Research Article
BibTex RIS Cite

Effect of Drought Stress on Yield and Some Morphological Characteristics in Wheat

Year 2024, , 247 - 267, 28.06.2024
https://doi.org/10.7161/omuanajas.1358800

Abstract

This study aimed to determine the impact of different irrigation levels as a drought factor on the water productivity and yield of Tosunbey variety wheat. Conducted between 2018 and 2020 at the Sarayköy Research and Application Station in Ankara Province, the experiment employed a randomized block design with three irrigation levels and three replications. Significant effects of irrigation levels on the yield and various morphological parameters of wheat plants were observed. The I100 treatment, which was irrigated up to field capacity, achieved the highest yield with an average of 6.55 tons ha-1 over the two growing seasons. In contrast, the rainfed treatment (I0) showed a yield reduction of approximately 80.99% and 77.77% compared to the I100 treatment across the two years, respectively. Water productivity analyses (IWP) revealed average values of 1.74 kg m-3 and 1.55 kg m-3 for the I100 and I50 treatments, respectively. The highest outcomes, both in terms of yield and water productivity, were obtained under the I100 irrigation management where irrigation was applied up to field capacity. Correlation analyses conducted during the study identified significant relationships between different drought stress applications and morphological parameters in wheat. These findings are expected to contribute to the understanding of optimal irrigation strategies to maximize water efficiency and enhance crop performance in wheat cultivation.

