advanced, recurrent, or persistent endometrial cancer. Gynecol Oncol 2023; 178: 110-118.
  • Hayman TJ., Wahba A., Rath BH., Bae H., Kramp T., Shankavaram UT., Camphausen K., Tofilon PJ. The ATP-competitive mTOR inhibitor INK128 enhances in vitro and in vivo radiosensitivity of pancreatic carcinoma cells. Clinical Cancer Research 2014; 20(1): 110-119.
  • Hong Z., Pedersen NM., Wang L., Torgersen ML., Stenmark H., Raiborg C. PtdIns3P controls mTORC1 signaling through lysosomal positioning. Journal of Cell Biology 2017; 216(12): 4217-4233.
  • Hoshii T., Matsuda S., Hirao A. Pleiotropic roles of mTOR complexes in haemato-lymphopoiesis and leukemogenesis. J Biochem 2014; 156(2): 73-83.
  • Hoxhaj G., Manning BD. The PI3K–AKT network at the interface of oncogenic signalling and cancer metabolism. Nature Reviews Cancer 2020; 20(2): 74-88.
  • Huang S., Yang ZJ., Yu C., Sinicrope FA. Inhibition of mTOR kinase by AZD8055 can antagonize chemotherapy-induced cell death through autophagy induction and down-regulation of p62/sequestosome 1. Journal of Biological Chemistry 2011; 286(46): 40002-40012.
  • Hudes G., Carducci M., Tomczak P., Dutcher J., Figlin R., Kapoor A., Staroslawska E., Sosman J., McDermott D., Bodrogi I. Temsirolimus, interferon alfa, or both for advanced renal-cell carcinoma. New England Journal of Medicine 2007; 356(22): 2271-2281.
  • Janes MR., Vu C., Mallya S., Shieh M., Limon JJ., Li L-S., Jessen KA., Martin MB., Ren P., Lilly MB. Efficacy of the investigational mTOR kinase inhibitor MLN0128/INK128 in models of B-cell acute lymphoblastic leukemia. Leukemia 2013; 27(3): 586-594.
  • Janku F. Phosphoinositide 3-kinase (PI3K) pathway inhibitors in solid tumors: From laboratory to patients. Cancer Treatment Reviews 2017; 59: 93-101.
  • Janku F., Wheler JJ., Naing A., Falchook GS., Hong DS., Stepanek VM., Fu S., Piha-Paul SA., Lee JJ., Luthra R. PIK3CA mutation H1047R is associated with response to PI3K/AKT/mTOR signaling pathway inhibitors in early-phase clinical trials. Cancer Research 2013; 73(1): 276-284.
  • Jeon YW., Kim OH., Shin JS., Hong HE., Kim CH., Kim SJ. Potentiation of the anticancer effects by combining docetaxel with Ku-0063794 against triple-negative breast cancer cells. Cancer Research and Treatment: Official Journal of Korean Cancer Association 2022; 54(1): 157-173.
  • Jiang SJ., Wang S. Dual targeting of mTORC1 and mTORC2 by INK-128 potently inhibits human prostate cancer cell growth in vitro and in vivo. Tumor Biology 2015; 36: 8177-8184.
  • Jones CD., Blades K., Foote KM., Guichard SM., Jewsbury PJ., McGuire T., Nissink JW., Odedra R., Tam K., Thommes P. Discovery of AZD6738, a potent and selective inhibitor with the potential to test the clinical efficacy of ATR kinase inhibition in cancer patients. Cancer Research 2013; 73(8Supplement): 2348.
  • Kaur K., Anant A., Asati V. Structural aspects of mTOR inhibitors: search for potential compounds. Anti-Cancer Agents in Medicinal Chemistry (Formerly Current Medicinal Chemistry-Anti-Cancer Agents) 2022; 22(6): 1037-1055.
  • Knight SD., Adams ND., Burgess JL., Chaudhari AM., Darcy MG., Donatelli CA., Luengo JI., Newlander KA., Parrish CA., Ridgers LH. Discovery of GSK2126458, a highly potent inhibitor of PI3K and the mammalian target of rapamycin. ACS Medicinal Chemistry Letters 2010; 1(1): 39-43.
  • Kuroshima K., Yoshino H., Okamura S., Tsuruda M., Osako Y., Sakaguchi T., Sugita S., Tatarano S., Nakagawa M., Enokida H. Potential new therapy of Rapalink‐1, a new generation mammalian target of rapamycin inhibitor, against sunitinib‐resistant renal cell carcinoma. Cancer Science 2020; 111(5): 1607-1618.
  • Laplante M., Sabatini DM. mTOR signaling in growth control and disease. Cell 2012; 149(2): 274-293.
  • Lee J., Tae Kim S., Smith S., Mortimer PG., Loembé B., Hong J., Kozarewa I., Pierce A., Dean E. Results from a phase I, open-label study of ceralasertib (AZD6738), a novel DNA damage repair agent, in combination with weekly paclitaxel in refractory cancer (NCT02630199). Journal of Clinical Oncology 2020; 38(15).
  • Leiker AJ., DeGraff W., Choudhuri R., Sowers AL., Thetford A., Cook JA., Van Waes C., Mitchell JB.Radiation enhancement of head and neck squamous cell carcinoma by the dual PI3K/mTOR inhibitor PF-05212384. Clinical Cancer Research 2015; 21(12): 2792-2801.
  • Leung E., Kim JE., Rewcastle GW., Finlay GJ., Baguley BC. Comparison of the effects of the PI3K/mTOR inhibitors NVP-BEZ235 and GSK2126458 on tamoxifen-resistant breast cancer cells. Cancer Biology & Therapy 2011; 11(11): 938-946.
  • Liu GY., Sabatini DM. mTOR at the nexus of nutrition, growth, ageing and disease. Nature reviews Molecular Cell Biology 2020; 21(4): 183-203.
  • Liu Q., Thoreen C., Wang J., Sabatini D., Gray NS. mTOR mediated anti-cancer drug discovery. Drug Discovery Today: Therapeutic Strategies 2009; 6(2): 47-55.
  • Liu Q., Xu C., Kirubakaran S., Zhang X., Hur W., Liu Y., Kwiatkowski NP., Wang J., Westover KD., Gao P. Characterization of Torin2, an ATP-competitive inhibitor of mTOR, ATM, and ATR. Cancer Research 2013; 73(8): 2574-2586.
  • Liu S., Shiotani B., Lahiri M., Maréchal A., Tse A., Leung CCY., Glover JM., Yang XH., Zou L. ATR autophosphorylation as a molecular switch for checkpoint activation. Molecular Cell 2011; 43(2): 192-202.
  • LoPiccolo J., Blumenthal GM., Bernstein WB., Dennis PA. Targeting the PI3K/Akt/mTOR pathway: effective combinations and clinical considerations. Drug Resistance Updates 2008; 11(1-2): 32-50.
  • Lu Z., Shi X., Gong F., Li S., Wang Y., Ren Y., Zhang M., Yu B., Li Y., Zhao W. RICTOR/mTORC2 affects tumorigenesis and therapeutic efficacy of mTOR inhibitors in esophageal squamous cell carcinoma. Acta Pharmaceutica Sinica B 2020; 10(6): 1004-1019.
  • Ma X., Zhang S., He L., Rong Y., Brier LW., Sun Q., Liu R., Fan W., Chen S., Yue Z. MTORC1-mediated NRBF2 phosphorylation functions as a switch for the class III PtdIns3K and autophagy. Autophagy 2017; 13(3): 592-607.
  • Ma XM., Blenis J. Molecular mechanisms of mTOR-mediated translational control. Nat Rev Mol Cell Biol 2009; 10(5): 307-318.
  • Magaway C., Kim E., Jacinto E. Targeting mTOR and metabolism in cancer: lessons and innovations. Cells 2019; 8(12): 1584.
  • Malagu K., Duggan H., Menear K., Hummersone M., Gomez S., Bailey C., Edwards P., Drzewiecki J., Leroux F., Quesada MJ. The discovery and optimisation of pyrido [2, 3-d] pyrimidine-2, 4-diamines as potent and selective inhibitors of mTOR kinase. Bioorganic & Medicinal Chemistry Letters 2009; 19(20): 5950-5953.
  • Mallon R., Feldberg LR., Lucas J., Chaudhary I., Dehnhardt C., Santos ED., Chen Z., dos Santos O., Ayral-Kaloustian S., Venkatesan A. Antitumor efficacy of PKI-587, a highly potent dual PI3K/mTOR kinase inhibitor. Clinical Cancer Research 2011; 17(10): 3193-3203.
  • Manning BD., Toker A. AKT/PKB signaling: Navigating the Network. Cell 2017; 169(3): 381-405.
  • Mao B., Zhang Q., Ma L., Zhao D-S., Zhao P., Yan P. Overview of research into mTOR inhibitors. Molecules 2022; 27(16): 5295.
  • Mao X., Lee NK., Saad SE., Fong IL. Clinical translation for targeting DNA damage repair in non-small cell lung cancer: a review. Translational Lung Cancer Research 2024; 13(2): 375.
  • Mi W., Ye Q., Liu S., She QB. AKT inhibition overcomes rapamycin resistance by enhancing the repressive function of PRAS40 on mTORC1/4E-BP1 axis. Oncotarget 2015; 6(16): 13962.
  • Miller TW., Balko JM., Arteaga CL. Phosphatidylinositol 3-kinase and antiestrogen resistance in breast cancer. Journal of Clinical Oncology 2011; 29(33): 4452-4461.
  • Moore SF., Hunter RW., Hers I. mTORC2 protein complex-mediated Akt (Protein Kinase B) Serine 473 Phosphorylation is not required for Akt1 activity in human platelets [corrected]. J Biol Chem 2011; 286(28): 24553-24560.
  • Mousa OY., Keaveny AP. Everolimus: Longer‐Term CERTITUDE. 2019; 25: 1745-1746.
  • Munster P., Aggarwal R., Hong D., Schellens JH., Van Der Noll R., Specht J., Witteveen PO., Werner TL., Dees EC., Bergsland E. First-in-human phase I study of GSK2126458, an oral pan-class I phosphatidylinositol-3-kinase inhibitor, in patients with advanced solid tumor malignancies. Clinical Cancer Research 2016; 22(8): 1932-1939.
  • Munster P., Mita M., Mahipal A., Nemunaitis J., Massard C., Mikkelsen T., Cruz C., Paz-Ares L., Hidalgo M., Rathkopf D. First-in-human phase I study of a dual mTOR kinase and DNA-PK inhibitor (CC-115) in advanced malignancy. Cancer Management and Research 2019; 10463-10476.
  • Nam EA., Cortez D. ATR signalling: more than meeting at the fork. Biochemical Journal 2011; 436(3): 527-536.
  • Narov K., Yang J., Samsel P., Jones A., Sampson JR., Shen MH. The dual PI3K/mTOR inhibitor GSK2126458 is effective for treating solid renal tumours in Tsc2+/-mice through suppression of cell proliferation and induction of apoptosis. Oncotarget 2017; 8(35): 58504.
  • Omeljaniuk WJ., Krętowski R., Ratajczak-Wrona W., Jabłońska E., Cechowska-Pasko M. Novel dual PI3K/mTOR inhibitor, apitolisib (GDC-0980), inhibits growth and induces apoptosis in human glioblastoma cells. International Journal of Molecular Sciences 2021; 22(21): 11511.
  • Pike KG., Malagu K., Hummersone MG., Menear KA., Duggan HM., Gomez S., Martin NM., Ruston L., Pass SL., Pass M. Optimization of potent and selective dual mTORC1 and mTORC2 inhibitors: the discovery of AZD8055 and AZD2014. Bioorganic & Medicinal Chemistry Letters 2013; 23(5): 1212-1216.
  • Popova NV., Jücker M. The role of mTOR signaling as a therapeutic target in cancer. International Journal of Molecular Sciences 2021; 22(4): 1743.
  • Ragupathi A., Kim C., Jacinto E. The mTORC2 signaling network: targets and cross-talks. Biochem J 2024; 481(2): 45-91.
  • Rodrik-Outmezguine VS., Okaniwa M., Yao Z., Novotny CJ., McWhirter C., Banaji A., Won H., Wong W., Berger M., de Stanchina E. Overcoming mTOR resistance mutations with a new-generation mTOR inhibitor. Nature 2016; 534(7606): 272-276.
  • Rundle S., Bradbury A., Drew Y., Curtin NJ. Targeting the ATR-CHK1 axis in cancer therapy. Cancers 2017; 9(5): 41. Sabatini DM. mTOR and cancer: insights into a complex relationship. Nat Rev Cancer 2006; 6(9): 729-734. Sanchez VE., Nichols C., Kim HN., Gang EJ., Kim YM. Targeting PI3K signaling in acute lymphoblastic leukemia. Int J Mol Sci 2019; 20(2).
  • Sarbassov DD., Ali SM., Sengupta S., Sheen JH., Hsu PP., Bagley AF., Markhard AL., Sabatini DM. Prolonged rapamycin treatment inhibits mTORC2 assembly and Akt/PKB. Mol Cell 2006; 22(2): 159-168.
  • Sarbassov DD., Guertin DA., Ali SM., Sabatini DM. Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex. Science 2005; 307(5712): 1098-1101.
  • Satta T., Li L., Chalasani SL., Hu X., Nkwocha J., Sharma K., Kmieciak M., Rahmani M., Zhou L., Grant S. Dual mTORC1/2 inhibition synergistically enhances AML cell death in combination with the BCL2 antagonist venetoclax. Clinical Cancer Research 2023; 29(7): 1332-1343.
  • Saxton RA., Sabatini DM. mTOR signaling in growth, metabolism, and disease. Cell 2017; 168(6): 960-976. Schalm SS., Blenis J. Identification of a conserved motif required for mTOR signaling. Curr Biol 2002; 12(8): 632-639.
  • Schulze M., Stock C., Zaccagnini M., Teber D., Rassweiler JJ. Temsirolimus. Small Molecules in Oncology 2014; 393-403.
  • Selvarajah J., Carroll VA. Characterisation of a new mechanism of ATR/Chk1 regulation in breast cancer: role of mTORC2. Breast Cancer Research And Treatment 2016; 159(1): 185-185.
