Araştırma Makalesi
BibTex RIS Kaynak Göster

The determination of soil temperature and thermal diffusivity

Yıl 2015, Cilt: 30 Sayı: 1, 74 - 85, 01.02.2015
https://doi.org/10.7161/anajas.2015.30.1.74-85

Öz

Changes in the soil temperature and thermal diffusivity conditions are one of the most important components of soil microclimate and have a considerable impact on changes iÖn soil properties and plant development processes. This study is carried out in a field covered with grass (I. experimental field) and another field covered with peach trees (II. Experimental field) in Çarşamba district of Samsun. The soil temperatures of each 10 cm from soil surface to 100 cm depth were measured daily in the experimental fields at 700, 1200, 1800 hours between august 21 and september 19, 2011. Some thermal properties of soils such as; daily soil temperature changes and due to these changes heat diffusivity, amplitude, and comparison between theoretical soil temperatures estimated from the solution of heat transfer equation and daily measured soil temperatures were investigated. In the I. and II. experimental fields, daily soil temperatures measured at 0-50 cm soil depth at 700, 1200 and 1800 hours were 16.5-24.0; 21.0-34.0; 19.5-27.0°C and 16.5-23.0; 19.0-27.5; 19.0-24.8°C, respectively and that measured at 50-100 cm soil depth were 19.1-23.0; 21.0- 25.5; 19.2-25.0°C and 18.9-22.0; 19.2-24.5; 19.0-24.0°C, respectively. Generally, changes in soil temperatures were less near the soil surface and much less in deeper soil layers (>50 cm). Amplitude values in the I. experimental field were 2.03-5.60ºC at the soil surface and between 0.90 and 3.07ºC at the layers deeper than 10 cm, they were 1.97-2.77ºC at the soil surface and between 0.94 and 2.46ºC at the layers deeper than 10 cm in the II. experimental field. Mean heat diffusivity in 0-100 cm soil depth were determined between 0.0835 and 0.8830 cm2 sec-1 in the I. experimental field, and between 0.2578 and 1.9692 cm2 sec-1 in the II. experimental field. The relative error between soil temperatures estimated from the solution of heat transfer equation and daily measured soil temperatures were determined between 0.015 and 0.089.