Project Number

TAGEM/TSKAD/B/18/A9/P6/612

References

  • Abdelrasheed, K. G., Mazrou, Y., Omara, A. E. D., Osman, H. S., Nehela, Y., Hafez, E. M., and Gowayed, S. M., 2021. Soil amendment using biochar and application of K-humate enhance the growth, productivity, and nutritional value of onion (Allium cepa L.) under deficit irrigation conditions. Plants, 10(12), 2598.
  • Abd El-Mageed, T. A., El-Sherif, A. M., Abd El-Mageed, S. A., and Abdou, N. M., 2019. A novel compost alleviates drought stress for sugar beet production in Cd-contaminated saline soils. Agricultural Water Management, 226, 105831.
  • Ahmadian, K., Jalilian, J., and Pirzad, A., 2021. Nano-fertilizers improved drought tolerance in wheat under deficit irrigation. Agricultural Water Management, 244, 106544.
  • Aurangzaib, M., Ahmad, Z., Jalil, M. I., Nawaz, F., Shaheen, M. R., Ahmad, M., Hussain, A., Ejaz, M. K. and Tabassum, M. A., 2021. Foliar spray of silicon confers drought tolerance in wheat (Triticum aestivum L.) by enhancing morpho-physiological and antioxidant potential. Silicon, 1-15.
  • Bai, S., Kang, Y., and Wan, S., 2020. Winter wheat growth and water use under different drip irrigation regimes in the North China PlainWinter wheat growth and water use under different drip irrigation regimes in the North China Plain. Irrigation Science, 38, 321-335.
  • Cetin, O., and Akinci, C., 2022. Water and economic productivity using different planting and irrigation methods under dry and wet seasons for wheat. International Journal of Agricultural Sustainability, 20(5), 844-856.
  • Cetin, O., and Kara, A., 2019. Assesment of water productivity using different drip irrigation systems for cotton. Agricultural Water Management, 223, 105693. doi:10.1016/j.agwat.2019.105693
  • Chen, R., Cheng, W., Cui, J., Liao, J., Fan, H., Zheng, Z., and Ma, F., 2015. Lateral spacing in drip-irrigated wheat: The effects on soil moisture, yield, and water use efficiency. Field Crops Research, 179, 52-62.
  • Dar, E. A., Brar, A. S., and Singh, K. B., 2017. Water use and productivity of drip irrigated wheat under variable climatic and soil moisture regimes in North-West, India. Agriculture, Ecosystems & Environment, 248, 9-19.
  • Degirmenci, V., Nacar, A. S., Tas-Anlagan, M., Nacar, S., Un, A., and İlhan, A., 2017. The effects of furrow and drip irrigation on wheat yield and water saving. GAP Agricultural Research Institute.
  • Ebrahimnejad, S., and Rameeh, V., 2016. Correlation and factor analysis of grain yield and some important component characters in spring bread wheat genotypes. DOI: 10.1515/cerce-2016-0001
  • Eissa, M. A., Rekaby, S. A., Hegab, S. A., and Ragheb, H. M., 2018. Effect of deficit irrigation on drip-irrigated wheat grown in semi-arid conditions of Upper Egypt. Journal of Plant Nutrition, 41(12), 1576-1586.
  • El-Mageed, A., Taia, A., El-Mageed, A., Shimaa, A., El-Saadony, M. T., Abdelaziz, S., and Abdou, N. M., 2022. Plant growth-promoting rhizobacteria improve growth, morph-physiological responses, water productivity, and yield of rice plants under full and deficit drip irrigation. Rice, 15(1), 1-15.
  • FAO (Food and Agriculture Organization of the United Nations), 2020. Ample supplies to help shield food markets from the COVID -19 crisis [Online]. http://www.fao.org/documents/card/en/c/ca8445en. Accessed on 11. 06, 2023.
  • Faramarzi, M., Yang, H., Schulin, R., and Abbaspour, K. C., 2010. Modeling wheat yield and crop water productivity in Iran: Implications of agricultural water management for wheat production. Agricultural Water Management, 97(11), 1861-1875.
  • Feng, F., Han, Y., Wang, S., Yin, S., Peng, Z., Zhou, M., Gao, W., Wen, X., Qin, X. and Siddique, K. H. M., 2018 The Effect of Grain Position on Genetic Improvement of Grain Number and Thousand Grain Weight in Winter Wheat in North China. Front. Plant Science, 9, 29. doi: 10.3389/fpls.2018.00129
  • Gao, Z., Wang, Y., Tian, G., Zhao, Y., Li, C., Cao, Q., Han, R., Shi, Z. and He, M., 2020. Plant height and its relationship with yield in wheat under different irrigation regime. Irrigation Science, 38(4), 365-371.
  • Glenn, P., Zhang, J., Brown-Guedira, G., DeWitt, N., Cook, J. P., Li, K., Akhunov, E. and Dubcovsky, J., 2021. Identification and characterization of a natural polymorphism in FT-A2 associated with increased number of grains per spike in wheat. Theoretical and Applied Genetics, 1-14.
  • Gultekin, R., Avağ, K., Görgişen, C., Öztürk, Ö., Yeter, T., and Alsan, P. B., 2023. Effect of deficit irrigation practices on greenhouse gas emissions in drip irrigation. Scientia Horticulturae, 310, 111757. https://doi.org/10.1016/j.scienta.2022.111757
  • Hagos, G. L., 2005. School of Graduate Studies Faculty of Dryland Agriculture and Natural Resources (Doctoral dissertation, Mekelle University).
  • Hammad, S. A., and Ali, O. A., 2014. Physiological and biochemical studies on drought tolerance of wheat plants by application of amino acids and yeast extract. Annals of Agricultural Sciences, 59(1), 133-145.
  • Kehl, J., 2020. Moving beyond the mirage: Water scarcity and agricultural use inefficiency in USA. Water, 12(8), 2290.
  • Kızılgeçi, F., Tazebay, N., Namlı, M., Albayrak, Ö., and Yıldırım, M., 2017. The drought effect on seed germination and seedling growth in bread wheat (Triticum aestivum L.). International Journal of Agriculture Environment and Food Sciences, 1(1), 33-37.
  • Kutlu, I., and Olgun, M., 2015. Determination of genetic parameters for yield components in bread wheat. International Journal of Biosciences, 6(12), 61-70.
  • Li, M., Shi, M., Zhang, J., Qi, Y., and Lei, Y., 2022. Quantifying the Space-Time Variations of Water Demands for Major Crops in Hebei Province, China. Atmosphere, 13(9), 1399.
  • Li, X., Xia, X., Xiao, Y., He, Z., Wang, D., Trethowan, R., Whang, H. and Chen, X., 2015. QTL mapping for plant height and yield components in common wheat under water-limited and full irrigation environments. Crop and Pasture Science, 66(7), 660-670.
  • Liu, J., Wiberg, D., Zehnder, A. J., and Yang, H., 2007. Modeling the role of irrigation in winter wheat yield, crop water productivity, and production in China. Irrigation Science, 26, 21-33.
  • Lu, J., Ma, L., Hu, T., Geng, C., and Yan, S., 2022. Deficit drip irrigation based on crop evapotranspiration and precipitation forecast improves water‐use efficiency and grain yield of summer maize. Journal of the Science of Food and Agriculture, 102(2), 653-663.
  • Maqbool, M. M., Ali, A., Haq, T., Majeed, M. N., and Lee, D. J., 2015. Response of spring wheat (Triticum aestivum L.) to induced water stress at critical growth stages. Sarhad Journal of Agriculture, 31(1), 53-58.
  • Mattar, M. A., Zin El-Abedin, T. K., Al-Ghobari, H. M., Alazba, A. A., and Elansary, H. O., 2021. Effects of different surface and subsurface drip irrigation levels on growth traits, tuber yield, and irrigation water use efficiency of potato crop. Irrigation Science, 39, 517-533.
  • Memon, S. A., Sheikh, I. A., Talpur, M. A., and Mangrio, M. A., 2021. Impact of deficit irrigation strategies on winter wheat in semi-arid climate of sindh. Agricultural Water Management, 243, 106389.