  • Serra V., Markman B., Scaltriti M., Eichhorn PJ., Valero V., Guzman M., Botero ML., Llonch E., Atzori F., Di Cosimo S. NVP-BEZ235, a dual PI3K/mTOR inhibitor, prevents PI3K signaling and inhibits the growth of cancer cells with activating PI3K mutations. Cancer Research 2008; 68(19): 8022-8030.
  • Shaik A., Bhakuni R., Kirubakaran S. Design, synthesis, and docking studies of new Torin2 analogs as potential ATR/mTOR kinase inhibitors. Molecules 2018; 23(5): 992.
  • Shan KS., Bonano-Rios A., Theik NWY., Hussein A., Blaya M. Molecular targeting of the phosphoinositide-3-protein kinase (PI3K) pathway across various cancers. International Journal of Molecular Sciences 2024; 25(4): 1973.
  • Shapiro GI., Bell-McGuinn KM., Molina JR., Bendell J., Spicer J., Kwak EL., Pandya SS., Millham R., Borzillo G., Pierce KJ. First-in-human study of PF-05212384 (PKI-587), a small-molecule, intravenous, dual inhibitor of PI3K and mTOR in patients with advanced cancer. Clinical Cancer Research 2015; 21(8): 1888-1895.
  • Sherris D. Palomid 529, a Dual Acting anti-angiogenic and direct anti-tumor agent affecting the PI3K/Akt/mTor pathway. Cancer Research 2008; 68(9Supplement): 359.
  • Simioni C., Martelli AM., Zauli G., Melloni E., Neri LM. Targeting mTOR in acute lymphoblastic leukemia. Cells 2019; 8(2): 190.
  • Song MS., Salmena L., Pandolfi PP. The functions and regulation of the PTEN tumour suppressor. Nature reviews Molecular Cell Biology 2012; 13(5): 283-296.
  • Spreafico A., Mackay HJ. Current phase II clinical data for ridaforolimus in cancer. Expert Opinion on Investigational Drugs 2013; 22(11): 1485-1493.
  • Steelman LS., Martelli AM., Cocco L., Libra M., Nicoletti F., Abrams SL., McCubrey JA. The therapeutic potential of mTOR inhibitors in breast cancer. Br J Clin Pharmacol 2016; 82(5): 1189-1212.
  • Sun Y., Tan L., Yao Z., Gao L., Yang J., Zeng T. In vitro and in vivo interactions of TOR inhibitor AZD8055 and azoles against pathogenic fungi. Microbiology Spectrum 2022; 10(1): e02007-02021.
  • Sutherlin DP., Bao L., Berry M., Castanedo G., Chuckowree I., Dotson J., Folks A., Friedman L., Goldsmith R., Gunzner J. Discovery of a potent, selective, and orally available class I phosphatidylinositol 3-kinase (PI3K)/mammalian target of rapamycin (mTOR) kinase inhibitor (GDC-0980) for the treatment of cancer. Journal of Medicinal Chemistry 2011; 54(21): 7579-7587.
  • Syed F., Sanganee HJ., Bahl A., Bayat A. Potent dual inhibitors of TORC1 and TORC2 complexes (KU-0063794 and KU-0068650) demonstrate in vitro and ex vivo anti-keloid scar activity. Journal of Investigative Dermatology 2013; 133(5): 1340-1350.
  • Takeuchi CS., Kim BG., Blazey CM., Ma S., Johnson HW., Anand NK., Arcalas A., Baik TG., Buhr CA., Cannoy J. Discovery of a novel class of highly potent, selective, ATP-competitive, and orally bioavailable inhibitors of the mammalian target of rapamycin (mTOR). Journal of Medicinal Chemistry 2013; 56(6): 2218-2234.
  • Tangudu NK., Huang Z., Fang R., Buj R., Uboveja A., Cole AR., Happe C., Sun M., Gelhaus SL., MacDonald ML. ATR promotes mTORC1 activation via de novo cholesterol synthesis in p16-low cancer cells. bioRxiv 2023;
  • Tarantelli C., Gaudio E., Arribas AJ., Kwee I., Hillmann P., Rinaldi A., Cascione L., Spriano F., Bernasconi E., Guidetti F. PQR309 is a novel dual PI3K/mTOR inhibitor with preclinical antitumor activity in lymphomas as a single agent and in combination therapy. Clinical Cancer Research 2018; 24(1): 120-129.
  • Tarantelli C., Gaudio E., Kwee I., Rinaldi A., Stifanelli M., Bernasconi E., Barassi C., Hillmann P., Stathis A., Carrassa L. The novel PI3K/mTOR dual inhibitor PQR309 in pre-clinical lymphoma models: Demonstration of anti-tumor activity as single agent and in combination and identification of gene expression signatures associated with response. Blood 2014; 124(21): 1782.
  • Teachey DT., Obzut DA., Cooperman J., Fang J., Carroll M., Choi JK., Houghton PJ., Brown VI., Grupp SA. The mTOR inhibitor CCI-779 induces apoptosis and inhibits growth in preclinical models of primary adult human ALL. Blood 2006; 107(3): 1149-1155.
  • Thomson AW., Woo J. Immunosuppressive properties of FK-506 and rapamycin. Lancet 1989; 2(8660): 443-444.
  • Thoreen CC., Kang SA., Chang JW., Liu Q., Zhang J., Gao Y., Reichling LJ., Sim T., Sabatini DM., Gray NS. An ATP-competitive mammalian target of rapamycin inhibitor reveals rapamycin-resistant functions of mTORC1. Journal of Biological Chemistry 2009; 284(12): 8023-8032.
  • Tsuji T., Sapinoso LM., Tran T., Gaffney B., Wong L., Sankar S., Raymon HK., Mortensen DS., Xu S. CC-115, a dual inhibitor of mTOR kinase and DNA-PK, blocks DNA damage repair pathways and selectively inhibits ATM-deficient cell growth in vitro. Oncotarget 2017; 8(43): 74688.
  • Udayakumar D., Pandita RK., Horikoshi N., Liu Y., Liu Q., Wong K-K., Hunt CR., Gray NS., Minna JD., Pandita TK. Torin2 suppresses ionizing radiation-induced DNA damage repair. Radiation Research 2016; 185(5): 527-538.
  • Unni N., Arteaga CL. Is dual mTORC1 and mTORC2 therapeutic blockade clinically feasible in cancer? JAMA Oncology 2019; 5(11): 1564-1565.
  • Vaughan LS., Barker K., Webber H., Jamin Y., Robinson S., Guichard S., Chesler L. AZD8055, a combined TORC1/TORC2 inhibitor regulates Mycn protein expression and prevents neuroblastoma growth in vitro and in vivo. Cancer Research 2011; 71(8_Supplement): 4345-4345.
  • Vezina C., Kudelski A., Sehgal SN. Rapamycin (AY-22,989), a new antifungal antibiotic. I. Taxonomy of the producing streptomycete and isolation of the active principle. J Antibiot (Tokyo) 1975; 28(10): 721-726.
  • Vogel KR., Ainslie GR., Jansen EE., Salomons GS., Gibson KM. Torin 1 partially corrects vigabatrin‐induced mitochondrial increase in mouse. Annals of Clinical And Translational Neurology 2015; 2(6): 699-706.
  • Wallin JJ., Edgar KA., Guan J., Berry M., Prior WW., Lee L., Lesnick JD., Lewis C., Nonomiya J., Pang J. GDC-0980 is a novel class I PI3K/mTOR kinase inhibitor with robust activity in cancer models driven by the PI3K pathway. Molecular Cancer Therapeutics 2011; 10(12): 2426-2436.
  • Wang L., Qiu Q., Yang D., Cao C., Lu Y., Zeng Y., Jiang W., Shen Y., Ye Y. Clinical research progress of ridaforolimus (AP23573, MK8668) over the past decade: a systemic review. Frontiers in Pharmacology 2024; 15(1173240.
  • Wang X., Chu Y., Wang W., Yuan W. mTORC signaling in hematopoiesis. Int J Hematol 2016; 103(5): 510-518. Whiteman EL., Cho H., Birnbaum MJ. Role of Akt/protein kinase B in metabolism. Trends in Endocrinology & Metabolism 2002; 13(10): 444-451.
  • Willems L., Chapuis N., Puissant A., Maciel T., Green A., Jacque N., Vignon C., Park S., Guichard S., Herault O. The dual mTORC1 and mTORC2 inhibitor AZD8055 has anti-tumor activity in acute myeloid leukemia. Leukemia 2012; 26(6): 1195-1202.
  • Wu X., Xu Y., Liang Q., Yang X., Huang J., Wang J., Zhang H., Shi J. Recent advances in dual PI3K/mTOR inhibitors for tumour treatment. Frontiers in Pharmacology 2022; 13(875372.
  • Xie Y., Liu C., Zhang Y., Li A., Sun C., Li R., Xing Y., Shi M., Wang Q. PKI-587 enhances radiosensitization of hepatocellular carcinoma by inhibiting the PI3K/AKT/mTOR pathways and DNA damage repair. PloS one 2021; 16(10): e0258817.
  • Xing X., Zhang L., Wen X., Wang X., Cheng X., Du H., Hu Y., Li L., Dong B., Li Z. PP242 suppresses cell proliferation, metastasis, and angiogenesis of gastric cancer through inhibition of the PI3K/AKT/mTOR pathway. Anti-Cancer Drugs 2014; 25(10): 1129-1140.
  • Xu E., Zhu H., Wang F., Miao J., Du S., Zheng C., Wang X., Li Z., Xu F., Xia X. OSI-027 alleviates oxaliplatin chemoresistance in gastric cancer cells by suppressing P-gp induction. Current Molecular Medicine 2021; 21(10): 922-930.
  • Xu F., Na L., Li Y., Chen L. Retracted Article: Roles of the PI3K/AKT/mTOR signalling pathways in neurodegenerative diseases and tumours. Cell & Bioscience 2020; 10(1): 54.
  • Xu H., Jiao Y., Qin S., Zhao W., Chu Q., Wu K. Organoid technology in disease modelling, drug development, personalized treatment and regeneration medicine. Experimental Hematology & Oncology 2018; 7: 1-12.
  • Xu H., Lyu X., Yi M., Zhao W., Song Y., Wu K. Organoid technology and applications in cancer research. Journal of Hematology & Oncology 2018; 11: 1-15.
  • Xue Q., Hopkins B., Perruzzi C., Udayakumar D., Sherris D., Benjamin LE. Palomid 529, a novel small-molecule drug, is a TORC1/TORC2 inhibitor that reduces tumor growth, tumor angiogenesis, and vascular permeability. Cancer Research 2008; 68(22): 9551-9557.
  • Yang J., Nie J., Ma X., Wei Y., Peng Y., Wei X. Targeting PI3K in cancer: mechanisms and advances in clinical trials. Molecular Cancer 2019; 18(1): 26.
  • Yang K., Tang XJ., Xu FF., Liu JH., Tan YQ., Gao L., Sun Q., Ding X., Liu BH., Chen QX. PI3K/mTORC1/2 inhibitor PQR309 inhibits proliferation and induces apoptosis in human glioblastoma cells. Oncology Reports 2020; 43(3): 773-782.
  • Yongxi T., Haijun H., Jiaping Z., Guoliang S., Hongying P. Autophagy inhibition sensitizes KU-0063794-mediated anti-HepG2 hepatocellular carcinoma cell activity in vitro and in vivo. Biochemical and biophysical Research Communications 2015; 465(3): 494-500.
  • Yu K., Shi C., Toral-Barza L., Lucas J., Shor B., Kim JE., Zhang WG., Mahoney R., Gaydos C., Tardio L., Kim SK., Conant R., Curran K., Kaplan J., Verheijen J., Ayral-Kaloustian S., Mansour TS., Abraham RT., Zask A., Gibbons JJ. Beyond rapalog therapy: preclinical pharmacology and antitumor activity of WYE-125132, an ATP-competitive and specific inhibitor of mTORC1 and mTORC2. Cancer Res 2010; 70(2): 621-631.
  • Yu K., Toral-Barza L., Shi C., Zhang WG., Lucas J., Shor B., Kim J., Verheijen J., Curran K., Malwitz DJ., Cole DC., Ellingboe J., Ayral-Kaloustian S., Mansour TS., Gibbons JJ., Abraham RT., Nowak P., Zask A. Biochemical, cellular, and in vivo activity of novel ATP-competitive and selective inhibitors of the mammalian target of rapamycin. Cancer Res 2009; 69(15): 6232-6240.
  • Zeng Z., Shi YX., Tsao T., Qiu Y., Kornblau SM., Baggerly KA., Liu W., Jessen K., Liu Y., Kantarjian H. Targeting of mTORC1/2 by the mTOR kinase inhibitor PP242 induces apoptosis in AML cells under conditions mimicking the bone marrow microenvironment. Blood, The Journal of the American Society of Hematology 2012; 120(13): 2679-2689.
  • Zhang Y., Ng PKS., Kucherlapati M., Chen F., Liu Y., Tsang YH., de Velasco G., Jeong KJ., Akbani R., Hadjipanayis A. A pan-cancer proteogenomic atlas of PI3K/AKT/mTOR pathway alterations. Cancer Cell 2017; 31(6): 820-832. e823.
  • Zhao D., Jiang M., Zhang X., Hou H. The role of RICTOR amplification in targeted therapy and drug resistance. Molecular Medicine 2020; 26: 1-11.
  • Zhao JL., Antonarakis ES., Cheng HH., George DJ., Aggarwal R., Riedel E., Sumiyoshi T., Schonhoft JD., Anderson A., Mao N., Haywood S., Decker B., Curley T., Abida W., Feng FY., Knudsen K., Carver B., Lacouture ME., Wyatt AW., Rathkopf D. Phase 1b study of enzalutamide plus CC-115, a dual mTORC1/2 and DNA-PK inhibitor, in men with metastatic castration-resistant prostate cancer (mCRPC). Br J Cancer 2024; 130(1): 53-62.
  • Zhong S., Xue J., Cao JJ., Sun B., Sun QF., Bian LG., Hu LY., Pan SJ. The therapeutic value of XL388 in human glioma cells. Aging (Albany NY) 2020; 12(22): 22550.
  • Zhu YR., Zhou XZ., Zhu LQ., Yao C., Fang JF., Zhou F., Deng XW., Zhang YQ. The anti-cancer activity of the mTORC1/2 dual inhibitor XL388 in preclinical osteosarcoma models. Oncotarget 2016; 7(31): 49527.
  • Zou Z., Tao T., Li H., Zhu X. mTOR signaling pathway and mTOR inhibitors in cancer: progress and challenges. Cell & Bioscience 2020; 10(1): 31.