Kaynakça

  • Allison, L.E., Moodie, C.D. 1965. Carbonate. In: C. A. Black et all (ed). Methods of Soil Analysis, Part 2. Agronomy.. American Socety Of Argon., Inc., Madison, Wisconsin, USA, 9:1379-1400.
  • Andry, H., Yamamoto, T., Irie, T., Moritani. S., Inoue. M., Fujiyama, H. 2009. Water retention. hydraulic conductivity of hydrophilic polymers in sandy soil as affected by temperature and water quality. Journal of Hydrology, 373: 177-183.
  • Anonymous, 1984. Samsun ili verimlilik envanteri ve gübre ihtiyacı raporu.Yayın No:23. Genel Yayın No:760, Ankara.
  • Arkhangel’skaya, T.A. 2004. Thermal diffusivity of gray forest soils in the Vladimir Opolie region. Pocvovedeniye, 3: 332-342.
  • Arkhangelskaya, T.A. 2014. Diversity of thermal conditions within the paleocryogenic soil complexes of the East European Plain: The discussion of key factors and mathematical modeling. Geoderma, 213: 608–616.
  • Arkhangel’skaya, T.A., Guber, A.K., Mazirov, M.A., Prokhorov, M.V. 2005. The temperature rejime of soils in Vladimir Opol’e Region. Pocvovedeniye, 7: 832-843.
  • Arkhangel’skaya, T.A., Umarova, A.B. 2008. Thermal diffusivity and temperature regime of soils in large lysimeters of the experimental soil station of Moscow State University. Pocvovedeniye, 3: 311-320.
  • Bayraklı, F. 1987. Toprak ve bitki analizleri. 19 Mayıs Üniversitesi Ziraat Fakültesi Yayınları No: 17, Samsun.
  • Black, C.A. 1957. Soil Plant Relationships. John Wiley and Sons. Inc., New York, 332 pp.
  • Chow, T.T., Long, H., Mok, H.Y., Li, K.W. 2011. Estimation of soil temperature profile in Hong Kong from climatic variables. Energy and Buildings, 43: 3568–3575.
  • Cichota, R., Elias, E.A., de Jong van Lier, Q. 2004. Testing a finite-difference model for soil heat transfer by comparing numerical and analytical solutions. Environmental Modelling & Software, 19: 495–506.
  • Constantz, J. 1982. Temperature dependence of unsaturated hydraulic conductivity of two soils. Soil Science Society of America Journal, 46: 466-470.
  • Correia, A., Vieira, G., Ramos, M. 2012. Thermal conductivity and thermal diffusivity of cores from a 26 meter deep borehole drilled in Livingston Island, Maritime Antarctic. Geomorphology, 155(156): 7–11.
  • Demiralay, İ. 1993. Toprak fiziksel analizleri. Atatürk Üniversitesi Ziraat Fakültesi Yayınları. 143: 6-51, Erzurum.
  • Dinç, U., Şenol,S. 1997. Toprak etüd ve haritalama. Ç.Ü. Ziraat Fakültesi Genel Yayın No:161, Ders Kitapları Yayın No: 50, Adana, 235 s.
  • Ekberli, I. 2006a. Determination of Initial Unconditional Solution of Heat Conductivity Equation For Evaluation of Temperature Variance in Finite Soil Layer. J. of Applied Sci., 6(7): 1520-1526.
  • Ekberli, İ. 2006b. Isı iletkenlik denkleminin çözümüne bağlı olarak topraktaki ısı taşınımına etki yapan bazı parametrelerin incelenmesi. O.M.Ü. Zir. Fak. Dergisi, 21(2): 179-189.
  • Ekberli, I. 2010. The possibility of mathematical model application in evaluation of underground water’s nourishment via infiltration. International Soil Science Congress on ”Management of Natural Resources to Sustain Soil Health and Quality”. May 26-28, 2010. Ondokuz Mayis University, Samsun-Turkey. pp. 793-801.
  • Ekberli, İ., Gülser, C., Korkmaz, A., Özdemir, N., Aşkın, T., Mikayil, F. 2002. Toprak oluşum enerjisinin teorik incelenmesi. Su Havzalarında Toprak ve Su Kaynaklarının Korunması. Geliştirilmesi ve Yönetimi Sempozyumu. 18 – 20 Eylül, Antakya/Hatay, s. 489-494.
  • Ekberli, İ., Gülser, C., Özdemir, N. 2005. Toprakların termo-fiziksel özellikleri ve ısısal yayınım katsayısının değerlendirilmesi. O.M.Ü. Zir. Fak. Dergisi, 20(2): 85-91.