  • Mostafa, H., El-Nady, R., Awad, M., and El-Ansary, M., 2018. Drip irrigation management for wheat under clay soil in arid conditions. Ecological Engineering, 121, 35-43.
  • Oweis, T. Y., and Hachum, A. Y., 2003. Improving water productivity in the dry areas of west Asia and North Africa. In J. W. Kijne, R. Barker, and D. Molden (Eds.), Water productivity in agriculture: Limits and opportunities for ımprovement. (pp. 179–198). International Center for Agricultural Research in the Dry Areas (ICARDA).
  • Paredes, P., Rodrigues, G. C., Alves, I., and Pereira, L. S., 2014. Partitioning evapotranspiration, yield prediction and economic returns of maize undervarious irrigation management strategies. Agricultural Water Management, 135, 27–39. doi:10.1016/j.agwat.2013.12.010
  • Rahman, M., Barma, N. C. D., Biswas, B. K., Khan, A. A., and Rahman, J., 2016. Study on morpho-physiological traits in spring wheat (Triticum aestivum L.) Under rainfed condition. Bangladesh Journal of Agricultural Research, 41(2), 235-250.
  • Rajput, R. S., 2019. Path analysis and genetic parameters for grain yield in bread wheat (Triticum aestivum L.). Annual Research & Review in Biology, 1-8.
  • Rathore, V. S., Nathawat, N. S., Bhardwaj, S., Sasidharan, R. P., Yadav, B. M., Kumar, M., Santra, P., Yadava, N. D. and Yadav, O. P., 2017. Yield, water and nitrogen use efficiencies of sprinkler irrigated wheat grown under different irrigation and nitrogen levels in an arid region. Agricultural Water Management, 187, 232-245.
  • Rivera-Amado, C., Trujillo-Negrellos, E., Molero, G., Reynolds, M. P., Sylvester-Bradley, R., and Foulkes, M. J., 2019. Optimizing dry-matter partitioning for increased spike growth, grain number and harvest index in spring wheat. Field Crops Research, 240, 154-167.
  • Roberts, D. P., and Mattoo, A. K., 2018. Sustainable agriculture—Enhancing environmental benefits, food nutritional quality and building crop resilience to abiotic and biotic stresses. Agriculture, 8(1), 8.
  • Sarwar, N., Maqsood, M., Mubeen, K., Shehzad, M., Bhullar, M. S., Qamar, R., and Akbar, N., 2010. Effect of different levels of irrigation on yield and yield components of wheat cultivars. Pak. J. Agri. Sci, 47(3), 371-374.
  • Shang, Q., Wang, Y., Tang, H., Sui, N., Zhang, X., and Wang, F., 2021. Genetic, hormonal, and environmental control of tillering in wheat. The Crop Journal, 9(5), 986-991.
  • Shen, X., Wang, G., Tilahun Zeleke, K., Si, Z., Chen, J., and Gao, Y., 2020. Crop water production functions for winter wheat with drip fertigation in the North China Plain. Agronomy, 10(6), 876.
  • Si, Z., Zain, M., Mehmood, F., Wang, G., Gao, Y., and Duan, A., 2020. Effects of nitrogen application rate and irrigation regime on growth, yield, and water-nitrogen use efficiency of drip-irrigated winter wheat in the North China Plain. Agricultural Water Management, 231, 106002.
  • Singh, M., Saini, R. K., Singh, S., and Sharma, S. P., 2019. Potential of integrating biochar and deficit irrigation strategies for sustaining vegetable production in water-limited regions: A review. HortScience, 54(11), 1872-1878.
  • Sun, J., Bie, X. M., Chu, X. L., Wang, N., Zhang, X. S., and Gao, X. Q., 2023. Genome-edited TaTFL1-5 mutation decreases tiller and spikelet numbers in common wheat. Frontiers in Plant Science, 14, 557.
  • Tavakol, A. R., Liaghat, A., Oweis, T., and Alizadeh, A., 2012. The role of limited irrigation and advanced management on improving water productivity of rainfed wheat at semi-cold region of upper karkheh river basin, Iran. International Journal of Agriculture and Crop Sciences, 4(14), 939–948.
  • Tribouillois, H., Constantin, J., Murgue, C., Villerd, J., and Therond, O., 2022. Integrated modeling of crop and water management at the watershed scale: Optimizing irrigation and modifying crop succession. European Journal of Agronomy, 140, 126592.
  • Tunc, T., Sahin, U., Evren, S., Dasci, E., Guney, E., and Aslantas, R., 2019. The deficit irrigation productivity and economy in strawberry in the different drip irrigation practices in a high plain with semi-arid climate. Scientia Horticulturae, 245, 47-56.
  • Tüzüner, A., 1990. Toprakların fiziksel analiz yöntemleri. In: Toprak ve su analiz laboratuarları el kitabı. A. Tüzüner (Ed.). TC Tarım Orman ve Köy İsleri Bakanlıgı Köy Hizmetleri Genel Müdürlüğü, Ankara, Turkey. [in Turkish]
  • USSL 1954. Diagnosis and Improvement of Saline and Alkali Soils. USDA Handbook 60, USA. 47p.
  • Wang, D., Li, G., Mo, Y., Zhang, D., Xu, X., Wilkerson, C. J., and Hoogenboom, G., 2021. Evaluation of subsurface, mulched and non-mulched surface drip irrigation for maize production and economic benefits in northeast China. Irrigation Science, 39, 159-171.
  • Wang, J., Xu, C., Gao, S., and Wang, P., 2013. Effect of water amounts applied with drip irrigation on water consumption characteristics and yield of spring wheat in Xinjiang. Advance Journal of Food Science and Technology, 5(9), 1180-1185.
  • Wang, Y., Du, Y., Yang, Z., Chen, L., Condon, A. G., and Hu, Y. G., 2015. Comparing the effects of GA-responsive dwarfing genes Rht13 and Rht8 on plant height and some agronomic traits in common wheat. Field Crops Research, 179, 35-43.
  • Xu, X., Zhang, M., Li, J., Liu, Z., Zhao, Z., Zhang, Y. L., Zhou, S. L. and Wang, Z., 2018. Improving water use efficiency and grain yield of winter wheat by optimizing irrigations in the North China Plain. Field Crops Research, 221, 219-227.
  • Yang, D., Li, S., Kang, S., Du, T., Guo, P., Mao, P., Tong, X., Hao, L., Ding, X. and Niu, J., 2020. Effect of drip irrigation on wheat evapotranspiration, soil evaporation and transpiration in Northwest China. Agricultural Water Management, 232, 106001.
  • Ye, X., Lu, Y., Liu, W., Chen, G., Han, H., Zhang, J., Yang, X., Li, X., Gao, A. and Li, L., 2015. The effects of chromosome 6P on fertile tiller number of wheat as revealed in wheat-Agropyron cristatum chromosome 5A/6P translocation lines. Theoretical and Applied Genetics, 128, 797-811.
  • Yu, M., Liu, Z. H., Yang, B., Chen, H., Zhang, H., and Hou, D. B., 2020. The contribution of photosynthesis traits and plant height components to plant height in wheat at the individual quantitative trait locus level. Scientific Reports, 10(1), 1-10.
  • Yurtsever, N., 2011. Experimental statistical methods. Publication No: 56:121. Soil-Fertlizer and Water Resources Research Institute (In Turkish).
  • Zeleke, K. T., and Nendel, C., 2016. Analysis of options for increasing wheat (Triticum aestivum L.) yield in south-eastern Australia: The role of irrigation, cultivar choice and time of sowing. Agricultural Water Management, 166, 139-148.
  • Zhang, P., Ma, G., Wang, C., Lu, H., Li, S., Xie, Y., Ma, D., Zhu, Y. and Guo, T., 2017. Effect of irrigation and nitrogen application on grain amino acid composition and protein quality in winter wheat. PLoS One, 12(6), e0178494.
  • Zia, R., Nawaz, M. S., Siddique, M. J., Hakim, S., and Imran, A., 2021. Plant survival under drought stress: Implications, adaptive responses, and integrated rhizosphere management strategy for stress mitigation. Microbiological research, 242, 126626.

