BibTex RIS Kaynak Göster

PERMÜTASYON TESTLERİNİN DOĞRUSAL REGRESYONDA KULLANILABİLİRLİĞİNİN İRDELENMESİ

Yıl 2007, Cilt: 22 Sayı: 2, 157 - 161, 20.06.2007

Öz

enellikle F ve t testleri deneysel veri analizinde doğrusal modellerin ve/veya parametrelerin önemini test etmek
için kullanılır. Bu testler çoğu durumda oldukça etkili olsa da modelin ihtiyaç duyduğu bir ya da daha fazla varsayım
sağlanamadığında etkilerini kaybetmektedir. Bu durumda, varsayımlardan etkilenmeyen permütasyon testleri parametrik olmayan bir yöntem olarak uygulanabilmektedir. Bu çalışmada, doğrusal regresyon analizi için permütasyon testleri incelendi. Testin regresyon tekniği ile birlikte kullanımı biyolojik çalışmalardan elde edilen ve yapay olarak üretilen veri kümeleri üzerinde gerçekleştirildi. Ayrıca, permütasyon testlerinin iki türü (ham verinin tam permütasyonu ve kalıntıların permütasyonu) Normal, Ki-kare ve Poisson dağılışları gibi farklı dağılışa sahip veri setleri için karşılaştırılmalı olarak incelendi. Sonuç olarak, bu çalışmada ilgilenilen tüm dağılışlarda permütasyon testlerinin I. Tip hatayı engellemek için
kullanılabileceği anlaşıldı.

Kaynakça

  • Abecasis, G.R., Cardon, L.R. ve Cookson, W.O.C., 2000. A General Test of Association for Quantitative Traits in Nuclear Families. Am. J. Hum. Genet. 66: 279-292
  • Anderson, M.J. ve Legendre, P., 1999. An Empirical Comparison of Permutation Methods for tests of Partial Regression Coefficients in a Linear Model. J. Statist. Comput. Simul 62: 271-303
  • Anderson, M.J., 2001. Permutation Tests for Univariate or Multivariate Analysis of Variance and Regression. Can. J. Fish. Aquat. Sci. 58:626-639
  • Anderson, M.J., 2003. DISTLM v.2.: A FORTRAN Computer Program to Calculate a Distance-Based Multivariate Analysis for Linear Model. Department of Statistics, University of Auckland, New Zelland.
  • Anderson, M.J. ve Robinson, J., 2001. Permutation Tests for Linear Models. Aust. N. Z. J. Stat. 43(1): 75-88
  • Bracken, M.B., 2001. On Stratification, Minimization and Protection Against Types 1 and 2 Error. Journal of Clinical Epidemiology, 54: 104 – 107.
  • Fisher, R.A., 1935. Design of Experiments. Oliver and Body, Edinburgh.
  • Gonzalez, L. ve Manly, B.F.J., 1998. Analysis of Variance by Randomization with Small Data Sets. Environmetrics 9: 53-65.
  • Kleinbaum, D.G., Kupper, L., Muller, K.E. ve Nizam, A., 1998. Applied Regression Analysis and Other Multivariable Methods, Duxbury Pess, Pcific grove, 798 page.
  • Legendre, P., 2000. Comparison of Permutation Methods for Partial Correlation and Partial Mantel Tests. J. Statist. Comput. Simul. 67: 37 – 73.
  • Lin, S. ve Lee, J.C., 2003. Exact Test in Simple Growth Curve Models and One-Way ANOVA with Equicorrelation Error Structure. Journal of Multivariate Analysis 84: 351 – 368.
  • Maggini, R., Guisan, A. ve Cherix, D., 2002. A Stratified Approach to Modeling the Distribution of a Threatened Ant Species in the Swiss National Park. Biodiversity and Conservation 11: 2117 – 2141.
  • Makarenkov, V. ve Legendre, P., 2002. Nonlinear Redundancy Analysis and Canonical Correspondence Analysis Based on Polynomial Regression. Ecology 83: 1146-1161.
  • Manly, B.F.J., 1997. Randomization, Bootstrap and Monte Carlo methods in biology, 2nd edition. Chapman and Hall, London.
  • Nichols, T.E. ve Holmes, A.P., 2001. Nonparametric permutation tests For Functional Neuroimaging: A Primer with Examples. Human Brain Mapping 15:1-25
  • O'Gorman, T.W., 2001. An Adaptive Permutation Test procedure for Several Common Tests of Significance. Computational Statistics & Data Analysis 35: 335 - 350
  • Önder, H. ve Cebeci, Z., 2005. Use of Permutation Test on Nested Models. International Congress on Information Technology in Agriculture, Food and Evnironment 312315. October 12-15 2005, Adana, Turkie.
  • Tanizaki, H., 2001. On Small Sample Properties of Permutation Tests: An Independence Test between Two Samples and Significance Test for Regression Models. Accessed at [http://ht.econ.kobeu.ac.jp/~tanizaki/cv/working/permute.pdf] Son erişim tarihi: 19.06.2003
  • Tusell, F., 2001. A Permutation Test for Randomness with Power Against Smooth Variation. Statistics and Computing 11: 147 – 154.