Kanser Tedavisinde PI3K/AKT/mTOR Yolunun Hedeflenmesi: Yeni Nesil mTOR İnhibitörlerine Güncel Bir Değerlendirme

Year 2025, Volume: 8 Issue: 4, 2006 - 2038, 16.09.2025
https://doi.org/10.47495/okufbed.1609867

Abstract

PI3K/AKT/mTOR sinyal yolu, kanser gelişiminde kritik bir role sahiptir. mTOR, hücre büyümesi, metabolizma, translasyon, hücre döngüsü ve hayatta kalma gibi birçok temel hücresel sürecin düzenlenmesinde görev alan bir serin/treonin kinazıdır. PI3K/AKT/mTOR sinyal yolunun bozulması, çeşitli kanser türlerinin gelişimiyle ilişkilendirilmiştir ve bu yolun aşırı aktivasyonu, kanser hücrelerinin anormal büyümesine ve metastaz yapmasına neden olur. Özellikle mTOR'un iki ana kompleksi olan mTORC1 ve mTORC2, kanser hücrelerinin hayatta kalma ve proliferasyonunu destekleyen anahtar rol oynar. Derlemede, mTOR’un kanser tedavisi için önemli bir hedef olduğu vurgulanmakta ve mTOR inhibitörlerinin bu yolağı baskılayarak kanser hücrelerini nasıl etkilediği incelenmektedir. Rapamisin ve türevleri gibi mTOR inhibitörlerinin, kanser tedavisinde umut vaat ettiği ancak ilaç direnci ve toksisite gibi sorunlar nedeniyle klinik başarılarının sınırlı kaldığı bilinmektedir. Bu sebeple, daha spesifik ve etkili inhibitörlerin geliştirilmesi gerektiği vurgulanmaktadır. Özellikle PI3K/mTOR gibi ikili inhibitör stratejilerinin, hem mTORC1 hem de mTORC2 komplekslerini hedef alarak kanser hücrelerinin büyümesini ve metabolizmasını baskıladığı, ancak bu inhibitörlerin klinik kullanımı için daha fazla araştırmaya ihtiyaç duyulduğu ifade edilmektedir. Ayrıca, PI3K/AKT/mTOR yolunun inhibisyonu üzerine yapılan klinik çalışmaların, kemoterapi ve diğer hedefe yönelik tedavilerle kombinasyonunun daha iyi sonuçlar verdiği ve tekli tedavilere göre daha etkili olduğu da vurgulanmıştır.