Kuraklık Stresinin Buğdayda Verim ve Bazı Morfolojik Özellikler Üzerine Etkisi

Year 2024, , 247 - 267, 28.06.2024
https://doi.org/10.7161/omuanajas.1358800

Abstract

Bu çalışma, kuraklık faktörü olarak farklı sulama düzeylerinin Tosunbey çeşidi buğdayın su üretkenliğine ve verimine etkisi belirlemek amacıyla 2018-2020 yıllarında Ankara İlinde, Sarayköy Araştırma ve Uygulama İstasyonu'nda yürütülmüştür. Üç sulama seviyesi ve üç tekerrürlü olarak tesadüf blokları desenine göre yürütülen çalışmada, sulama düzeylerinin buğday bitkisinin verim ve bazı morfolojik parametreleri üzerinde önemli etkileri gözlemlendmiştir. Tarla kapasitesi düzeyinde sulamanın yapıldığı I100 konusunda, her iki yetişme sezonunda ortalama 6.55 ton ha-1 ile en yüksek verim elde edildi. Buna karşılık, yağışa dayalı konu (I0), I100 konusu ile karşılaştırıldığında her iki yılda sırasıyla yaklaşık %80.99 ve %77.77 oranında verimde düşüş göstermiştir. Su üretkenliği analizlerinde (IWP) I100 ve I50 konularında sırasıyla ortalama 1.74 ve 1.55 kg m-3 değerleri elde edildi. En yüksek bulgular, hem verim hem de su üretkenliği açısından, tarla kapasitesine kadar sulamanın uygulandığı (I100) sulama yönetiminde elde edilmiştir. Yapılan korelasyon analizlerinde farklı kuraklık stresi uygulamaları altında buğdayda morfolojik parametreler arasında önemli düzeyde ilişki belirlenmiştir. Bu bulgular, buğday yetiştiriciliğinde su verimliliğini en üst düzeye çıkarmak ve ürün performansını artırmak için optimal sulama stratejilerini anlama konusuna katkı sağlayacağı düşünülmektedir.