  • Ekberli, İ., Gülser, C., Özdemir, N., 2011. Toprakta ısı taşınımının matematiksel modellenmesi. Ulusal Toprak ve Su Sempozyumu, 25-27 Mayıs 2011, Ankara, s. 237-243.
  • Evett, S.R., Agam, N., Kustas, W.P., Colaizzi, P.D., Schwartz, R.C., 2012. Soil profile method for soil thermal diffusivity, conductivity and heat flux: Comparison to soil heat flux plates. Advances in Water Resources, 50: 41-54.
  • Flerchinger, G. N., Pierson, F.B. 1997. Modelling plant canopy effects on variability of soil temperature and water: model calibration and validation. Journal of Arid Environments, 35: 641-653.
  • Gao, Z., Bian, L., Hu, Y., Wan, L., Fan, J. 2007. Determination of soil temperature in an arid region. Journal of Arid Environments, 71: 57-168.
  • Ghee, C., Neilson, R., Hallet, P.D., Robinson, D., Paterson, E. 2013. Priming of soil organic matter mineralisation is intrinsically insensitive to temperature. Soil Biology & Biochemistry, 66: 20-28.
  • Guntinas, M.E., Leiros, M.C., Trasar-Cepeda, C., Gil-Sotres, F. 2012. Effects of moisture and temperature on net soil nitrogen mineralization: A laboratory study. European Journal of Soil Biology, 48: 73-80.
  • Guo, J., Yang, Y., Chen, G., Xie, J., Yang, Z. 2014. Carbon mineralization of Chinese fir (Cunninghamia lanceolata) soils under different temperature and humidity conditions. Acta Ecologica Sinica, 34: 66-71.
  • Gülser, C., Aşkın, T., Özdemir, N. 2003. Ondokuz Mayıs Üniversitesi kampus topraklarının erozyona duyarlılıklarının değerlendirilmesi. Ondokuz Mayıs Üniversitesi Ziraat Fakültesi Derğisi, 18 (1): 1-6.
  • Gülser, C., Ekberli, İ. 2002. Toprak sıcaklığının profil boyunca değişimi. O.M.Ü. Zir. Fak. Dergisi, 17(3): 43-47.
  • Gülser, C., Ekberli, I. 2004. A comparison of estimated and measured diurnal soil temperature through a clay soil depth. J. of Applied Sci., 4(3): 418-423.
  • Hassan, W., David, J., Farhat Abbas, F. 2014. Effect of type and quality of two contrasting plant residues on CO2 emission potential of Ultisol soil: Implications for indirect influence of temperature and moisture. Catena, 114:90-96.
  • Hillel, D., 1982. Introduction to soil physics. Academic Pres, İnc. San Dieoga, California, USA, 364 pp.
  • Hillel, D. 1998. Environmental soil physics. Academic Press, New York, 771 pp.
  • Hinkel, K.M. 1997. Estimating seasonal values of thermal diffusivity in thawed and frozen soils using temperature time series. Cold Regions Science and Technology, 26:1-15.
  • Hopmans, J.W., Dane, J. H., 1985. Effect of temperature-dependent hydraulic properties on soil water movement. Soil Science Society of America Journal, 49: 51-58.
  • Jaynes, D.B. 1990. Temperature variations effect on field-measured infiltration. Soil Science Society of America Journal, 54: 305-312.
  • Kacar, B. 1994. Bitki ve toprağın kimyasal analizleri III. Toprak analizleri. A.Ü. Ziraat Fakültesi Eğitim, Araştırma ve Geliştirme Vakfı Yayınları, No:3, Ankara., s. 89-98.
  • Krzysztof, M., Bronisław, W., Szymanski, W., Muskala. P. 2014. Soil moisture and temperature variation under different types of tundra vegetation during the growing season: A case study from the Fuglebekken catchment, SW Spitsbergen. Catena, 116:10-18.
  • Lei, S., Daniels, J. L., Bian, Z., Wainaina, N. 2011. Improved soil temperature modeling. Environmental Earth Sciences, 62(6): 1123-1130.
  • Lettau, H.H. 1954. Improved models of thermal diffusion in the soil. Trans. Am. Geophys. Union, 35: 121-132.