PERMÜTASYON TESTLERİNİN DOĞRUSAL REGRESYONDA KULLANILABİLİRLİĞİNİN İRDELENMESİ

Yıl 2007, Cilt: 22 Sayı: 2, 157 - 161, 20.06.2007

Öz

Genellikle F ve t testleri deneysel veri analizinde doğrusal modellerin ve/veya parametrelerin önemini test etmek için kullanılır. Bu testler çoğu durumda oldukça etkili olsa da modelin ihtiyaç duyduğu bir ya da daha fazla varsayım sağlanamadığında etkilerini kaybetmektedir. Bu durumda, varsayımlardan etkilenmeyen permütasyon testleri parametrik olmayan bir yöntem olarak uygulanabilmektedir. Bu çalışmada, doğrusal regresyon analizi için permütasyon testleri incelendi. Testin regresyon tekniği ile birlikte kullanımı biyolojik çalışmalardan elde edilen ve yapay olarak üretilen veri kümeleri üzerinde gerçekleştirildi. Ayrıca, permütasyon testlerinin iki türü (ham verinin tam permütasyonu ve kalıntıların permütasyonu) Normal, Ki-kare ve Poisson dağılışları gibi farklı dağılışa sahip veri setleri için karşılaştırılmalı olarak incelendi. Sonuç olarak, bu çalışmada ilgilenilen tüm dağılışlarda permütasyon testlerinin I. Tip hatayı engellemek için kullanılabileceği anlaşıldı

Kaynakça

  • Abecasis, G.R., Cardon, L.R. ve Cookson, W.O.C., 2000. A General Test of Association for Quantitative Traits in Nuclear Families. Am. J. Hum. Genet. 66: 279-292
  • Anderson, M.J. ve Legendre, P., 1999. An Empirical Comparison of Permutation Methods for tests of Partial Regression Coefficients in a Linear Model. J. Statist. Comput. Simul 62: 271-303
  • Anderson, M.J., 2001. Permutation Tests for Univariate or Multivariate Analysis of Variance and Regression. Can. J. Fish. Aquat. Sci. 58:626-639
  • Anderson, M.J., 2003. DISTLM v.2.: A FORTRAN Computer Program to Calculate a Distance-Based Multivariate Analysis for Linear Model. Department of Statistics, University of Auckland, New Zelland.
  • Anderson, M.J. ve Robinson, J., 2001. Permutation Tests for Linear Models. Aust. N. Z. J. Stat. 43(1): 75-88
  • Bracken, M.B., 2001. On Stratification, Minimization and Protection Against Types 1 and 2 Error. Journal of Clinical Epidemiology, 54: 104 – 107.
  • Fisher, R.A., 1935. Design of Experiments. Oliver and Body, Edinburgh.
  • Gonzalez, L. ve Manly, B.F.J., 1998. Analysis of Variance by Randomization with Small Data Sets. Environmetrics 9: 53-65.
  • Kleinbaum, D.G., Kupper, L., Muller, K.E. ve Nizam, A., 1998. Applied Regression Analysis and Other Multivariable Methods, Duxbury Pess, Pcific grove, 798 page.
  • Legendre, P., 2000. Comparison of Permutation Methods for Partial Correlation and Partial Mantel Tests. J. Statist. Comput. Simul. 67: 37 – 73.
  • Lin, S. ve Lee, J.C., 2003. Exact Test in Simple Growth Curve Models and One-Way ANOVA with Equicorrelation Error Structure. Journal of Multivariate Analysis 84: 351 – 368.
  • Maggini, R., Guisan, A. ve Cherix, D., 2002. A Stratified Approach to Modeling the Distribution of a Threatened Ant Species in the Swiss National Park. Biodiversity and Conservation 11: 2117 – 2141.
  • Makarenkov, V. ve Legendre, P., 2002. Nonlinear Redundancy Analysis and Canonical Correspondence Analysis Based on Polynomial Regression. Ecology 83: 1146-1161.
  • Manly, B.F.J., 1997. Randomization, Bootstrap and Monte Carlo methods in biology, 2nd edition. Chapman and Hall, London.
  • Nichols, T.E. ve Holmes, A.P., 2001. Nonparametric permutation tests For Functional Neuroimaging: A Primer with Examples. Human Brain Mapping 15:1-25
  • O'Gorman, T.W., 2001. An Adaptive Permutation Test procedure for Several Common Tests of Significance. Computational Statistics & Data Analysis 35: 335 - 350
  • Önder, H. ve Cebeci, Z., 2005. Use of Permutation Test on Nested Models. International Congress on Information Technology in Agriculture, Food and Evnironment 312315. October 12-15 2005, Adana, Turkie.
  • Tanizaki, H., 2001. On Small Sample Properties of Permutation Tests: An Independence Test between Two Samples and Significance Test for Regression Models. Accessed at [http://ht.econ.kobeu.ac.jp/~tanizaki/cv/working/permute.pdf] Son erişim tarihi: 19.06.2003
  • Tusell, F., 2001. A Permutation Test for Randomness with Power Against Smooth Variation. Statistics and Computing 11: 147 – 154.
Toplam 19 adet kaynakça vardır.

Ayrıntılar

Birincil Dil TR
Bölüm Tarım Bilimleri (Agricultural Sciences) Eski Sayılar (Back Issues)
Yazarlar

Hasan Önder Bu kişi benim

Yayımlanma Tarihi 20 Haziran 2007
Yayımlandığı Sayı Yıl 2007 Cilt: 22 Sayı: 2

Kaynak Göster

APA Önder, H. (2007). PERMÜTASYON TESTLERİNİN DOĞRUSAL REGRESYONDA KULLANILABİLİRLİĞİNİN İRDELENMESİ. Anadolu Tarım Bilimleri Dergisi, 22(2), 157-161. https://doi.org/10.7161/anajas.2007.22.2.157-161
Online ISSN: 1308-8769