Supporting Institution

Tarımsal Araştırmalar ve Politikalar Genel Müdürlüğü

Project Number

TAGEM/TSKAD/B/18/A9/P6/612

References

  • Abdelrasheed, K. G., Mazrou, Y., Omara, A. E. D., Osman, H. S., Nehela, Y., Hafez, E. M., and Gowayed, S. M., 2021. Soil amendment using biochar and application of K-humate enhance the growth, productivity, and nutritional value of onion (Allium cepa L.) under deficit irrigation conditions. Plants, 10(12), 2598.
  • Abd El-Mageed, T. A., El-Sherif, A. M., Abd El-Mageed, S. A., and Abdou, N. M., 2019. A novel compost alleviates drought stress for sugar beet production in Cd-contaminated saline soils. Agricultural Water Management, 226, 105831.
  • Ahmadian, K., Jalilian, J., and Pirzad, A., 2021. Nano-fertilizers improved drought tolerance in wheat under deficit irrigation. Agricultural Water Management, 244, 106544.
  • Aurangzaib, M., Ahmad, Z., Jalil, M. I., Nawaz, F., Shaheen, M. R., Ahmad, M., Hussain, A., Ejaz, M. K. and Tabassum, M. A., 2021. Foliar spray of silicon confers drought tolerance in wheat (Triticum aestivum L.) by enhancing morpho-physiological and antioxidant potential. Silicon, 1-15.
  • Bai, S., Kang, Y., and Wan, S., 2020. Winter wheat growth and water use under different drip irrigation regimes in the North China PlainWinter wheat growth and water use under different drip irrigation regimes in the North China Plain. Irrigation Science, 38, 321-335.
  • Cetin, O., and Akinci, C., 2022. Water and economic productivity using different planting and irrigation methods under dry and wet seasons for wheat. International Journal of Agricultural Sustainability, 20(5), 844-856.
  • Cetin, O., and Kara, A., 2019. Assesment of water productivity using different drip irrigation systems for cotton. Agricultural Water Management, 223, 105693. doi:10.1016/j.agwat.2019.105693
  • Chen, R., Cheng, W., Cui, J., Liao, J., Fan, H., Zheng, Z., and Ma, F., 2015. Lateral spacing in drip-irrigated wheat: The effects on soil moisture, yield, and water use efficiency. Field Crops Research, 179, 52-62.
  • Dar, E. A., Brar, A. S., and Singh, K. B., 2017. Water use and productivity of drip irrigated wheat under variable climatic and soil moisture regimes in North-West, India. Agriculture, Ecosystems & Environment, 248, 9-19.
  • Degirmenci, V., Nacar, A. S., Tas-Anlagan, M., Nacar, S., Un, A., and İlhan, A., 2017. The effects of furrow and drip irrigation on wheat yield and water saving. GAP Agricultural Research Institute.
  • Ebrahimnejad, S., and Rameeh, V., 2016. Correlation and factor analysis of grain yield and some important component characters in spring bread wheat genotypes. DOI: 10.1515/cerce-2016-0001
  • Eissa, M. A., Rekaby, S. A., Hegab, S. A., and Ragheb, H. M., 2018. Effect of deficit irrigation on drip-irrigated wheat grown in semi-arid conditions of Upper Egypt. Journal of Plant Nutrition, 41(12), 1576-1586.
  • El-Mageed, A., Taia, A., El-Mageed, A., Shimaa, A., El-Saadony, M. T., Abdelaziz, S., and Abdou, N. M., 2022. Plant growth-promoting rhizobacteria improve growth, morph-physiological responses, water productivity, and yield of rice plants under full and deficit drip irrigation. Rice, 15(1), 1-15.
  • FAO (Food and Agriculture Organization of the United Nations), 2020. Ample supplies to help shield food markets from the COVID -19 crisis [Online]. http://www.fao.org/documents/card/en/c/ca8445en. Accessed on 11. 06, 2023.
  • Faramarzi, M., Yang, H., Schulin, R., and Abbaspour, K. C., 2010. Modeling wheat yield and crop water productivity in Iran: Implications of agricultural water management for wheat production. Agricultural Water Management, 97(11), 1861-1875.
  • Feng, F., Han, Y., Wang, S., Yin, S., Peng, Z., Zhou, M., Gao, W., Wen, X., Qin, X. and Siddique, K. H. M., 2018 The Effect of Grain Position on Genetic Improvement of Grain Number and Thousand Grain Weight in Winter Wheat in North China. Front. Plant Science, 9, 29. doi: 10.3389/fpls.2018.00129
  • Gao, Z., Wang, Y., Tian, G., Zhao, Y., Li, C., Cao, Q., Han, R., Shi, Z. and He, M., 2020. Plant height and its relationship with yield in wheat under different irrigation regime. Irrigation Science, 38(4), 365-371.
  • Glenn, P., Zhang, J., Brown-Guedira, G., DeWitt, N., Cook, J. P., Li, K., Akhunov, E. and Dubcovsky, J., 2021. Identification and characterization of a natural polymorphism in FT-A2 associated with increased number of grains per spike in wheat. Theoretical and Applied Genetics, 1-14.
  • Gultekin, R., Avağ, K., Görgişen, C., Öztürk, Ö., Yeter, T., and Alsan, P. B., 2023. Effect of deficit irrigation practices on greenhouse gas emissions in drip irrigation. Scientia Horticulturae, 310, 111757. https://doi.org/10.1016/j.scienta.2022.111757