  • Li, L.-J., You, M.-Y., Shi, H.-A., Ding, X.-L., Qiao, Y.-F., Han, X.-Z. 2013. Soil CO2 emissions from a cultivated Mollisol: Effects of organic amendments, soil temperature, and moisture. European Journal of Soil Biology, 55: 83-90.
  • Nerpin, S.V., Chudnovskii, A.F. 1984. Heat and mass transfer in the plant-soil-air system. Translated from Russian. Published for USDA and National Sci. Found., Washington. D.S., by Amerind Publishing Co. Pvt. Ltd., New Delhi, India, 355 pp.
  • Olsen, S.R., Sommers, E.L. 1982. Phosphorus availability indices. Phosphorus soluble in sodium bicarbonate. Methods of Soils Analysis. Part II. Chemical and Microbiological Properties. Editors: A. L. Page, R. H. Miller, D. R. Keeney, pp. 404-430.
  • Onder, O., Ozgener, L., Tester, J.W. 2013. A practical approach to predict soil temperature variations for geothermal (ground) heat exchangers applications. International Journal of Heat and Mass Transfer, 62: 473-480.
  • Passerat de Silans, A.M., Monteny , B.A., Lhomme, J.P. 1996. Apparent soil thermal diffusivity, a case study: HAPEX-Sahel experiment. Agricultural and Forest Meteorology, 81: 201-216.
  • Ponomoryov, D.G., Nadirov, F.D., Ekberov, İ.A. 1984. Toprağın ısı mübadelesi denklemi. Azerbaycan SSC Bilimler Akademisinin Genel Dergisi, XL (11): 86-90.
  • Richards, L.A. 1954. Diagnosis and İmprovement of saline and alkali soils. U.S.Dept. Agr. Handbook, 60: 105-106.
  • Schachtschabel, P., Blume, H.-P., Brümmer, G., Hartge, K.-H., Schwertmann, U., 2001. Toprak bilimi (Çevirenler: Özbek, H., Kaya, Z., Gök, M., Kaptan, H.). Ç.Ü. Ziraat Fak. Genel Yayın No: 73, Ders Kitapları Yayın No: A-16, s. 349-361.
  • Schütt, M., Borken, W., Spot, O., Stange, C.F., Matzner, E. 2014.
  • Temperature sensitivity of C and N mineralization in temperate forest soils at low temperatures. Soil Biology & Biochemistry, 69: 320-327.
  • Sterling, A.T., Jackson, R.D., 1986. Temperature. In: Klute, A. (Ed.), Methods of Soil Analysis Part 1. Physical and Mineralogical Methods. Agronomy Monograph No: 9, ASA, SSSA, Madison WI.
  • Tanaka, K., Hashimoto, S. 2006. Plant canopy effects on soil thermal and hydrological properties and soil respiration. Ecological Modelling, 196: 32-44.
  • Terrence, H.B., Hugh, A.L.H. 2011. Fine scale variability in soil extracellular enzyme activity is insensitive to rain events and temperature in a mesic system. Pedobiologia, 54: 141–146.
  • Tihonov, A.N., Samarskiy, A.A. 1972. Uravneniya matematiçeskoy fiziki. Nauka Press, Moscow, 735 s.
  • Tikhonravova, P.I. 2007. Effect of the water content on the thermal diffusivity og clay loams with different degrees of salinization ih the Transvolga region. Pocvovedeniye, 1: 55-59.
  • Tikhonravova, P.I., Khitrov, N.B. 2003. Estimation of thermal conductivity in Vertisols of the Central Ciscaucasus region. Pocvovedeniye, 3: 342-351.
  • Usowicz, B., Kossowski, J., Baranowski, P. 1996. Spatial variability of soil thermal properties in cultivated fields. Soil & Tillage Research, 39: 85-100.
  • Wang,C., Wan, S., Xing, X., Zhang, L., Han, X. 2006. Temperature and soil moisture interactively affected soil net N mineralization in temperate grassland in Northern China. Soil Biology & Biochemistry, 38: 1101-1110.
  • Wang, Z.H., Bou-Zeid, E. 2012. A novel approach for the estimation of soil ground heat flux. Agricultural and Forest Meteorology, 154– 155: 214-221.
  • Zibilske, L.M., Makus, D.J. 2009. Black oat cover crop management effects on soil temperature and biological properties on a Mollisol in Texas, USA. Geoderma, 149: 379-385.