Ethical Statement

Etik kurul izni gerektirmemektedir.

References

  • Al-Kali A., Aldoss I., Atherton PJ., Strand CA., Shah B., Webster J., Bhatnagar B., Flatten KS., Peterson KL., Schneider PA., Buhrow SA., Kong J., Reid JM., Adjei AA., Kaufmann SH. A phase 2 and pharmacological study of sapanisertib in patients with relapsed and/or refractory acute lymphoblastic leukemia. Cancer Med 2023; 12(23): 21229-21239.
  • Ali ES., Mitra K., Akter S., Ramproshad S., Mondal B., Khan IN., Islam MT., Sharifi-Rad J., Calina D., Cho WC. Recent advances and limitations of mTOR inhibitors in the treatment of cancer. Cancer Cell International 2022; 22(1): 284.
  • Alzahrani AS. PI3K/Akt/mTOR inhibitors in cancer: At the bench and bedside. Elsevier; 2019.
  • Amin AG., Jeong SW., Gillick JL., Sursal T., Murali R., Gandhi CD., Jhanwar-Uniyal M. Targeting the mTOR pathway using novel ATP-competitive inhibitors, Torin1, Torin2 and XL388, in the treatment of glioblastoma. International Journal of Oncology 2021; 59(4): 83.
  • An J., He H., Yao W., Shang Y., Jiang Y., Yu Z. PI3K/Akt/FoxO pathway mediates glycolytic metabolism in HepG2 cells exposed to triclosan (TCS). Environment International 2020; 136(105428.
  • Apsel B., Blair JA., Gonzalez B., Nazif TM., Feldman ME., Aizenstein B., Hoffman R., Williams RL., Shokat KM., Knight ZA. Targeted polypharmacology: discovery of dual inhibitors of tyrosine and phosphoinositide kinases. Nature Chemical Biology 2008; 4(11): 691.
  • Barnieh FM., Loadman PM., Falconer RA. Progress towards a clinically-successful ATR inhibitor for cancer therapy. Current research in pharmacology and drug discovery 2021; 2(100017.
  • Bartalucci N., Tozzi L., Bogani C., Martinelli S., Rotunno G., Villeval JL. ve Vannucchi AM. Co-targeting the PI3K/mTOR and JAK2 signalling pathways produces synergistic activity against myeloproliferative neoplasms. J Cell Mol Med 2013; 17(11): 1385-1396.
  • Baselga J., Semiglazov V., van Dam P., Manikhas A., Bellet M., Mayordomo J., Campone M., Kubista E., Greil R., Bianchi G. Phase II randomized study of neoadjuvant everolimus plus letrozole compared with placebo plus letrozole in patients with estrogen receptor–positive breast cancer. Journal of Clinical Oncology 2009; 27(16): 2630-2637.
  • Beaufils F., Cmiljanovic N., Cmiljanovic V., Bohnacker T., Melone A., Marone R., Jackson E., Zhang X., Sele A., Borsari C. 5-(4, 6-Dimorpholino-1, 3, 5-triazin-2-yl)-4-(trifluoromethyl) pyridin-2-amine (PQR309), a potent, brain-penetrant, orally bioavailable, pan-class I PI3K/mTOR inhibitor as clinical candidate in oncology. Journal of Medicinal Chemistry 2017; 60(17): 7524-7538.
  • Bendell JC., Kelley RK., Shih KC., Grabowsky JA., Bergsland E., Jones S., Martin T., Infante JR., Mischel PS., Matsutani T., Xu S., Wong L., Liu Y., Wu X., Mortensen DS., Chopra R., Hege K., Munster PN. A phase I dose-escalation study to assess safety, tolerability, pharmacokinetics, and preliminary efficacy of the dual mTORC1/mTORC2 kinase inhibitor CC-223 in patients with advanced solid tumors or multiple myeloma. Cancer 2015; 121(19): 3481-3490.
  • Bermudez T., Sammani S., Song JH., Hernon VR., Kempf CL., Garcia AN., Burt J., Hufford M., Camp SM., Cress AE. eNAMPT neutralization reduces preclinical ARDS severity via rectified NFkB and Akt/mTORC2 signaling. Scientific Reports 2022; 12(1): 696.
  • Bhagwat SV., Gokhale PC., Crew AP., Cooke A., Yao Y., Mantis C., Kahler J., Workman J., Bittner M., Dudkin L. Preclinical characterization of OSI-027, a potent and selective inhibitor of mTORC1 and mTORC2: distinct from rapamycin. Molecular Cancer Therapeutics 2011; 10(8): 1394-1406.
  • Bhakuni R., Shaik A., Priya B. ve Kirubakaran S. Characterization of SPK 98, a Torin2 analog, as ATR and mTOR dual kinase inhibitor. Bioorganic & Medicinal Chemistry Letters 2020; 30(23): 127517.
  • Brana I., Pham N-A., Kim L., Sakashita S., Li M., Ng C., Wang Y., Loparco P., Sierra R., Wang L. Novel combinations of PI3K-mTOR inhibitors with dacomitinib or chemotherapy in PTEN-deficient patient-derived tumor xenografts. Oncotarget 2017; 8(49): 84659.
  • Brown EJ., Baltimore D. Essential and dispensable roles of ATR in cell cycle arrest and genome maintenance. Genes & Development 2003; 17(5): 615-628.
  • Bukowski RM. Temsirolimus: a safety and efficacy review. Expert Opinion on Drug Safety 2012; 11(5): 861-879. Carroll WL., Aifantis I., Raetz E. Beating the clock in T-cell acute lymphoblastic leukemia. Clin Cancer Res 2017; 23(4): 873-875.
  • Chapuis N., Tamburini J., Green AS., Vignon C., Bardet V., Neyret A., Pannetier M., Willems L., Park S., Macone A. Dual inhibition of PI3K and mTORC1/2 signaling by NVP-BEZ235 as a new therapeutic strategy for acute myeloid leukemia. Clinical Cancer Research 2010; 16(22): 5424-5435.
  • Chen M., Yu Y., Mi T., Guo Q., Xiang B., Tian X., Jin L., Long C., Shen L., Liu X. MK-2206 alleviates renal fibrosis by suppressing the Akt/mTOR signaling pathway in vivo and in vitro. Cells 2022; 11(21): 3505.
  • Chen X., Zhang T., Ren X., Wei Y., Zhang X., Zang X., Ju X., Qin C., Xu D. CHKB-AS1 enhances proliferation and resistance to NVP-BEZ235 of renal cancer cells via regulating the phosphorylation of MAP4 and PI3K/AKT/mTOR signaling. European Journal of Medical Research 2023; 28(1): 588.
  • Chen Y., Zhou X. Research progress of mTOR inhibitors. European Journal of Medicinal Chemistry 2020; 208(112820.
  • Chiang GG., Abraham RT. Phosphorylation of mammalian target of rapamycin (mTOR) at Ser-2448 IsMediated by p70S6 kinase. Journal of Biological Chemistry 2005; 280(27): 25485-25490.
  • Chiarini F., Grimaldi C., Ricci F., Tazzari PL., Evangelisti C., Ognibene A., Battistelli M., Falcieri E., Melchionda F., Pession A. Activity of the novel dual phosphatidylinositol 3-kinase/mammalian target of rapamycin inhibitor NVP-BEZ235 against T-cell acute lymphoblastic leukemia. Cancer Research 2010; 70(20): 8097-8107.
  • Chilamakuri R., Agarwal S. Dual targeting of PI3K and HDAC by CUDC-907 inhibits pediatric neuroblastoma growth. Cancers 2022; 14(4): 1067.
  • Collins GP., Eyre TA., Schmitz-Rohmer D., Townsend W., Popat R., Giulino-Roth L., Fields PA., Krasniqi F., Soussain C., Stathis A. A phase II study to assess the safety and efficacy of the dual mTORC1/2 and PI3K inhibitor bimiralisib (PQR309) in relapsed, refractory lymphoma. Hemasphere 2021; 5(11): e656.
  • Crew AP., Bhagwat SV., Dong H., Bittner MA., Chan A., Chen X., Coate H., Cooke A., Gokhale PC., Honda A. Imidazo [1, 5-a] pyrazines: orally efficacious inhibitors of mTORC1 and mTORC2. Bioorganic & Medicinal Chemistry Letters 2011; 21(7): 2092-2097.
  • D'amato V., Rosa R., D'amato C., Formisano L., Marciano R., Nappi L., Raimondo L., Di Mauro C., Servetto A., Fusciello C. The dual PI3K/mTOR inhibitor PKI-587 enhances sensitivity to cetuximab in EGFR-resistant human head and neck cancer models. British Journal of Cancer 2014; 110(12): 2887-2895.
  • Dan HC., Sun M., Yang L., Feldman RI., Sui X-M., Ou CC., Nellist M., Yeung RS., Halley DJ., Nicosia SV. Phosphatidylinositol 3-kinase/Akt pathway regulates tuberous sclerosis tumor suppressor complex by phosphorylation of tuberin. Journal of Biological Chemistry 2002; 277(38): 35364-35370.
  • de Leuw P., Stephan C. Protease inhibitors for the treatment of hepatitis C virus infection. GMS Infect Dis 2017; 5(Doc08).
  • Del Campo JM., Birrer M., Davis C., Fujiwara K., Gollerkeri A., Gore M., Houk B., Lau S., Poveda A., Gonzalez-Martin A., Muller C., Muro K., Pierce K., Suzuki M., Vermette J. ve Oza A. A randomized phase II non-comparative study of PF-04691502 and gedatolisib (PF-05212384) in patients with recurrent endometrial cancer. Gynecol Oncol 2016; 142(1): 62-69.
  • Diaz R., Nguewa P., Diaz-Gonzalez J., Hamel E., Gonzalez-Moreno O., Catena R., Serrano D., Redrado M., Sherris D., Calvo A. The novel Akt inhibitor Palomid 529 (P529) enhances the effect of radiotherapy in prostate cancer. British Journal of Cancer 2009; 100(6): 932-940.
  • Dibble CC., Cantley LC. Regulation of mTORC1 by PI3K signaling. Trends in Cell Biology 2015; 25(9): 545-555.
  • Dobler C., Jost T., Hecht M., Fietkau R., Distel L. Senescence induction by combined ionizing radiation and DNA damage response inhibitors in head and neck squamous cell carcinoma cells. Cells 2020; 9(9): 2012.
  • Dolly SO., Wagner AJ., Bendell JC., Kindler HL., Krug LM., Seiwert TY., Zauderer MG., Lolkema MP., Apt D., Yeh R-F. Phase I study of apitolisib (GDC-0980), dual phosphatidylinositol-3-kinase and mammalian target of rapamycin kinase inhibitor, in patients with advanced solid tumors. Clinical Cancer Research 2016; 22(12): 2874-2884.
  • Dominguez JF., Rosberger H., Garell P., Gandhi CD., Jhanwar-Uniyal M. First, second, and third generation mTOR pathways inhibitors for treatment of glioblastoma. Cancer Research 2022; 82(12_Supplement): 5410-5410.
  • Ducker GS., Atreya CE., Simko JP., Hom YK., Matli MR., Benes CH., Hann B., Nakakura EK., Bergsland EK., Donner DB. Incomplete inhibition of phosphorylation of 4E-BP1 as a mechanism of primary resistance to ATP-competitive mTOR inhibitors. Oncogene 2014; 33(12): 1590-1600.