  • Hagos, G. L., 2005. School of Graduate Studies Faculty of Dryland Agriculture and Natural Resources (Doctoral dissertation, Mekelle University).
  • Hammad, S. A., and Ali, O. A., 2014. Physiological and biochemical studies on drought tolerance of wheat plants by application of amino acids and yeast extract. Annals of Agricultural Sciences, 59(1), 133-145.
  • Kehl, J., 2020. Moving beyond the mirage: Water scarcity and agricultural use inefficiency in USA. Water, 12(8), 2290.
  • Kızılgeçi, F., Tazebay, N., Namlı, M., Albayrak, Ö., and Yıldırım, M., 2017. The drought effect on seed germination and seedling growth in bread wheat (Triticum aestivum L.). International Journal of Agriculture Environment and Food Sciences, 1(1), 33-37.
  • Kutlu, I., and Olgun, M., 2015. Determination of genetic parameters for yield components in bread wheat. International Journal of Biosciences, 6(12), 61-70.
  • Li, M., Shi, M., Zhang, J., Qi, Y., and Lei, Y., 2022. Quantifying the Space-Time Variations of Water Demands for Major Crops in Hebei Province, China. Atmosphere, 13(9), 1399.
  • Li, X., Xia, X., Xiao, Y., He, Z., Wang, D., Trethowan, R., Whang, H. and Chen, X., 2015. QTL mapping for plant height and yield components in common wheat under water-limited and full irrigation environments. Crop and Pasture Science, 66(7), 660-670.
  • Liu, J., Wiberg, D., Zehnder, A. J., and Yang, H., 2007. Modeling the role of irrigation in winter wheat yield, crop water productivity, and production in China. Irrigation Science, 26, 21-33.
  • Lu, J., Ma, L., Hu, T., Geng, C., and Yan, S., 2022. Deficit drip irrigation based on crop evapotranspiration and precipitation forecast improves water‐use efficiency and grain yield of summer maize. Journal of the Science of Food and Agriculture, 102(2), 653-663.
  • Maqbool, M. M., Ali, A., Haq, T., Majeed, M. N., and Lee, D. J., 2015. Response of spring wheat (Triticum aestivum L.) to induced water stress at critical growth stages. Sarhad Journal of Agriculture, 31(1), 53-58.
  • Mattar, M. A., Zin El-Abedin, T. K., Al-Ghobari, H. M., Alazba, A. A., and Elansary, H. O., 2021. Effects of different surface and subsurface drip irrigation levels on growth traits, tuber yield, and irrigation water use efficiency of potato crop. Irrigation Science, 39, 517-533.
  • Memon, S. A., Sheikh, I. A., Talpur, M. A., and Mangrio, M. A., 2021. Impact of deficit irrigation strategies on winter wheat in semi-arid climate of sindh. Agricultural Water Management, 243, 106389.
  • Mostafa, H., El-Nady, R., Awad, M., and El-Ansary, M., 2018. Drip irrigation management for wheat under clay soil in arid conditions. Ecological Engineering, 121, 35-43.
  • Oweis, T. Y., and Hachum, A. Y., 2003. Improving water productivity in the dry areas of west Asia and North Africa. In J. W. Kijne, R. Barker, and D. Molden (Eds.), Water productivity in agriculture: Limits and opportunities for ımprovement. (pp. 179–198). International Center for Agricultural Research in the Dry Areas (ICARDA).
  • Paredes, P., Rodrigues, G. C., Alves, I., and Pereira, L. S., 2014. Partitioning evapotranspiration, yield prediction and economic returns of maize undervarious irrigation management strategies. Agricultural Water Management, 135, 27–39. doi:10.1016/j.agwat.2013.12.010
  • Rahman, M., Barma, N. C. D., Biswas, B. K., Khan, A. A., and Rahman, J., 2016. Study on morpho-physiological traits in spring wheat (Triticum aestivum L.) Under rainfed condition. Bangladesh Journal of Agricultural Research, 41(2), 235-250.
  • Rajput, R. S., 2019. Path analysis and genetic parameters for grain yield in bread wheat (Triticum aestivum L.). Annual Research & Review in Biology, 1-8.
  • Rathore, V. S., Nathawat, N. S., Bhardwaj, S., Sasidharan, R. P., Yadav, B. M., Kumar, M., Santra, P., Yadava, N. D. and Yadav, O. P., 2017. Yield, water and nitrogen use efficiencies of sprinkler irrigated wheat grown under different irrigation and nitrogen levels in an arid region. Agricultural Water Management, 187, 232-245.
  • Rivera-Amado, C., Trujillo-Negrellos, E., Molero, G., Reynolds, M. P., Sylvester-Bradley, R., and Foulkes, M. J., 2019. Optimizing dry-matter partitioning for increased spike growth, grain number and harvest index in spring wheat. Field Crops Research, 240, 154-167.
  • Roberts, D. P., and Mattoo, A. K., 2018. Sustainable agriculture—Enhancing environmental benefits, food nutritional quality and building crop resilience to abiotic and biotic stresses. Agriculture, 8(1), 8.
  • Sarwar, N., Maqsood, M., Mubeen, K., Shehzad, M., Bhullar, M. S., Qamar, R., and Akbar, N., 2010. Effect of different levels of irrigation on yield and yield components of wheat cultivars. Pak. J. Agri. Sci, 47(3), 371-374.
  • Shang, Q., Wang, Y., Tang, H., Sui, N., Zhang, X., and Wang, F., 2021. Genetic, hormonal, and environmental control of tillering in wheat. The Crop Journal, 9(5), 986-991.