Toprak sıcaklığı ve ısısal yayınımın belirlenmesi

Yıl 2015, Cilt: 30 Sayı: 1, 74 - 85, 01.02.2015
https://doi.org/10.7161/anajas.2015.30.1.74-85

Öz

Topraklardaki sıcaklık değişimi ve ısısal yayınım toprak mikro klimasının oluşumuna, toprak özelliklerinin değişimi ve bitki gelişimi süreçlerine önemli düzeyde etki yapmaktadır. Bu çalışma, Samsun ili Çarşamba ilçesinde çim örtüsü ile kaplı açık (I. deneme alanı) ve şeftali bahçesinde ağaçların gölgeleme yaptığı (II. deneme alanı) alanlarda yürütülmüştür. Deneme alanlarında toprakların yüzeyinden 100 cm’ye kadar her 10 cm derinliğinde 700, 1200, 1800 saatlerindeki günlük toprak sıcaklıkları 21 ağustos 19 eylül 2011 tarihleri arasında ölçülmüştür. Ölçülen toprak sıcaklık değerlerinden faydalanarak; günlük sıcaklık değişimi ve bu değişime bağlı olarak amplitüt, ısısal yayınım katsayısı gibi ısısal özellikler, toprağın temel ısı taşınım denkleminin çözüme göre elde edilen teorik günlük sıcaklık değerleri ile ölçüm değerlerinin karşılaştırılması irdelenmiştir. I. ve II. deneme alanlarının 0-50 cm katmanlarındaki 700, 1200 ve 1800 saatlerinde ölçülen günlük sıcaklık değerleri sırasıyla 16.5-24.0; 21.0-34.0; 19.5-27.0°C ve 16.5-23.0; 19.0-27.5; 19.0-24.8°C ve 50-100 cm katmanlarında ise sırasıyla 19.1-23.0; 21.0- 25.5; 19.2-25.0°C ve 18.9-22.0; 19.2-24.5; 19.0-24.0°C arasında değişmektedir. Genel olarak her iki deneme alanında da toprakları yüzeye yakın katmanlarındaki sıcaklık değişimleri az olup, aşağı katmanlara doğru ( > 50 cm) inildikçe bu değişimler daha da azalmaktadır. Amplitüt değerleri I. deneme alanında toprak yüzeyinde 2.03-5.60ºC, 10 cm’den derin katmanlarda ise 0.93-3.07ºC arasında, II. deneme alanında ise sırasıyla 1.97-2.77ºC ve 0.94-2.46ºC arasında belirlenmiştir. Ortalama ısısal yayınım I. deneme alanında 10-100 cm toprak derinliğinde 0.0835-0.8830 cm2 sn-1; II. deneme alanında ise 0.2578-1.9692 cm2 sn-1 aralıklarında bulunmuştur. Toprağın ısı taşınım denklemine göre hesaplanan sıcaklık değerleri ile ölçülen sıcaklık değerleri arasındaki ortalama nispi hata 0.015 - 0.089 aralığında belirlenmiştir.