  • Efeyan A., Sabatini DM. mTOR and cancer: many loops in one pathway. Current Opinion in Cell Biology 2010; 22(2): 169-176.
  • Faivre S., Kroemer G., Raymond E. Current development of mTOR inhibitors as anticancer agents. Nature reviews Drug Discovery 2006; 5(8): 671-688.
  • Faulhaber EM., Jost T., Symank J., Scheper J., Bürkel F., Fietkau R., Hecht M., Distel LV. Kinase inhibitors of DNA-PK, ATM and ATR in combination with ionizing radiation can increase tumor cell death in HNSCC cells while sparing normal tissue cells. Genes 2021; 12(6): 925.
  • Fayard E., Tintignac LA., Baudry A., Hemmings BA. Protein kinase B/Akt at a glance. Journal of Cell Science 2005; 118(24): 5675-5678.
  • Feng Y., Jiang Y., Hao F. GSK2126458 has the potential to inhibit the proliferation of pancreatic cancer uncovered by bioinformatics analysis and pharmacological experiments. Journal of Translational Medicine 2021; 19: 1-17.
  • Fokas E., Prevo R., Hammond EM., Brunner TB., McKenna WG. ve Muschel RJ. Targeting ATR in DNA damage response and cancer therapeutics. Cancer treatment reviews 2014; 40(1): 109-117.
  • Foote KM., Nissink JWM., McGuire T., Turner P., Guichard S., Yates JW., Lau A., Blades K., Heathcote D., Odedra R. Discovery and characterization of AZD6738, a potent inhibitor of ataxia telangiectasia mutated and Rad3 related (ATR) kinase with application as an anticancer agent. Journal of Medicinal Chemistry 2018; 61: 9889-9907.
  • Freitag H., Christen F., Lewens F., Grass I., Briest F., Iwaszkiewicz S., Siegmund B., Grabowski P. Inhibition of mTOR's catalytic site by PKI-587 is a promising therapeutic option for gastroenteropancreatic neuroendocrine tumor disease. Neuroendocrinology 2017; 105(1): 90-104.
  • García-Martínez JM., Moran J., Clarke RG., Gray A., Cosulich SC., Chresta CM., Alessi DR. Ku-0063794 is a specific inhibitor of the mammalian target of rapamycin (mTOR). Biochemical Journal 2009; 421(1): 29-42.
  • Gazi M., Moharram SA., Marhäll A., Kazi JU. The dual specificity PI3K/mTOR inhibitor PKI-587 displays efficacy against T-cell acute lymphoblastic leukemia (T-ALL). Cancer Lett 2017; 392: 9-16.
  • Gkountakos A., Pilotto S., Mafficini A., Vicentini C., Simbolo M., Milella M., Tortora G., Scarpa A., Bria E., Corbo V. Unmasking the impact of Rictor in cancer: novel insights of mTORC2 complex. Carcinogenesis 2018; 39(8): 971-980.
  • Glaviano A., Foo AS., Lam HY., Yap KC., Jacot W., Jones RH., Eng H., Nair MG., Makvandi P., Geoerger B. PI3K/AKT/mTOR signaling transduction pathway and targeted therapies in cancer. Molecular cancer 2023; 22(1): 138.
  • Gravina GL., Marampon F., Sherris D., Vittorini F., Cesare ED., Tombolini V., Lenzi A., Jannini EA., Festuccia C. Torc1/Torc2 inhibitor, Palomid 529, enhances radiation response modulating CRM1‐mediated survivin function and delaying DNA repair in prostate cancer models. The Prostate 2014; 74(8): 852-868.
  • Grewe M., Gansauge F., Schmid RM., Adler G., Seufferlein T. Regulation of cell growth and cyclin D1 expression by the constitutively active FRAP-p70s6K pathway in human pancreatic cancer cells. Cancer Res 1999; 59(15): 3581-3587.
  • Guertin DA., Sabatini DM. Defining the role of mTOR in cancer. Cancer Cell 2007; 12(1): 9-22.
  • Guertin DA., Stevens DM., Thoreen CC., Burds AA., Kalaany NY., Moffat J., Brown M., Fitzgerald KJ., Sabatini DM. Ablation in mice of the mTORC components raptor, rictor, or mLST8 reveals that mTORC2 is required for signaling to Akt-FOXO and PKCalpha, but not S6K1. Dev Cell 2006; 11(6): 859-871.
  • Guo Q., Yu C., Zhang C., Li Y., Wang T., Huang Z., Wang X., Zhou W., Li Y., Qin Z. Highly selective, potent, and oral mTOR inhibitor for treatment of cancer as autophagy inducer. Journal of Medicinal Chemistry 2018; 61(3): 881-904.
  • Hadley G., Beard DJ., Alexopoulou Z., Sutherland BA., Buchan AM. Investigation of the novel mTOR inhibitor AZD2014 in neuronal ischemia. Neuroscience Letters 2019; 706: 223-230.
  • Han EK., Leverson J., McGonigal T., Shah O., Woods K., Hunter T., Giranda V. ve Luo Y. Akt inhibitor A-443654 induces rapid Akt Ser-473 phosphorylation independent of mTORC1 inhibition. Oncogene 2007; 26(38): 5655-5661.
  • Han SN., Oza A., Colombo N., Oaknin A., Raspagliesi F., Wenham RM., Braicu EI., Jewell A., Makker V., Krell J., Alia EMG., Baurain JF., Su Z., Neuwirth R., Vincent S., Sedarati F., Faller DV., Scambia G. A randomized phase 2 study of sapanisertib in combination with paclitaxel versus paclitaxel alone in women with advanced, recurrent, or persistent endometrial cancer. Gynecol Oncol 2023; 178: 110-118.
  • Hayman TJ., Wahba A., Rath BH., Bae H., Kramp T., Shankavaram UT., Camphausen K., Tofilon PJ. The ATP-competitive mTOR inhibitor INK128 enhances in vitro and in vivo radiosensitivity of pancreatic carcinoma cells. Clinical Cancer Research 2014; 20(1): 110-119.
  • Hong Z., Pedersen NM., Wang L., Torgersen ML., Stenmark H., Raiborg C. PtdIns3P controls mTORC1 signaling through lysosomal positioning. Journal of Cell Biology 2017; 216(12): 4217-4233.
  • Hoshii T., Matsuda S., Hirao A. Pleiotropic roles of mTOR complexes in haemato-lymphopoiesis and leukemogenesis. J Biochem 2014; 156(2): 73-83.
  • Hoxhaj G., Manning BD. The PI3K–AKT network at the interface of oncogenic signalling and cancer metabolism. Nature Reviews Cancer 2020; 20(2): 74-88.
  • Huang S., Yang ZJ., Yu C., Sinicrope FA. Inhibition of mTOR kinase by AZD8055 can antagonize chemotherapy-induced cell death through autophagy induction and down-regulation of p62/sequestosome 1. Journal of Biological Chemistry 2011; 286(46): 40002-40012.
  • Hudes G., Carducci M., Tomczak P., Dutcher J., Figlin R., Kapoor A., Staroslawska E., Sosman J., McDermott D., Bodrogi I. Temsirolimus, interferon alfa, or both for advanced renal-cell carcinoma. New England Journal of Medicine 2007; 356(22): 2271-2281.
  • Janes MR., Vu C., Mallya S., Shieh M., Limon JJ., Li L-S., Jessen KA., Martin MB., Ren P., Lilly MB. Efficacy of the investigational mTOR kinase inhibitor MLN0128/INK128 in models of B-cell acute lymphoblastic leukemia. Leukemia 2013; 27(3): 586-594.
  • Janku F. Phosphoinositide 3-kinase (PI3K) pathway inhibitors in solid tumors: From laboratory to patients. Cancer Treatment Reviews 2017; 59: 93-101.
  • Janku F., Wheler JJ., Naing A., Falchook GS., Hong DS., Stepanek VM., Fu S., Piha-Paul SA., Lee JJ., Luthra R. PIK3CA mutation H1047R is associated with response to PI3K/AKT/mTOR signaling pathway inhibitors in early-phase clinical trials. Cancer Research 2013; 73(1): 276-284.
  • Jeon YW., Kim OH., Shin JS., Hong HE., Kim CH., Kim SJ. Potentiation of the anticancer effects by combining docetaxel with Ku-0063794 against triple-negative breast cancer cells. Cancer Research and Treatment: Official Journal of Korean Cancer Association 2022; 54(1): 157-173.
  • Jiang SJ., Wang S. Dual targeting of mTORC1 and mTORC2 by INK-128 potently inhibits human prostate cancer cell growth in vitro and in vivo. Tumor Biology 2015; 36: 8177-8184.
  • Jones CD., Blades K., Foote KM., Guichard SM., Jewsbury PJ., McGuire T., Nissink JW., Odedra R., Tam K., Thommes P. Discovery of AZD6738, a potent and selective inhibitor with the potential to test the clinical efficacy of ATR kinase inhibition in cancer patients. Cancer Research 2013; 73(8Supplement): 2348.
  • Kaur K., Anant A., Asati V. Structural aspects of mTOR inhibitors: search for potential compounds. Anti-Cancer Agents in Medicinal Chemistry (Formerly Current Medicinal Chemistry-Anti-Cancer Agents) 2022; 22(6): 1037-1055.
  • Knight SD., Adams ND., Burgess JL., Chaudhari AM., Darcy MG., Donatelli CA., Luengo JI., Newlander KA., Parrish CA., Ridgers LH. Discovery of GSK2126458, a highly potent inhibitor of PI3K and the mammalian target of rapamycin. ACS Medicinal Chemistry Letters 2010; 1(1): 39-43.
  • Kuroshima K., Yoshino H., Okamura S., Tsuruda M., Osako Y., Sakaguchi T., Sugita S., Tatarano S., Nakagawa M., Enokida H. Potential new therapy of Rapalink‐1, a new generation mammalian target of rapamycin inhibitor, against sunitinib‐resistant renal cell carcinoma. Cancer Science 2020; 111(5): 1607-1618.
  • Laplante M., Sabatini DM. mTOR signaling in growth control and disease. Cell 2012; 149(2): 274-293.
  • Lee J., Tae Kim S., Smith S., Mortimer PG., Loembé B., Hong J., Kozarewa I., Pierce A., Dean E. Results from a phase I, open-label study of ceralasertib (AZD6738), a novel DNA damage repair agent, in combination with weekly paclitaxel in refractory cancer (NCT02630199). Journal of Clinical Oncology 2020; 38(15).
  • Leiker AJ., DeGraff W., Choudhuri R., Sowers AL., Thetford A., Cook JA., Van Waes C., Mitchell JB.Radiation enhancement of head and neck squamous cell carcinoma by the dual PI3K/mTOR inhibitor PF-05212384. Clinical Cancer Research 2015; 21(12): 2792-2801.
  • Leung E., Kim JE., Rewcastle GW., Finlay GJ., Baguley BC. Comparison of the effects of the PI3K/mTOR inhibitors NVP-BEZ235 and GSK2126458 on tamoxifen-resistant breast cancer cells. Cancer Biology & Therapy 2011; 11(11): 938-946.
  • Liu GY., Sabatini DM. mTOR at the nexus of nutrition, growth, ageing and disease. Nature reviews Molecular Cell Biology 2020; 21(4): 183-203.