  • Shen, X., Wang, G., Tilahun Zeleke, K., Si, Z., Chen, J., and Gao, Y., 2020. Crop water production functions for winter wheat with drip fertigation in the North China Plain. Agronomy, 10(6), 876.
  • Si, Z., Zain, M., Mehmood, F., Wang, G., Gao, Y., and Duan, A., 2020. Effects of nitrogen application rate and irrigation regime on growth, yield, and water-nitrogen use efficiency of drip-irrigated winter wheat in the North China Plain. Agricultural Water Management, 231, 106002.
  • Singh, M., Saini, R. K., Singh, S., and Sharma, S. P., 2019. Potential of integrating biochar and deficit irrigation strategies for sustaining vegetable production in water-limited regions: A review. HortScience, 54(11), 1872-1878.
  • Sun, J., Bie, X. M., Chu, X. L., Wang, N., Zhang, X. S., and Gao, X. Q., 2023. Genome-edited TaTFL1-5 mutation decreases tiller and spikelet numbers in common wheat. Frontiers in Plant Science, 14, 557.
  • Tavakol, A. R., Liaghat, A., Oweis, T., and Alizadeh, A., 2012. The role of limited irrigation and advanced management on improving water productivity of rainfed wheat at semi-cold region of upper karkheh river basin, Iran. International Journal of Agriculture and Crop Sciences, 4(14), 939–948.
  • Tribouillois, H., Constantin, J., Murgue, C., Villerd, J., and Therond, O., 2022. Integrated modeling of crop and water management at the watershed scale: Optimizing irrigation and modifying crop succession. European Journal of Agronomy, 140, 126592.
  • Tunc, T., Sahin, U., Evren, S., Dasci, E., Guney, E., and Aslantas, R., 2019. The deficit irrigation productivity and economy in strawberry in the different drip irrigation practices in a high plain with semi-arid climate. Scientia Horticulturae, 245, 47-56.
  • Tüzüner, A., 1990. Toprakların fiziksel analiz yöntemleri. In: Toprak ve su analiz laboratuarları el kitabı. A. Tüzüner (Ed.). TC Tarım Orman ve Köy İsleri Bakanlıgı Köy Hizmetleri Genel Müdürlüğü, Ankara, Turkey. [in Turkish]
  • USSL 1954. Diagnosis and Improvement of Saline and Alkali Soils. USDA Handbook 60, USA. 47p.
  • Wang, D., Li, G., Mo, Y., Zhang, D., Xu, X., Wilkerson, C. J., and Hoogenboom, G., 2021. Evaluation of subsurface, mulched and non-mulched surface drip irrigation for maize production and economic benefits in northeast China. Irrigation Science, 39, 159-171.
  • Wang, J., Xu, C., Gao, S., and Wang, P., 2013. Effect of water amounts applied with drip irrigation on water consumption characteristics and yield of spring wheat in Xinjiang. Advance Journal of Food Science and Technology, 5(9), 1180-1185.
  • Wang, Y., Du, Y., Yang, Z., Chen, L., Condon, A. G., and Hu, Y. G., 2015. Comparing the effects of GA-responsive dwarfing genes Rht13 and Rht8 on plant height and some agronomic traits in common wheat. Field Crops Research, 179, 35-43.
  • Xu, X., Zhang, M., Li, J., Liu, Z., Zhao, Z., Zhang, Y. L., Zhou, S. L. and Wang, Z., 2018. Improving water use efficiency and grain yield of winter wheat by optimizing irrigations in the North China Plain. Field Crops Research, 221, 219-227.
  • Yang, D., Li, S., Kang, S., Du, T., Guo, P., Mao, P., Tong, X., Hao, L., Ding, X. and Niu, J., 2020. Effect of drip irrigation on wheat evapotranspiration, soil evaporation and transpiration in Northwest China. Agricultural Water Management, 232, 106001.
  • Ye, X., Lu, Y., Liu, W., Chen, G., Han, H., Zhang, J., Yang, X., Li, X., Gao, A. and Li, L., 2015. The effects of chromosome 6P on fertile tiller number of wheat as revealed in wheat-Agropyron cristatum chromosome 5A/6P translocation lines. Theoretical and Applied Genetics, 128, 797-811.
  • Yu, M., Liu, Z. H., Yang, B., Chen, H., Zhang, H., and Hou, D. B., 2020. The contribution of photosynthesis traits and plant height components to plant height in wheat at the individual quantitative trait locus level. Scientific Reports, 10(1), 1-10.
  • Yurtsever, N., 2011. Experimental statistical methods. Publication No: 56:121. Soil-Fertlizer and Water Resources Research Institute (In Turkish).
  • Zeleke, K. T., and Nendel, C., 2016. Analysis of options for increasing wheat (Triticum aestivum L.) yield in south-eastern Australia: The role of irrigation, cultivar choice and time of sowing. Agricultural Water Management, 166, 139-148.
  • Zhang, P., Ma, G., Wang, C., Lu, H., Li, S., Xie, Y., Ma, D., Zhu, Y. and Guo, T., 2017. Effect of irrigation and nitrogen application on grain amino acid composition and protein quality in winter wheat. PLoS One, 12(6), e0178494.
  • Zia, R., Nawaz, M. S., Siddique, M. J., Hakim, S., and Imran, A., 2021. Plant survival under drought stress: Implications, adaptive responses, and integrated rhizosphere management strategy for stress mitigation. Microbiological research, 242, 126626.
There are 61 citations in total.