Kaynakça

  • Allison, L.E., Moodie, C.D. 1965. Carbonate. In: C. A. Black et all (ed). Methods of Soil Analysis, Part 2. Agronomy.. American Socety Of Argon., Inc., Madison, Wisconsin, USA, 9:1379-1400.
  • Andry, H., Yamamoto, T., Irie, T., Moritani. S., Inoue. M., Fujiyama, H. 2009. Water retention. hydraulic conductivity of hydrophilic polymers in sandy soil as affected by temperature and water quality. Journal of Hydrology, 373: 177-183.
  • Anonymous, 1984. Samsun ili verimlilik envanteri ve gübre ihtiyacı raporu.Yayın No:23. Genel Yayın No:760, Ankara.
  • Arkhangel’skaya, T.A. 2004. Thermal diffusivity of gray forest soils in the Vladimir Opolie region. Pocvovedeniye, 3: 332-342.
  • Arkhangelskaya, T.A. 2014. Diversity of thermal conditions within the paleocryogenic soil complexes of the East European Plain: The discussion of key factors and mathematical modeling. Geoderma, 213: 608–616.
  • Arkhangel’skaya, T.A., Guber, A.K., Mazirov, M.A., Prokhorov, M.V. 2005. The temperature rejime of soils in Vladimir Opol’e Region. Pocvovedeniye, 7: 832-843.
  • Arkhangel’skaya, T.A., Umarova, A.B. 2008. Thermal diffusivity and temperature regime of soils in large lysimeters of the experimental soil station of Moscow State University. Pocvovedeniye, 3: 311-320.
  • Bayraklı, F. 1987. Toprak ve bitki analizleri. 19 Mayıs Üniversitesi Ziraat Fakültesi Yayınları No: 17, Samsun.
  • Black, C.A. 1957. Soil Plant Relationships. John Wiley and Sons. Inc., New York, 332 pp.
  • Chow, T.T., Long, H., Mok, H.Y., Li, K.W. 2011. Estimation of soil temperature profile in Hong Kong from climatic variables. Energy and Buildings, 43: 3568–3575.
  • Cichota, R., Elias, E.A., de Jong van Lier, Q. 2004. Testing a finite-difference model for soil heat transfer by comparing numerical and analytical solutions. Environmental Modelling & Software, 19: 495–506.
  • Constantz, J. 1982. Temperature dependence of unsaturated hydraulic conductivity of two soils. Soil Science Society of America Journal, 46: 466-470.
  • Correia, A., Vieira, G., Ramos, M. 2012. Thermal conductivity and thermal diffusivity of cores from a 26 meter deep borehole drilled in Livingston Island, Maritime Antarctic. Geomorphology, 155(156): 7–11.
  • Demiralay, İ. 1993. Toprak fiziksel analizleri. Atatürk Üniversitesi Ziraat Fakültesi Yayınları. 143: 6-51, Erzurum.
  • Dinç, U., Şenol,S. 1997. Toprak etüd ve haritalama. Ç.Ü. Ziraat Fakültesi Genel Yayın No:161, Ders Kitapları Yayın No: 50, Adana, 235 s.
  • Ekberli, I. 2006a. Determination of Initial Unconditional Solution of Heat Conductivity Equation For Evaluation of Temperature Variance in Finite Soil Layer. J. of Applied Sci., 6(7): 1520-1526.
  • Ekberli, İ. 2006b. Isı iletkenlik denkleminin çözümüne bağlı olarak topraktaki ısı taşınımına etki yapan bazı parametrelerin incelenmesi. O.M.Ü. Zir. Fak. Dergisi, 21(2): 179-189.
  • Ekberli, I. 2010. The possibility of mathematical model application in evaluation of underground water’s nourishment via infiltration. International Soil Science Congress on ”Management of Natural Resources to Sustain Soil Health and Quality”. May 26-28, 2010. Ondokuz Mayis University, Samsun-Turkey. pp. 793-801.
  • Ekberli, İ., Gülser, C., Korkmaz, A., Özdemir, N., Aşkın, T., Mikayil, F. 2002. Toprak oluşum enerjisinin teorik incelenmesi. Su Havzalarında Toprak ve Su Kaynaklarının Korunması. Geliştirilmesi ve Yönetimi Sempozyumu. 18 – 20 Eylül, Antakya/Hatay, s. 489-494.
  • Ekberli, İ., Gülser, C., Özdemir, N. 2005. Toprakların termo-fiziksel özellikleri ve ısısal yayınım katsayısının değerlendirilmesi. O.M.Ü. Zir. Fak. Dergisi, 20(2): 85-91.