  • Liu Q., Thoreen C., Wang J., Sabatini D., Gray NS. mTOR mediated anti-cancer drug discovery. Drug Discovery Today: Therapeutic Strategies 2009; 6(2): 47-55.
  • Liu Q., Xu C., Kirubakaran S., Zhang X., Hur W., Liu Y., Kwiatkowski NP., Wang J., Westover KD., Gao P. Characterization of Torin2, an ATP-competitive inhibitor of mTOR, ATM, and ATR. Cancer Research 2013; 73(8): 2574-2586.
  • Liu S., Shiotani B., Lahiri M., Maréchal A., Tse A., Leung CCY., Glover JM., Yang XH., Zou L. ATR autophosphorylation as a molecular switch for checkpoint activation. Molecular Cell 2011; 43(2): 192-202.
  • LoPiccolo J., Blumenthal GM., Bernstein WB., Dennis PA. Targeting the PI3K/Akt/mTOR pathway: effective combinations and clinical considerations. Drug Resistance Updates 2008; 11(1-2): 32-50.
  • Lu Z., Shi X., Gong F., Li S., Wang Y., Ren Y., Zhang M., Yu B., Li Y., Zhao W. RICTOR/mTORC2 affects tumorigenesis and therapeutic efficacy of mTOR inhibitors in esophageal squamous cell carcinoma. Acta Pharmaceutica Sinica B 2020; 10(6): 1004-1019.
  • Ma X., Zhang S., He L., Rong Y., Brier LW., Sun Q., Liu R., Fan W., Chen S., Yue Z. MTORC1-mediated NRBF2 phosphorylation functions as a switch for the class III PtdIns3K and autophagy. Autophagy 2017; 13(3): 592-607.
  • Ma XM., Blenis J. Molecular mechanisms of mTOR-mediated translational control. Nat Rev Mol Cell Biol 2009; 10(5): 307-318.
  • Magaway C., Kim E., Jacinto E. Targeting mTOR and metabolism in cancer: lessons and innovations. Cells 2019; 8(12): 1584.
  • Malagu K., Duggan H., Menear K., Hummersone M., Gomez S., Bailey C., Edwards P., Drzewiecki J., Leroux F., Quesada MJ. The discovery and optimisation of pyrido [2, 3-d] pyrimidine-2, 4-diamines as potent and selective inhibitors of mTOR kinase. Bioorganic & Medicinal Chemistry Letters 2009; 19(20): 5950-5953.
  • Mallon R., Feldberg LR., Lucas J., Chaudhary I., Dehnhardt C., Santos ED., Chen Z., dos Santos O., Ayral-Kaloustian S., Venkatesan A. Antitumor efficacy of PKI-587, a highly potent dual PI3K/mTOR kinase inhibitor. Clinical Cancer Research 2011; 17(10): 3193-3203.
  • Manning BD., Toker A. AKT/PKB signaling: Navigating the Network. Cell 2017; 169(3): 381-405.
  • Mao B., Zhang Q., Ma L., Zhao D-S., Zhao P., Yan P. Overview of research into mTOR inhibitors. Molecules 2022; 27(16): 5295.
  • Mao X., Lee NK., Saad SE., Fong IL. Clinical translation for targeting DNA damage repair in non-small cell lung cancer: a review. Translational Lung Cancer Research 2024; 13(2): 375.
  • Mi W., Ye Q., Liu S., She QB. AKT inhibition overcomes rapamycin resistance by enhancing the repressive function of PRAS40 on mTORC1/4E-BP1 axis. Oncotarget 2015; 6(16): 13962.
  • Miller TW., Balko JM., Arteaga CL. Phosphatidylinositol 3-kinase and antiestrogen resistance in breast cancer. Journal of Clinical Oncology 2011; 29(33): 4452-4461.
  • Moore SF., Hunter RW., Hers I. mTORC2 protein complex-mediated Akt (Protein Kinase B) Serine 473 Phosphorylation is not required for Akt1 activity in human platelets [corrected]. J Biol Chem 2011; 286(28): 24553-24560.
  • Mousa OY., Keaveny AP. Everolimus: Longer‐Term CERTITUDE. 2019; 25: 1745-1746.
  • Munster P., Aggarwal R., Hong D., Schellens JH., Van Der Noll R., Specht J., Witteveen PO., Werner TL., Dees EC., Bergsland E. First-in-human phase I study of GSK2126458, an oral pan-class I phosphatidylinositol-3-kinase inhibitor, in patients with advanced solid tumor malignancies. Clinical Cancer Research 2016; 22(8): 1932-1939.
  • Munster P., Mita M., Mahipal A., Nemunaitis J., Massard C., Mikkelsen T., Cruz C., Paz-Ares L., Hidalgo M., Rathkopf D. First-in-human phase I study of a dual mTOR kinase and DNA-PK inhibitor (CC-115) in advanced malignancy. Cancer Management and Research 2019; 10463-10476.
  • Nam EA., Cortez D. ATR signalling: more than meeting at the fork. Biochemical Journal 2011; 436(3): 527-536.
  • Narov K., Yang J., Samsel P., Jones A., Sampson JR., Shen MH. The dual PI3K/mTOR inhibitor GSK2126458 is effective for treating solid renal tumours in Tsc2+/-mice through suppression of cell proliferation and induction of apoptosis. Oncotarget 2017; 8(35): 58504.
  • Omeljaniuk WJ., Krętowski R., Ratajczak-Wrona W., Jabłońska E., Cechowska-Pasko M. Novel dual PI3K/mTOR inhibitor, apitolisib (GDC-0980), inhibits growth and induces apoptosis in human glioblastoma cells. International Journal of Molecular Sciences 2021; 22(21): 11511.
  • Pike KG., Malagu K., Hummersone MG., Menear KA., Duggan HM., Gomez S., Martin NM., Ruston L., Pass SL., Pass M. Optimization of potent and selective dual mTORC1 and mTORC2 inhibitors: the discovery of AZD8055 and AZD2014. Bioorganic & Medicinal Chemistry Letters 2013; 23(5): 1212-1216.
  • Popova NV., Jücker M. The role of mTOR signaling as a therapeutic target in cancer. International Journal of Molecular Sciences 2021; 22(4): 1743.
  • Ragupathi A., Kim C., Jacinto E. The mTORC2 signaling network: targets and cross-talks. Biochem J 2024; 481(2): 45-91.
  • Rodrik-Outmezguine VS., Okaniwa M., Yao Z., Novotny CJ., McWhirter C., Banaji A., Won H., Wong W., Berger M., de Stanchina E. Overcoming mTOR resistance mutations with a new-generation mTOR inhibitor. Nature 2016; 534(7606): 272-276.
  • Rundle S., Bradbury A., Drew Y., Curtin NJ. Targeting the ATR-CHK1 axis in cancer therapy. Cancers 2017; 9(5): 41. Sabatini DM. mTOR and cancer: insights into a complex relationship. Nat Rev Cancer 2006; 6(9): 729-734. Sanchez VE., Nichols C., Kim HN., Gang EJ., Kim YM. Targeting PI3K signaling in acute lymphoblastic leukemia. Int J Mol Sci 2019; 20(2).
  • Sarbassov DD., Ali SM., Sengupta S., Sheen JH., Hsu PP., Bagley AF., Markhard AL., Sabatini DM. Prolonged rapamycin treatment inhibits mTORC2 assembly and Akt/PKB. Mol Cell 2006; 22(2): 159-168.
  • Sarbassov DD., Guertin DA., Ali SM., Sabatini DM. Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex. Science 2005; 307(5712): 1098-1101.
  • Satta T., Li L., Chalasani SL., Hu X., Nkwocha J., Sharma K., Kmieciak M., Rahmani M., Zhou L., Grant S. Dual mTORC1/2 inhibition synergistically enhances AML cell death in combination with the BCL2 antagonist venetoclax. Clinical Cancer Research 2023; 29(7): 1332-1343.
  • Saxton RA., Sabatini DM. mTOR signaling in growth, metabolism, and disease. Cell 2017; 168(6): 960-976. Schalm SS., Blenis J. Identification of a conserved motif required for mTOR signaling. Curr Biol 2002; 12(8): 632-639.
  • Schulze M., Stock C., Zaccagnini M., Teber D., Rassweiler JJ. Temsirolimus. Small Molecules in Oncology 2014; 393-403.
  • Selvarajah J., Carroll VA. Characterisation of a new mechanism of ATR/Chk1 regulation in breast cancer: role of mTORC2. Breast Cancer Research And Treatment 2016; 159(1): 185-185.
  • Serra V., Markman B., Scaltriti M., Eichhorn PJ., Valero V., Guzman M., Botero ML., Llonch E., Atzori F., Di Cosimo S. NVP-BEZ235, a dual PI3K/mTOR inhibitor, prevents PI3K signaling and inhibits the growth of cancer cells with activating PI3K mutations. Cancer Research 2008; 68(19): 8022-8030.
  • Shaik A., Bhakuni R., Kirubakaran S. Design, synthesis, and docking studies of new Torin2 analogs as potential ATR/mTOR kinase inhibitors. Molecules 2018; 23(5): 992.
  • Shan KS., Bonano-Rios A., Theik NWY., Hussein A., Blaya M. Molecular targeting of the phosphoinositide-3-protein kinase (PI3K) pathway across various cancers. International Journal of Molecular Sciences 2024; 25(4): 1973.
  • Shapiro GI., Bell-McGuinn KM., Molina JR., Bendell J., Spicer J., Kwak EL., Pandya SS., Millham R., Borzillo G., Pierce KJ. First-in-human study of PF-05212384 (PKI-587), a small-molecule, intravenous, dual inhibitor of PI3K and mTOR in patients with advanced cancer. Clinical Cancer Research 2015; 21(8): 1888-1895.
  • Sherris D. Palomid 529, a Dual Acting anti-angiogenic and direct anti-tumor agent affecting the PI3K/Akt/mTor pathway. Cancer Research 2008; 68(9Supplement): 359.
  • Simioni C., Martelli AM., Zauli G., Melloni E., Neri LM. Targeting mTOR in acute lymphoblastic leukemia. Cells 2019; 8(2): 190.
  • Song MS., Salmena L., Pandolfi PP. The functions and regulation of the PTEN tumour suppressor. Nature reviews Molecular Cell Biology 2012; 13(5): 283-296.
  • Spreafico A., Mackay HJ. Current phase II clinical data for ridaforolimus in cancer. Expert Opinion on Investigational Drugs 2013; 22(11): 1485-1493.
  • Steelman LS., Martelli AM., Cocco L., Libra M., Nicoletti F., Abrams SL., McCubrey JA. The therapeutic potential of mTOR inhibitors in breast cancer. Br J Clin Pharmacol 2016; 82(5): 1189-1212.
  • Sun Y., Tan L., Yao Z., Gao L., Yang J., Zeng T. In vitro and in vivo interactions of TOR inhibitor AZD8055 and azoles against pathogenic fungi. Microbiology Spectrum 2022; 10(1): e02007-02021.
  • Sutherlin DP., Bao L., Berry M., Castanedo G., Chuckowree I., Dotson J., Folks A., Friedman L., Goldsmith R., Gunzner J. Discovery of a potent, selective, and orally available class I phosphatidylinositol 3-kinase (PI3K)/mammalian target of rapamycin (mTOR) kinase inhibitor (GDC-0980) for the treatment of cancer. Journal of Medicinal Chemistry 2011; 54(21): 7579-7587.