Details

Primary Language English
Subjects Irrigation Systems , Agricultural Engineering (Other)
Journal Section Anadolu Tarım Bilimleri Dergisi
Authors

Rohat Gültekin 0000-0001-9834-4765

Tuğba Yeter 0000-0002-0586-1366

Ceren Görgişen 0000-0002-8348-1094

Project Number TAGEM/TSKAD/B/18/A9/P6/612
Early Pub Date June 27, 2024
Publication Date June 28, 2024
Acceptance Date April 26, 2024
Published in Issue Year 2024

Cite

APA Gültekin, R., Yeter, T., & Görgişen, C. (2024). Effect of Drought Stress on Yield and Some Morphological Characteristics in Wheat. Anadolu Tarım Bilimleri Dergisi, 39(2), 247-267. https://doi.org/10.7161/omuanajas.1358800
AMA Gültekin R, Yeter T, Görgişen C. Effect of Drought Stress on Yield and Some Morphological Characteristics in Wheat. ANAJAS. June 2024;39(2):247-267. doi:10.7161/omuanajas.1358800
Chicago Gültekin, Rohat, Tuğba Yeter, and Ceren Görgişen. “Effect of Drought Stress on Yield and Some Morphological Characteristics in Wheat”. Anadolu Tarım Bilimleri Dergisi 39, no. 2 (June 2024): 247-67. https://doi.org/10.7161/omuanajas.1358800.
EndNote Gültekin R, Yeter T, Görgişen C (June 1, 2024) Effect of Drought Stress on Yield and Some Morphological Characteristics in Wheat. Anadolu Tarım Bilimleri Dergisi 39 2 247–267.
IEEE R. Gültekin, T. Yeter, and C. Görgişen, “Effect of Drought Stress on Yield and Some Morphological Characteristics in Wheat”, ANAJAS, vol. 39, no. 2, pp. 247–267, 2024, doi: 10.7161/omuanajas.1358800.
ISNAD Gültekin, Rohat et al. “Effect of Drought Stress on Yield and Some Morphological Characteristics in Wheat”. Anadolu Tarım Bilimleri Dergisi 39/2 (June 2024), 247-267. https://doi.org/10.7161/omuanajas.1358800.
JAMA Gültekin R, Yeter T, Görgişen C. Effect of Drought Stress on Yield and Some Morphological Characteristics in Wheat. ANAJAS. 2024;39:247–267.
MLA Gültekin, Rohat et al. “Effect of Drought Stress on Yield and Some Morphological Characteristics in Wheat”. Anadolu Tarım Bilimleri Dergisi, vol. 39, no. 2, 2024, pp. 247-6, doi:10.7161/omuanajas.1358800.
Vancouver Gültekin R, Yeter T, Görgişen C. Effect of Drought Stress on Yield and Some Morphological Characteristics in Wheat. ANAJAS. 2024;39(2):247-6.
Online ISSN: 1308-8769