  • Ekberli, İ., Gülser, C., Özdemir, N., 2011. Toprakta ısı taşınımının matematiksel modellenmesi. Ulusal Toprak ve Su Sempozyumu, 25-27 Mayıs 2011, Ankara, s. 237-243.
  • Evett, S.R., Agam, N., Kustas, W.P., Colaizzi, P.D., Schwartz, R.C., 2012. Soil profile method for soil thermal diffusivity, conductivity and heat flux: Comparison to soil heat flux plates. Advances in Water Resources, 50: 41-54.
  • Flerchinger, G. N., Pierson, F.B. 1997. Modelling plant canopy effects on variability of soil temperature and water: model calibration and validation. Journal of Arid Environments, 35: 641-653.
  • Gao, Z., Bian, L., Hu, Y., Wan, L., Fan, J. 2007. Determination of soil temperature in an arid region. Journal of Arid Environments, 71: 57-168.
  • Ghee, C., Neilson, R., Hallet, P.D., Robinson, D., Paterson, E. 2013. Priming of soil organic matter mineralisation is intrinsically insensitive to temperature. Soil Biology & Biochemistry, 66: 20-28.
  • Guntinas, M.E., Leiros, M.C., Trasar-Cepeda, C., Gil-Sotres, F. 2012. Effects of moisture and temperature on net soil nitrogen mineralization: A laboratory study. European Journal of Soil Biology, 48: 73-80.
  • Guo, J., Yang, Y., Chen, G., Xie, J., Yang, Z. 2014. Carbon mineralization of Chinese fir (Cunninghamia lanceolata) soils under different temperature and humidity conditions. Acta Ecologica Sinica, 34: 66-71.
  • Gülser, C., Aşkın, T., Özdemir, N. 2003. Ondokuz Mayıs Üniversitesi kampus topraklarının erozyona duyarlılıklarının değerlendirilmesi. Ondokuz Mayıs Üniversitesi Ziraat Fakültesi Derğisi, 18 (1): 1-6.
  • Gülser, C., Ekberli, İ. 2002. Toprak sıcaklığının profil boyunca değişimi. O.M.Ü. Zir. Fak. Dergisi, 17(3): 43-47.
  • Gülser, C., Ekberli, I. 2004. A comparison of estimated and measured diurnal soil temperature through a clay soil depth. J. of Applied Sci., 4(3): 418-423.
  • Hassan, W., David, J., Farhat Abbas, F. 2014. Effect of type and quality of two contrasting plant residues on CO2 emission potential of Ultisol soil: Implications for indirect influence of temperature and moisture. Catena, 114:90-96.
  • Hillel, D., 1982. Introduction to soil physics. Academic Pres, İnc. San Dieoga, California, USA, 364 pp.
  • Hillel, D. 1998. Environmental soil physics. Academic Press, New York, 771 pp.
  • Hinkel, K.M. 1997. Estimating seasonal values of thermal diffusivity in thawed and frozen soils using temperature time series. Cold Regions Science and Technology, 26:1-15.
  • Hopmans, J.W., Dane, J. H., 1985. Effect of temperature-dependent hydraulic properties on soil water movement. Soil Science Society of America Journal, 49: 51-58.
  • Jaynes, D.B. 1990. Temperature variations effect on field-measured infiltration. Soil Science Society of America Journal, 54: 305-312.
  • Kacar, B. 1994. Bitki ve toprağın kimyasal analizleri III. Toprak analizleri. A.Ü. Ziraat Fakültesi Eğitim, Araştırma ve Geliştirme Vakfı Yayınları, No:3, Ankara., s. 89-98.
  • Krzysztof, M., Bronisław, W., Szymanski, W., Muskala. P. 2014. Soil moisture and temperature variation under different types of tundra vegetation during the growing season: A case study from the Fuglebekken catchment, SW Spitsbergen. Catena, 116:10-18.
  • Lei, S., Daniels, J. L., Bian, Z., Wainaina, N. 2011. Improved soil temperature modeling. Environmental Earth Sciences, 62(6): 1123-1130.
  • Lettau, H.H. 1954. Improved models of thermal diffusion in the soil. Trans. Am. Geophys. Union, 35: 121-132.
  • Li, L.-J., You, M.-Y., Shi, H.-A., Ding, X.-L., Qiao, Y.-F., Han, X.-Z. 2013. Soil CO2 emissions from a cultivated Mollisol: Effects of organic amendments, soil temperature, and moisture. European Journal of Soil Biology, 55: 83-90.