  • Syed F., Sanganee HJ., Bahl A., Bayat A. Potent dual inhibitors of TORC1 and TORC2 complexes (KU-0063794 and KU-0068650) demonstrate in vitro and ex vivo anti-keloid scar activity. Journal of Investigative Dermatology 2013; 133(5): 1340-1350.
  • Takeuchi CS., Kim BG., Blazey CM., Ma S., Johnson HW., Anand NK., Arcalas A., Baik TG., Buhr CA., Cannoy J. Discovery of a novel class of highly potent, selective, ATP-competitive, and orally bioavailable inhibitors of the mammalian target of rapamycin (mTOR). Journal of Medicinal Chemistry 2013; 56(6): 2218-2234.
  • Tangudu NK., Huang Z., Fang R., Buj R., Uboveja A., Cole AR., Happe C., Sun M., Gelhaus SL., MacDonald ML. ATR promotes mTORC1 activation via de novo cholesterol synthesis in p16-low cancer cells. bioRxiv 2023;
  • Tarantelli C., Gaudio E., Arribas AJ., Kwee I., Hillmann P., Rinaldi A., Cascione L., Spriano F., Bernasconi E., Guidetti F. PQR309 is a novel dual PI3K/mTOR inhibitor with preclinical antitumor activity in lymphomas as a single agent and in combination therapy. Clinical Cancer Research 2018; 24(1): 120-129.
  • Tarantelli C., Gaudio E., Kwee I., Rinaldi A., Stifanelli M., Bernasconi E., Barassi C., Hillmann P., Stathis A., Carrassa L. The novel PI3K/mTOR dual inhibitor PQR309 in pre-clinical lymphoma models: Demonstration of anti-tumor activity as single agent and in combination and identification of gene expression signatures associated with response. Blood 2014; 124(21): 1782.
  • Teachey DT., Obzut DA., Cooperman J., Fang J., Carroll M., Choi JK., Houghton PJ., Brown VI., Grupp SA. The mTOR inhibitor CCI-779 induces apoptosis and inhibits growth in preclinical models of primary adult human ALL. Blood 2006; 107(3): 1149-1155.
  • Thomson AW., Woo J. Immunosuppressive properties of FK-506 and rapamycin. Lancet 1989; 2(8660): 443-444.
  • Thoreen CC., Kang SA., Chang JW., Liu Q., Zhang J., Gao Y., Reichling LJ., Sim T., Sabatini DM., Gray NS. An ATP-competitive mammalian target of rapamycin inhibitor reveals rapamycin-resistant functions of mTORC1. Journal of Biological Chemistry 2009; 284(12): 8023-8032.
  • Tsuji T., Sapinoso LM., Tran T., Gaffney B., Wong L., Sankar S., Raymon HK., Mortensen DS., Xu S. CC-115, a dual inhibitor of mTOR kinase and DNA-PK, blocks DNA damage repair pathways and selectively inhibits ATM-deficient cell growth in vitro. Oncotarget 2017; 8(43): 74688.
  • Udayakumar D., Pandita RK., Horikoshi N., Liu Y., Liu Q., Wong K-K., Hunt CR., Gray NS., Minna JD., Pandita TK. Torin2 suppresses ionizing radiation-induced DNA damage repair. Radiation Research 2016; 185(5): 527-538.
  • Unni N., Arteaga CL. Is dual mTORC1 and mTORC2 therapeutic blockade clinically feasible in cancer? JAMA Oncology 2019; 5(11): 1564-1565.
  • Vaughan LS., Barker K., Webber H., Jamin Y., Robinson S., Guichard S., Chesler L. AZD8055, a combined TORC1/TORC2 inhibitor regulates Mycn protein expression and prevents neuroblastoma growth in vitro and in vivo. Cancer Research 2011; 71(8_Supplement): 4345-4345.
  • Vezina C., Kudelski A., Sehgal SN. Rapamycin (AY-22,989), a new antifungal antibiotic. I. Taxonomy of the producing streptomycete and isolation of the active principle. J Antibiot (Tokyo) 1975; 28(10): 721-726.
  • Vogel KR., Ainslie GR., Jansen EE., Salomons GS., Gibson KM. Torin 1 partially corrects vigabatrin‐induced mitochondrial increase in mouse. Annals of Clinical And Translational Neurology 2015; 2(6): 699-706.
  • Wallin JJ., Edgar KA., Guan J., Berry M., Prior WW., Lee L., Lesnick JD., Lewis C., Nonomiya J., Pang J. GDC-0980 is a novel class I PI3K/mTOR kinase inhibitor with robust activity in cancer models driven by the PI3K pathway. Molecular Cancer Therapeutics 2011; 10(12): 2426-2436.
  • Wang L., Qiu Q., Yang D., Cao C., Lu Y., Zeng Y., Jiang W., Shen Y., Ye Y. Clinical research progress of ridaforolimus (AP23573, MK8668) over the past decade: a systemic review. Frontiers in Pharmacology 2024; 15(1173240.
  • Wang X., Chu Y., Wang W., Yuan W. mTORC signaling in hematopoiesis. Int J Hematol 2016; 103(5): 510-518. Whiteman EL., Cho H., Birnbaum MJ. Role of Akt/protein kinase B in metabolism. Trends in Endocrinology & Metabolism 2002; 13(10): 444-451.
  • Willems L., Chapuis N., Puissant A., Maciel T., Green A., Jacque N., Vignon C., Park S., Guichard S., Herault O. The dual mTORC1 and mTORC2 inhibitor AZD8055 has anti-tumor activity in acute myeloid leukemia. Leukemia 2012; 26(6): 1195-1202.
  • Wu X., Xu Y., Liang Q., Yang X., Huang J., Wang J., Zhang H., Shi J. Recent advances in dual PI3K/mTOR inhibitors for tumour treatment. Frontiers in Pharmacology 2022; 13(875372.
  • Xie Y., Liu C., Zhang Y., Li A., Sun C., Li R., Xing Y., Shi M., Wang Q. PKI-587 enhances radiosensitization of hepatocellular carcinoma by inhibiting the PI3K/AKT/mTOR pathways and DNA damage repair. PloS one 2021; 16(10): e0258817.
  • Xing X., Zhang L., Wen X., Wang X., Cheng X., Du H., Hu Y., Li L., Dong B., Li Z. PP242 suppresses cell proliferation, metastasis, and angiogenesis of gastric cancer through inhibition of the PI3K/AKT/mTOR pathway. Anti-Cancer Drugs 2014; 25(10): 1129-1140.
  • Xu E., Zhu H., Wang F., Miao J., Du S., Zheng C., Wang X., Li Z., Xu F., Xia X. OSI-027 alleviates oxaliplatin chemoresistance in gastric cancer cells by suppressing P-gp induction. Current Molecular Medicine 2021; 21(10): 922-930.
  • Xu F., Na L., Li Y., Chen L. Retracted Article: Roles of the PI3K/AKT/mTOR signalling pathways in neurodegenerative diseases and tumours. Cell & Bioscience 2020; 10(1): 54.
  • Xu H., Jiao Y., Qin S., Zhao W., Chu Q., Wu K. Organoid technology in disease modelling, drug development, personalized treatment and regeneration medicine. Experimental Hematology & Oncology 2018; 7: 1-12.
  • Xu H., Lyu X., Yi M., Zhao W., Song Y., Wu K. Organoid technology and applications in cancer research. Journal of Hematology & Oncology 2018; 11: 1-15.
  • Xue Q., Hopkins B., Perruzzi C., Udayakumar D., Sherris D., Benjamin LE. Palomid 529, a novel small-molecule drug, is a TORC1/TORC2 inhibitor that reduces tumor growth, tumor angiogenesis, and vascular permeability. Cancer Research 2008; 68(22): 9551-9557.
  • Yang J., Nie J., Ma X., Wei Y., Peng Y., Wei X. Targeting PI3K in cancer: mechanisms and advances in clinical trials. Molecular Cancer 2019; 18(1): 26.
  • Yang K., Tang XJ., Xu FF., Liu JH., Tan YQ., Gao L., Sun Q., Ding X., Liu BH., Chen QX. PI3K/mTORC1/2 inhibitor PQR309 inhibits proliferation and induces apoptosis in human glioblastoma cells. Oncology Reports 2020; 43(3): 773-782.
  • Yongxi T., Haijun H., Jiaping Z., Guoliang S., Hongying P. Autophagy inhibition sensitizes KU-0063794-mediated anti-HepG2 hepatocellular carcinoma cell activity in vitro and in vivo. Biochemical and biophysical Research Communications 2015; 465(3): 494-500.
  • Yu K., Shi C., Toral-Barza L., Lucas J., Shor B., Kim JE., Zhang WG., Mahoney R., Gaydos C., Tardio L., Kim SK., Conant R., Curran K., Kaplan J., Verheijen J., Ayral-Kaloustian S., Mansour TS., Abraham RT., Zask A., Gibbons JJ. Beyond rapalog therapy: preclinical pharmacology and antitumor activity of WYE-125132, an ATP-competitive and specific inhibitor of mTORC1 and mTORC2. Cancer Res 2010; 70(2): 621-631.
  • Yu K., Toral-Barza L., Shi C., Zhang WG., Lucas J., Shor B., Kim J., Verheijen J., Curran K., Malwitz DJ., Cole DC., Ellingboe J., Ayral-Kaloustian S., Mansour TS., Gibbons JJ., Abraham RT., Nowak P., Zask A. Biochemical, cellular, and in vivo activity of novel ATP-competitive and selective inhibitors of the mammalian target of rapamycin. Cancer Res 2009; 69(15): 6232-6240.
  • Zeng Z., Shi YX., Tsao T., Qiu Y., Kornblau SM., Baggerly KA., Liu W., Jessen K., Liu Y., Kantarjian H. Targeting of mTORC1/2 by the mTOR kinase inhibitor PP242 induces apoptosis in AML cells under conditions mimicking the bone marrow microenvironment. Blood, The Journal of the American Society of Hematology 2012; 120(13): 2679-2689.
  • Zhang Y., Ng PKS., Kucherlapati M., Chen F., Liu Y., Tsang YH., de Velasco G., Jeong KJ., Akbani R., Hadjipanayis A. A pan-cancer proteogenomic atlas of PI3K/AKT/mTOR pathway alterations. Cancer Cell 2017; 31(6): 820-832. e823.
  • Zhao D., Jiang M., Zhang X., Hou H. The role of RICTOR amplification in targeted therapy and drug resistance. Molecular Medicine 2020; 26: 1-11.
  • Zhao JL., Antonarakis ES., Cheng HH., George DJ., Aggarwal R., Riedel E., Sumiyoshi T., Schonhoft JD., Anderson A., Mao N., Haywood S., Decker B., Curley T., Abida W., Feng FY., Knudsen K., Carver B., Lacouture ME., Wyatt AW., Rathkopf D. Phase 1b study of enzalutamide plus CC-115, a dual mTORC1/2 and DNA-PK inhibitor, in men with metastatic castration-resistant prostate cancer (mCRPC). Br J Cancer 2024; 130(1): 53-62.
  • Zhong S., Xue J., Cao JJ., Sun B., Sun QF., Bian LG., Hu LY., Pan SJ. The therapeutic value of XL388 in human glioma cells. Aging (Albany NY) 2020; 12(22): 22550.
  • Zhu YR., Zhou XZ., Zhu LQ., Yao C., Fang JF., Zhou F., Deng XW., Zhang YQ. The anti-cancer activity of the mTORC1/2 dual inhibitor XL388 in preclinical osteosarcoma models. Oncotarget 2016; 7(31): 49527.
  • Zou Z., Tao T., Li H., Zhu X. mTOR signaling pathway and mTOR inhibitors in cancer: progress and challenges. Cell & Bioscience 2020; 10(1): 31.
There are 158 citations in total.