  • Nerpin, S.V., Chudnovskii, A.F. 1984. Heat and mass transfer in the plant-soil-air system. Translated from Russian. Published for USDA and National Sci. Found., Washington. D.S., by Amerind Publishing Co. Pvt. Ltd., New Delhi, India, 355 pp.
  • Olsen, S.R., Sommers, E.L. 1982. Phosphorus availability indices. Phosphorus soluble in sodium bicarbonate. Methods of Soils Analysis. Part II. Chemical and Microbiological Properties. Editors: A. L. Page, R. H. Miller, D. R. Keeney, pp. 404-430.
  • Onder, O., Ozgener, L., Tester, J.W. 2013. A practical approach to predict soil temperature variations for geothermal (ground) heat exchangers applications. International Journal of Heat and Mass Transfer, 62: 473-480.
  • Passerat de Silans, A.M., Monteny , B.A., Lhomme, J.P. 1996. Apparent soil thermal diffusivity, a case study: HAPEX-Sahel experiment. Agricultural and Forest Meteorology, 81: 201-216.
  • Ponomoryov, D.G., Nadirov, F.D., Ekberov, İ.A. 1984. Toprağın ısı mübadelesi denklemi. Azerbaycan SSC Bilimler Akademisinin Genel Dergisi, XL (11): 86-90.
  • Richards, L.A. 1954. Diagnosis and İmprovement of saline and alkali soils. U.S.Dept. Agr. Handbook, 60: 105-106.
  • Schachtschabel, P., Blume, H.-P., Brümmer, G., Hartge, K.-H., Schwertmann, U., 2001. Toprak bilimi (Çevirenler: Özbek, H., Kaya, Z., Gök, M., Kaptan, H.). Ç.Ü. Ziraat Fak. Genel Yayın No: 73, Ders Kitapları Yayın No: A-16, s. 349-361.
  • Schütt, M., Borken, W., Spot, O., Stange, C.F., Matzner, E. 2014.
  • Temperature sensitivity of C and N mineralization in temperate forest soils at low temperatures. Soil Biology & Biochemistry, 69: 320-327.
  • Sterling, A.T., Jackson, R.D., 1986. Temperature. In: Klute, A. (Ed.), Methods of Soil Analysis Part 1. Physical and Mineralogical Methods. Agronomy Monograph No: 9, ASA, SSSA, Madison WI.
  • Tanaka, K., Hashimoto, S. 2006. Plant canopy effects on soil thermal and hydrological properties and soil respiration. Ecological Modelling, 196: 32-44.
  • Terrence, H.B., Hugh, A.L.H. 2011. Fine scale variability in soil extracellular enzyme activity is insensitive to rain events and temperature in a mesic system. Pedobiologia, 54: 141–146.
  • Tihonov, A.N., Samarskiy, A.A. 1972. Uravneniya matematiçeskoy fiziki. Nauka Press, Moscow, 735 s.
  • Tikhonravova, P.I. 2007. Effect of the water content on the thermal diffusivity og clay loams with different degrees of salinization ih the Transvolga region. Pocvovedeniye, 1: 55-59.
  • Tikhonravova, P.I., Khitrov, N.B. 2003. Estimation of thermal conductivity in Vertisols of the Central Ciscaucasus region. Pocvovedeniye, 3: 342-351.
  • Usowicz, B., Kossowski, J., Baranowski, P. 1996. Spatial variability of soil thermal properties in cultivated fields. Soil & Tillage Research, 39: 85-100.
  • Wang,C., Wan, S., Xing, X., Zhang, L., Han, X. 2006. Temperature and soil moisture interactively affected soil net N mineralization in temperate grassland in Northern China. Soil Biology & Biochemistry, 38: 1101-1110.
  • Wang, Z.H., Bou-Zeid, E. 2012. A novel approach for the estimation of soil ground heat flux. Agricultural and Forest Meteorology, 154– 155: 214-221.
  • Zibilske, L.M., Makus, D.J. 2009. Black oat cover crop management effects on soil temperature and biological properties on a Mollisol in Texas, USA. Geoderma, 149: 379-385.
Toplam 60 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Bölüm Toprak Bilimi ve Bitki Besleme
Yazarlar

İmanverdi Ekberli

Yıldız Sarılar Bu kişi benim

Yayımlanma Tarihi 1 Şubat 2015
Yayımlandığı Sayı Yıl 2015 Cilt: 30 Sayı: 1

Kaynak Göster

APA Ekberli, İ., & Sarılar, Y. (2015). Toprak sıcaklığı ve ısısal yayınımın belirlenmesi. Anadolu Tarım Bilimleri Dergisi, 30(1), 74-85. https://doi.org/10.7161/anajas.2015.30.1.74-85
Online ISSN: 1308-8769