Details

Primary Language Turkish
Subjects Biochemistry and Cell Biology (Other)
Journal Section REVIEWS
Authors

Erhan Aptullahoğlu 0000-0002-9400-0938

Publication Date September 16, 2025
Submission Date December 30, 2024
Acceptance Date May 16, 2025
Published in Issue Year 2025 Volume: 8 Issue: 4

Cite

APA Aptullahoğlu, E. (2025). Kanser Tedavisinde PI3K/AKT/mTOR Yolunun Hedeflenmesi: Yeni Nesil mTOR İnhibitörlerine Güncel Bir Değerlendirme. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 8(4), 2006-2038. https://doi.org/10.47495/okufbed.1609867
AMA Aptullahoğlu E. Kanser Tedavisinde PI3K/AKT/mTOR Yolunun Hedeflenmesi: Yeni Nesil mTOR İnhibitörlerine Güncel Bir Değerlendirme. Osmaniye Korkut Ata University Journal of The Institute of Science and Techno. September 2025;8(4):2006-2038. doi:10.47495/okufbed.1609867
Chicago Aptullahoğlu, Erhan. “Kanser Tedavisinde PI3K AKT MTOR Yolunun Hedeflenmesi: Yeni Nesil MTOR İnhibitörlerine Güncel Bir Değerlendirme”. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi 8, no. 4 (September 2025): 2006-38. https://doi.org/10.47495/okufbed.1609867.
EndNote Aptullahoğlu E (September 1, 2025) Kanser Tedavisinde PI3K/AKT/mTOR Yolunun Hedeflenmesi: Yeni Nesil mTOR İnhibitörlerine Güncel Bir Değerlendirme. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi 8 4 2006–2038.
IEEE E. Aptullahoğlu, “Kanser Tedavisinde PI3K/AKT/mTOR Yolunun Hedeflenmesi: Yeni Nesil mTOR İnhibitörlerine Güncel Bir Değerlendirme”, Osmaniye Korkut Ata University Journal of The Institute of Science and Techno, vol. 8, no. 4, pp. 2006–2038, 2025, doi: 10.47495/okufbed.1609867.
ISNAD Aptullahoğlu, Erhan. “Kanser Tedavisinde PI3K AKT MTOR Yolunun Hedeflenmesi: Yeni Nesil MTOR İnhibitörlerine Güncel Bir Değerlendirme”. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi 8/4 (September2025), 2006-2038. https://doi.org/10.47495/okufbed.1609867.
JAMA Aptullahoğlu E. Kanser Tedavisinde PI3K/AKT/mTOR Yolunun Hedeflenmesi: Yeni Nesil mTOR İnhibitörlerine Güncel Bir Değerlendirme. Osmaniye Korkut Ata University Journal of The Institute of Science and Techno. 2025;8:2006–2038.
MLA Aptullahoğlu, Erhan. “Kanser Tedavisinde PI3K AKT MTOR Yolunun Hedeflenmesi: Yeni Nesil MTOR İnhibitörlerine Güncel Bir Değerlendirme”. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi, vol. 8, no. 4, 2025, pp. 2006-38, doi:10.47495/okufbed.1609867.
Vancouver Aptullahoğlu E. Kanser Tedavisinde PI3K/AKT/mTOR Yolunun Hedeflenmesi: Yeni Nesil mTOR İnhibitörlerine Güncel Bir Değerlendirme. Osmaniye Korkut Ata University Journal of The Institute of Science and Techno. 2025;8(4):2006-38.

23487


196541947019414

19433194341943519436 1960219721 197842261021238 23877

*This journal is an international refereed journal 

*Our journal does not charge any article processing fees over publication process.

* This journal is online publishes 5 issues per year (January, March, June, September, December)

*This journal published in Turkish and English as open access. 

19450 This work is licensed under a Creative Commons Attribution 4.0 International License.